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1 Introduction

A famous American essayist Charles Dudley Warner once said

Everybody complains about the weather, but nobody does any-
thing about it.

He referred to the climate of the New England region in the USA. The quote
is easily applicable to today’s world. We all complain about the weather,
regardless if it’s hot Summer, freezing Winter or rainy Autumn. The temper-
ature plays a huge part in our daily conversations with peers and strangers.
It’s the most commonly noticed physical quantity impacting our lives every
day. Everybody understands that in January in Poland no one would expect
a 20-degree Spring weather. What is not commonly known is that mathe-
matics, as always, provides us with models explaining the reality and even
predicting the future.

The goal of the thesis is to investigate real climate data regarding tem-
perature measures.

In the first chapter of the thesis, we will take a closer look at daily tem-
perature data measured in the last 35 years in six cities around the world. We
will analyse its properties and introduce the concept of time series approach
for data analysis. We will explain why the data does not meet the assump-
tions of stationarity and why it needs to. We will examine the relationship
between observations using the autocorrelation and partial autocorrelation
functions. In the next chapter we start the preparation of the data for future
modelling. The aim is to investigate a long term trend and seasonality. In
chapter 4 we apply a proper model for the data, which is the autoregressive
model with the order p. We check its correctness in the next and last chap-
ter, by performing 90-day predictions. What we find out is, that this simple
model gives generally correct predictions, however, it does not perform well
in the presence of weather anomalies.

2 Exploring the data

The first step of any data examination is getting to know the kind of infor-
mation we are about to work on. In this section we will explore the data
properties and we will choose the right mathematical approach for the next
step of the analysis.
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2.1 About NASA Power

NASA Prediction Of Worldwide Energy Resources, in short NASA POWER
[6] is a project containing over 200 satellite-derived meteorology and solar
energy Analysis Ready Data (ARD), at three temporal levels: daily, inter-
annual, climatology. The POWER Data is updated all the time. There are
three “communities” that the POWER Project targets: Surface meteorology
and Solar Energy (SSE), Sustainable Buildings (SB), Agroclimatology (AG).
In this paper we will consider the data of daily temperature measures in six
cities around the world using the resources collected for the agroclimatology
community.

2.2 The choice of cities

We will analyse data from six different cities around the world:

1. Wroclaw (Poland),

2. Reykjavik (Iceland),

3. Melbourne (Australia),

4. Rio de Janeiro (Brasil),

5. New York City (United States of America),

6. New Delhi (India)

Each of these cities lays in different part of the world and in a different
climate zone. Wroclaw and New York City both lay in the temperate zone,
however they differ drastically in terms of population number, traffic and
access to the ocean. Reykjavik belongs to the subpolar zone and even though
it’s the smallest one in terms of population, there’s the common belief that
Iceland, and especially its glaciers, has a very serious melting issue because
of the temperature getting higher. Rio de Janeiro’s climate is considered a
“tropical savanna” meaning its winters are warm and summers are hot and
humid. It is also an enormous city with huge traffic. It lays in the subtropical
climate zone as well as Melbourne. The climate of New Delhi is characterised
by strong monsoon in the June and July as well as a significant difference
between summer and winter months. It is also influenced by the nearby
Himalayas causing cold winds especially in the winter.
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2.3 Time series approach

We will inspect daily temperature measured from 1st of January 1985 to 31st

of December 2019, so the last 35 years. The temperature is computed as a
daily average. Because of the way it’s measured we will use the time series
approach to model and examine the results.

Definition 1. A time series is a set of observations x1, x2 . . . , xn taken at
successive periods of time.

We will consider a discrete-time series, where the time set T0 of times at
which observations take place is discrete.

A crucial part in time series analysis is to define a model to describe the
data. Because we cannot really predict the future observations, we need to
assume a certain probability attached to them. This leads us to suppose that
each observation xt is a realized value of a random variable Xt. Then, the
time series {xt, t ∈ T0} is a realization of of the family of random variables
{Xt, t ∈ T0}. So, we can model the data as a realization of a stochastic
process {Xt, t ∈ T}, where T0 ⊆ T .

Definition 2 (Stochastic process). A stochastic process is a family of random
variables {Xt, t ∈ T} defined on a probability space (Ω,F ,P).

In our case the set T is a set of time points being every day from 01.01.1985
until 31.12.2019.

Definition 3 (Realizations of a Stochastic Process). The functions {X(ω), ω ∈
Ω} on T are called the realizations of the process {Xt, t ∈ T}.

We will use the term time series to describe both the data and the stochas-
tic process of which it is a realization.

Definition 4 (Time series model). A time series model of the observed data
{xt} is a specification of the joint distributions (or only the means and co-
variances) of a stochastic process {Xt} of which {xt} is a realization.

In the case of daily temperature data we will consider the classical de-
composition model :

Xt = mt + st + Yt, t ∈ T, (1)

where {mt} is the slowly changing function called a trend component, {st} is
the function with a perdiod d known as a seasonal component and {Yt} is a
random noise component.
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2.4 Time plots

Let’s take a look at the daily temperature measures. For that we will use
time plots which show the observations in the following time moments.

Figure 1: Time plots of the daily temperature measures.

The plots are put on the same Y axis to compare the amplitude between
the measures and also to see the differences between temperatures in different
cities. The daily temperature in New Delhi is far different than the daily
temperature in Wroclaw. We can also observe a noticeable seasonality in
the data by the way the plots are shaped. For now, by just looking at these
simple plots, we can’t really notice a trend. Because the seasonality is visible,
we can make an assumption that the data is strongly autocorrelated. We will
explore this property later on.
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2.5 Seasonal plots

In the previous subsection we have observed that the data has a visible
seasonal factor. Indeed, the seasons are changing and so does the weather
and temperature. We can explore it more with the use of seasonal plots.
Each line of the plot represents a year. Daily temperature was aggregated
into months and the lines were smoothed to observe clearer seasonal tendency.

Figure 2: Seasonal plots of aggregated daily temperature.

With help of the seasonal plot, we can notice the hottest and the coldest
months in each city. Also, there is a significant difference between Melbourne
and Rio de Janeiro, being on the other half of the globe than the rest of the
cities. The charts of these two areas are exactly opposite. However, from
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this descriptive analysis we can’t really tell if there is a increasing tendency
of temperature in recent years comparing to the past. There are some values
that do not fit to the overall line chart especially in the winter and summer
months. What we can notice is that in some of the cities the temperature
amplitude is higher than in other. For example, the New Yorkers can expe-
rience winters with temperatures quite below 0◦C , but the citizens of Rio
de Janeiro would have to deal with mean temperatures between 20◦C and
30◦C.

2.6 Stationarity and the Autocorrelation Function

One of the most important issues we need to tackle while analysing time
series data is asking a question on what impact do the previous observa-
tions have on the current value and how much they are dependent on each
other. We examine if there exists a time correlation between observed values,
called the autocorrelation and also, regarding the dependence, we compute
the autocovariance function (sometimes just called covariance function).

Definition 5 (The Autocovariance Function). If {Xt, t ∈ Z} is a process
such that V ar(Xt) <∞ for each t ∈ Z, then the autocovariance function γX
of {Xt} is defined by

γX(r, s) = Cov(Xr, Xs) = E[(Xr − EXr)(Xs − EXs)], r, s ∈ Z (2)

The autocovariance function definition leads us to the definition of an
important time series feature called stationarity.

Definition 6 (Stationarity). The time series {Xt, t ∈ Z} is stationary if:

(i) EX2
t <∞ for all t ∈ Z

(ii) E(Xt) = m for all t ∈ Z

(iii) γX(r, s) = γX(r + t, s+ t) for all r, s, t ∈ Z

This stationarity we consider in the above definition is often called weak
sationarity or wide–sense stationarity. It will be extremely important in the
next steps of the analysis, especially fitting a model for the data.

Remark. If {Xt, t ∈ Z} is stationary then γX(r, s) = γX(r − s, 0) for all
r, s ∈ Z. So, it we can redefine the autocovariance function of the stationary
process as the function of one variable:

γX(h) ≡ γX(h, 0) = Cov(Xt+h, Xt), t, h ∈ Z. (3)

Now, the function γX(·) will be reffered to as the autocovariance function and
γX(h) is its value at lag h.
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To examine the autocorrelation we will be using the Autocorrelation Func-
tion (ACF). It is the measure of the linear correlation between observations
of the time series separated by h time stamps, so at lag h.

Definition 7 (The Autocorrelation Function). The autocorrelation function
of {Xt, t ∈ Z} at lag h is:

ACF (h) =
γ(h)

γ(0)
= Cor(Xt+h, Xt). (4)

The autocorrelation function definition that was presented is more of a
theoretical approach. In practice and in the case of temperature data, we
use the sample autocorrelation function. If the data are realized values of a
stationary time series {Xt}, then the sample ACF will give us an estimate of
the ACF of {Xt}. Like before, to define the sample autocorrelation function,
we need to define the sample autocovariance function.

Definition 8 (The Sample Autocovariance Function). Let x1, x2, . . . , xn be
observations of a time series. We define the sample mean of x1, x2, . . . , xn
as

x̄ =
1

n

n∑
t=1

xt. (5)

The sample autocovariance function is:

γ̂(h) =
1

n

n−|h|∑
t=1

(xt+|h| − x̄)(xt − x̄), −n < h < n. (6)

Definition 9 (The Sample Autocorrelation Function). The sample autocor-
relation function is defined as:

ρ̂(h) =
γ̂(h)

ˆγ(0)
, −n < h < n. (7)

Let’s take a look at the charts of the sample autocorrelation function.
Here we care about the relationship between observations, so we will exam-
ine only charts related to daily temperature measures in Wroclaw, because
the other cities are very similar. The data is measured the same way in every
region, so we don’t have to consider all of the places to see if the autocorre-
lation exists.
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Figure 3: Autocorrelation charts of the daily temperature in Wroclaw,
Poland.

We analyse data autocorrelation in 30 days, 6 months, 1 year, 5 years, 10
and 20 years lags. Very strong cyclical oscillations that are slowly decreasing,
indicate that there is a significant seasonal component in the data. The
oscillation period is about 4 months, which is actually true to the seasons
changing and the seasonal plots analysed in the section 2.5. It also indicates
a strong dependence between observations.

Another very important function describing the correlation between ob-
servations in a time series is the partial autocorrelation function. The partial
autocorrelation α(h) at lag h is the correlation between X1 and Xh+1 adjusted
for the intervening observations X2, . . . , Xh.

Definition 10 (The Partial Autocorrelation Function). The partial auto-
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correlation function (PACF ) α(·) of a stationary time series is defined by

α(1) = Corr(X2, X1) = ρ(1) (8)

and

α(h) = Corr(Xh+1 − Ps̄p{1,X2,...,Xh}Xh+1, X1 − Ps̄p{1,X2,...,Xh}X1), h ≥ 2, (9)

where P{1,X2,...,Xh} is an orthogonal projection on a linear subspace given by
1, X2, . . . , Xh.

Let’s see the results after using the PACF function with different maxi-
mum lags h.

Figure 4: Partial autocorrelation charts of the daily temperature in Wroclaw,
Poland.

The smaller the maximum lag h, the stronger is the partial autocorrela-
tion. After about 15 days, the spikes of the plot are becoming statistically
insignificant by appearing between blue dotted lines indicating a 95% con-
fidence intervals. For lag h larger than 15 we can observe that the spikes
appear randomly outside the confidence intervals.
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3 Time series decomposition

3.1 Data adjustment

It is worth mentioning that in order to conduct time series decomposition in
terms of seasonality removal, we need to make every year 365 days long. We
will make this happen by removing 8 observations made on 29th of February
of eight different years. Because of this transformation, we can successfully
perform the decomposition of the time series.

3.2 Theory

To perform a reasonable time series analysis, we need to get to know the
data better. The technique that will help us is the time series decomposi-
tion. Time series decomposition relies on extracting the trend and seasonal
component from the time series. Because of this we can see if there is a
long-term increasing tendency in the temperature data and we can also take
a better look at the seasonal factor. Time series decomposition will allow
us to extract random noise component and later on choose and fit the best
time series model for the most accurate predictions. The aim here is to make
non stationary time series stationary, because that’s the assumption that
model, we’re about to apply, has. Decomposition’s goal is also to reduce the
dependence between observations.

We’re dealing with an additive time series, so the decomposition will
be additive as well. This means simply subtracting trend and/or seasonal
component from the data.

3.3 Trend component

We shall start with identifying the trend in our data. For that we will use
the Simple Moving Average (MA) algorithm. The idea of this method is to
“smoothen” the time series by taking mean of the values next to each other.
It’s a non–parametric method for trend estimation.

Let’s consider a nonnegative integer q and a two-sided moving average

Wt =
1

2q + 1

q∑
j=−q

Xt−j (10)

of the process Xt, t ∈ Z defined by the classic decomposition model (1). Then
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for q + 1 ≤ t ≤ n− q,

Wt =
1

2q + 1
(

q∑
j=−q

mt−j +

q∑
j=−q

Yt−j) ≈ mt. (11)

We assume that mt is approximately linear over the interval [t− q, t+ q] and
that the average of the error terms over this interval is close to zero. The
moving average provides us with a trend estimator:

m̂t =
1

2q + 1

q∑
j=−q

Xt−j, q + 1 ≤ t ≤ n− q. (12)

To determine the estimate value of the trend in the moment t we take a
mean of q previous and q following observations of the one appearing in the
moment t. In result there are 2q + 1 values of which we take the mean. The
choice of q is in charge of the control of the degree of smoothing.

Remark. {Xt} is not observed for t < 1 and t > n, therefore in R we replace
those values with NA meaning ‘Not Available” which is a code used to mark
that there is no value. Another approach is to replace Xt with X1 for t < 1
and Xt with Xn for t > n.

Let’s take a look at the results of a simple moving average filter on the
daily temperature data. We’ll start with Wroc law.

Figure 5: Moving Average method with different q parameter values on daily
temperature data in Wroc law, Poland.
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We can observe that when we’re increasing the q parameter, the daily
temperature plot gets smoother. We will zoom in and see the structure of
the lines closer.

Figure 6: Zoom on the smoothing effect of the simple moving average proce-
dure.

We can see that in this scale, the lines are not as smooth as we thought
they would be. However, what we’re interested in is not the effect of flattening
the chart, but the trend of the data. Let’s analyse the the trend factor in the
daily temperature data in Wroc law after applying the simple moving average
procedure.
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Figure 7: Plot of the temperature data after applying the simple moving
average with q parameter equal to 1 year.

We can observe a slightly increasing tendency. However, to say that there
exists a clear trend factor in the analysed time series, we shall see it on the
Figure (5). The moving average procedure gives us a first insight into the
data.

Now, we will extract trend factor from two different time series in two
different cities in climate zones far different from Wroc law – Melbourne and
Reykjavik, to see if there can be observed an increasing tendency.

The moving average of Melbourne’s (Australia) time data is the following:
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Figure 8: Moving Average method with different q parameter values on daily
temperature data in Melbourne, Australia.

The Y axis was fit to the one of Wroclaw’s chart for comparison. Ob-
viously, the daily temperature in Melbourne is higher than the daily tem-
perature in Wroclaw. We can also see the smoothing aspect of the moving
average procedure. Once again, there is a slight increasing tendency, but not
very significant.
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Figure 9: Plot of the temperature data after applying the simple moving
average with q parameter equal to 1 year.

The difference between January 1985 and December 2019 is about 1◦C.
The average level at which the plot is running is from about 12◦C to almost
15◦C. For Wroclaw’s temperature data the highest moving average point is
just above 11◦C. We can see a very significant temperature difference between
these two places.

Let’s compare it with Reykjavik’s chart after applying the simple moving
average model with 1–year q parameter.
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Figure 10: Plot of the temperature data after applying the simple moving
average with q parameter equal to 1 year.

In terms of Reykjavik, the increasing trend is even less visible. However,
its moving average model shows some very interesting observations. We can
see a significant rise in temperature around 2003. According to [3] years 2003
and 2004 were the warmest ones in the recent climatic history of Iceland.
Another anomaly can be observed around 2015. As it is stated in [8], 2015
was the coldest year since 2000 which can be seen on the plot above.

Summing up, the moving average algorithm didn’t give any significant
results in terms of long-term trend identification. To eliminate the trend
component it should have a visible regularity in a long-term run. We will
not include it in the further decomposition. However, as we’ve seen in the
example of Reykjavik’s temperature data, it can be quite useful for spotting
some historical dependencies and facts that happened in the past.

3.4 Seasonal component

Next step in time series decomposition is identification of the seasonal compo-
nent. We have already observed that the data we’re dealing with is strongly
seasonal due to changing seasons.
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We transform the data {Xt} into a matrix with 35 columns and 365 rows.
That’s why we needed the transformation mentioned in 3.1. Later we will
calculate mean value of every observations in each row. That will be the
estimate of seasonal factor.

The matrix that we are constructing:
X1,1 X1,2 · · · X1,35

X2,1 X2,2 · · · X2,35
...

...
. . .

...
X365,1 X365,2 · · · X365,35

 . (13)

The seasonal factor estimator is calculated as

ŝi =
1

n

n∑
j=1

Xi,j, (14)

where i = 1, . . . , 365 and n = 35. Because all of the analysed data is seasonal,
plots for different cities would only differ in case of Y axis and its values.
Therefore, we will only show the seasonal plot for Wroc law.

Figure 11: Seasonal factor of daily temperature data in Wroclaw, Poland.
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The plot is increasing up until roughly 200th day of the year, so until July.
It is comparable with the seasonal plot on the Figure 2. Then the line on the
plot is decreasing, indicating the lower temperature during the colder months.
Seasonality has a significant impact on the observations, determining their
values. This happens cyclically every year.

3.5 Random noise component

The objective of this step is to produce a stationary time series. Because
we don’t deal with trend factor, but have strongly seasonal data, we need
to remove the identified seasonality from the original temperature measures.
We will get a random noise component, which will be further analysed and
used to fit an appropriate model, because for that we need the analysed time
series to be stationary. The process of eliminating the seasonal component
and extracting random noise concludes in one simple equation:

Ŷt = Xt − ŝt,

where Ŷt is the estimated value of random noise component.

Figure 12: Random noise component of daily temperature in Wroc law,
Poland.
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The data doesn’t have any specific trends. We cannot observe any regu-
larities as we did at the beginning, by analysing Figure 1. The time series
has become stationary, it’s variance is approximately the same with the time
changing. The objective to make the input time series stationary has been
achieved.

To confirm if we have successfully removed the seasonality, we need to
examine ACF and PACF charts.

Figure 13: Autocorrelation and partial autocorrelation plots of random noise
component of time series data in Wroc law, Poland.

For us to say, that the autocorrelation between data doesn’t exist, the
lags of the ACF plot should be between blue dotted lines indicating a 95%
confidence interval ±1.96 1√

n
. They are not, so the observations are still

dependent on the previous ones. This is actually an advantage, because we
can use that to predict future values of daily temperature. The ACF plot
also confirms that we have successfully removed seasonal component, because
by comparing it with Figure 1, we can see that the autocorrelation lags no
longer have an almost cosine shape for the maximum lag equal to 365. It
indicates a significant improvement in terms of increasing the dependence
between data.

The partial autocorrelation plot shows far less spikes outside the confi-
dence interval. It also gives us an evidence of decreased dependence on the
previous observations. Comparing it with Figure 4, we can observe that the
maximum significant lag is reduced from about 15 to 7. This plot is a good
indication of the model we should apply for the data. If the partial autocor-
relation function PACF (h) is between the confidence intervals ±1.96 1√

n
for

21



lags h > p we can make an assumption, that the time series data are a real-
ization of the autoregressive model AR with the order p. Here p = 7, because
after 7th lag the spikes of the plot are between the confidence intervals. We
will introduce the AR(p) model in the next section.

We will construct ACF and PACF plots for random noise component for
other cities.

Figure 14: Autocorrelation and partial autocorrelation plots of random noise
component of time series data in Melbourne, Australia.

Melbourne’s partial autocorrelation plot shows that there are some lags
after lag 7 that are statistically significant. It means that the order p of
the autoregression model will be probably greater than 7 and, by looking
at the plot, even greater than 18. We can conduct that the daily tempera-
ture in Melbourne is actually significantly dependent on a longer period of
previous observations. Analyzing Figure 2 (seasonal plots) we can make an
observation, that the change in monthly mean temperature is smaller than
in Wroclaw. The temperature in winter months in Australia is about 10◦C
lower than in the summer, whereas in Wroc law the difference is twice as high.
This leads us to the conclusion that the greater number of statistically sig-
nificant values of PACF in Melbourne’s data random noise could be related
to the more stable temperature throughout the year.
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Figure 15: Autocorrelation and partial autocorrelation plots of random noise
component of time series data in Reykjavik, Iceland.

The spikes of ACF plot of Reykjavik’s decomposed time series drop faster
to confidence intervals than plots of Wroc law and Melbourne. The observa-
tions are less correlated which is also visible at PACF plot, where almost
all of the spikes after lag 5 are between the intervals. This could mean that
the Icelandic temperature is prone to rapid changes. Quoting [7]: ‘Iceland,
especially inland and during winter, is frequently subject to abrupt and dra-
matic changes in weather that can sharply reduce visibility, as well as rapidly
increasing wind speed and precipitation, and shift temperature.’
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Figure 16: Autocorrelation and partial autocorrelation plots of random noise
component of time series data in Rio de Janeiro, Brasil.

Rio de Janeiro’s random noise component’s ACF plot is quite similar to
Melbourne’s but with even higher lags. The spikes of PACF plot are also
statistically significant up until 20th lag. Once again, comparing the results
with seasonal plot, we can see that the temperature throughout the months
is changing even less than in Australia, so it could be a reason for higher
dependence on previous days.

Figure 17: Autocorrelation and partial autocorrelation plots of random noise
component of time series data in New York City, USA.
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ACF plot for New York City random noise component is quite similar to
Wroc law. However, the PACF plot shows some significant spikes that are
at lag greater than 7. This indicates that the current observations are also
dependent on more than a week-long time period.

Figure 18: Autocorrelation and partial autocorrelation plots of random noise
component of time series data in New Delhi, India.

New Delhi’s random noise component has ACF function values dropping
quite slowly. The partial autocorrelation spikes are also significant up until
20th lag. New Delhi’s temperature shown on the seasonal plot shows some
significant difference between summer and winter months. Summer in New
Delhi is extremely hot and winter is quite moderate.

4 Modelling

Choosing the right model for the given data is a critical step in time series
analysis. It lets us do the most accurate predictions in the future. Most of
the models considered for time series are stationary and for that reason we
have transformed the temperature data time series into a stationary one.

4.1 Theory

The main property of the autoregressive (AR) model is that it works under
the assumption that past observations influence the current values. In terms
of temperature data, we have already proved that by using autocorrelation
and partial autocorrelation functions.
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Before we present a definition of the autoregressive process, we shall re-
view a stationary process that is a component of the AR process and also
many other processes.

Definition 11 (White Noise WN(0, σ2)). The process {Zt} is called white
noise with mean 0 and variance σ2 written {Zt} ∼ WN(0, σ2) if and only if
{Zt} has 0 mean and covariance function defined as:

γ(h) =

{
σ2 if h = 0

0 if h 6= 0
(15)

Remark. If the random variables Zt are independently and identically dis-
tributed with mean 0 and variance σ2 then we write {Zt} ∼ IID(0, σ2)

The white noise process is an important building block for other station-
ary models.

The autoregressive process is a part of more general process called the
autoregressive–moving average model, in short ARMA. The investigation of
the ARMA process will let us understand the AR process better.

Definition 12 (The Autoregressive–Moving Average Process, ARMA(p, q)).
The process {Xt, t ∈ Z} is an ARMA(p, q) process if {Xt} is stationary and
if for every t:

Xt − φ1Xt−1 − · · · − φpXt−p = Zt + θ1Zt−1 + · · ·+ θqZt−q, (16)

where Zt ∼ WN(0, σ2).

We can simplify the equation (16):

φ(B)Xt = θ(B)Zt, t ∈ Z, (17)

where φ and θ are the pth and qth degree polynomials called the autoregsessive
and moving average polynomials. The autoregressive polynomial:

φ(z) = 1− φ1z − · · · − φpz
p. (18)

The moving average polynomial:

θ(z) = 1 + θ1z + · · ·+ θqz
q (19)

B is the backward shift operator defined by

BjXt = Xt−j, j ∈ Z (20)

The ARMA process consists of the moving average process and the autore-
gressive process. We will focus on the definition of the second one because it
applies to the data we’re analysing.
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Definition 13 (The Autoregressive Process, AR(p)). If θ(z) ≡ 1 then

φ(B)Xt = Zt (21)

and the process is called the autoregressive process of order p (AR(p)).

4.2 Application of the Autoregressive Model

Now we will conduct the application of the AR(p) model to the temperature
data. In section 3.5 we have discussed the partial autocorrelation plot of the
random noise component. From each PACF plot we could deduct the order
p of autoregressive model. It’s obviously a flawed method and we will use
ar() function from R to estimate the autoregression polynomial coefficients
φi, i ∈ {1, . . . , p}.

The ar() method uses the Akaike Information Criterion to estimate the
model’s order. Coefficients are estimated using Yule–Walker method. Here
are the fitted models plotted in orange, compared with the original daily
temperature data plotted in gray. Each plot contains information about the
order p of the autoregressive model.
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Figure 19: Comparison of fitted AR(p) models for daily temperature data of
different cities.

The plots show last half of the year 2019 for each city. We can see that
the model looks similar to the data, however the bigger the order p, the
more of the original data is far from the points estimated by the model. For
example, Melbourne’s and Rio’s plots show the biggest differences at the
highest “spikes”. This gives us the first insight into the model and its ability
of dealing with extreme values.

4.3 Stationary solution of the Autoregressive Process

We will check the stationarity of the processes calculated in the previous
section. To do that we shall examine the inverse roots of the characteristic
polynomial

φ(z) = 1− φ1z − · · · − φpz
p. (22)
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If the inverse roots are inside the complex unit circle, then the AR(p) process
is stationary and causal [see Theorems 3.1.1 and 3.1.3, pages 85, 88 in [1]].

Figure 20: Inverse roots of the polynomial φ(z) for every city.

The inverse roots are indeed inside the complex unit circle. Thus, the
AR(p) processes are stationary and we can move on to forecasting.

5 Forecasting

In this section we will perform the last but not least part of time series
analysis. Predicting future data will give us foundation for a discussion
about modelling information about daily temperature.

5.1 Theory

The problem we want to tackle is predicting the value of Xn+1 observation of
a stationary time series with known mean µ and autocovariance function γX
based on the values {Xn, . . . , X1}. For the purpose of this paper and later
prediction of the temperature data we will restrict the group of stationary
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processes to the ones that are zero-mean. In this analysis we will not con-
duct the Xn+h, h > 1 prediction, because even empirically, we know that
forecasting temperature a few days ahead is not accurate. The forecasting
we will be doing is called one-step ahead. One-step ahead prediction means
prediction of just one observation based on p previous ones, where p is the
autoregression order.

The goal is quite simple – we want to find a linear combination of
Xn, Xn−1, . . . , X1 that forecasts Xn+1 with minimum mean squared error.
The best linear predictor in terms of Xn, Xn−1, . . . , X1 will be the following:

X̂n+1 = a1Xn + · · ·+ anX1 =
n∑

j=1

anjXn+1−j (23)

for some an. It is supposed to minimize:

vn = E[(Xn+1 − X̂n+1)2]. (24)

By solving (24) using (23), we get

vn = E

(Xn+1 −
n∑

j=1

anjXn+1−j

)2
 = E[X2

n+1] + a′nAnan − 2a′nbn, (25)

where an,ij = γX(i− j), bn,j = γX(j). We find the optimal an by solving:

Anan = bn. (26)

This includes inverting the matrix An, which can be very computationally
inefficient for large values of n. However, there are two algorithms that give
the value of X̂n+1 without the need of inverting the matrix. The first algo-
rithm is called the Durbin-Levinson algorithm and the second one is referred
to as the innovations algorithm. We will use the innovations algorithm to
compute one-step ahead predictions for AR(p) process.

The innovations algorithm is a recursive algorithm that is applicable to
all time series, regardless if they are stationary. It relies on the fact that what
we are interested in is the prediction of the observations themselves, not the
values an. It produces forecasts that are linear combinations of prediction
errors, therefore for j = 1, . . . , p we have

X̂n+1 =
n∑

j=1

dnj(Xj − X̂j). (27)
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Now we will want to find the coefficients dn of forecast errors. Applying
the innovations algorithm to AR(p) process leads us the the final form of
one-step ahead prediction that we will be using:

X̂n+1 = φ1Xn + φ2Xn−1 + · · ·+ φpXn+1−p, n ≥ p, (28)

where the coefficients {φ1, . . . , φp} are the coefficients of the autoregressive
model computed in the section 4.2. The thing about the calculated coeffi-
cients is that φ1 is close to 1. For example, the AR(7) prediction model for
the temperature of Wroclaw, Poland is the following:

X̂n+1 = 1.0257Xn − 0.3174Xn−1 + 0.1173Xn−2 − 0.0102Xn−3+

+ 0.0028Xn−4 + 0.0083Xn−5 + 0.0189Xn−6.
(29)

As we can see the first coefficient is close to 1, whereas the rest of the coef-
ficients are not very impactful. This will be the reason for the predictions’
one-day shift that we will see in the next subsection.

5.2 Daily temperature forecasting

We perform one-step ahead forecasting for time period from 01.01.2020 to
31.03.2020. We compare the predicted values with actual data that has
become a test set for the model. Actual data from NASA Power database
is marked as turquoise dashed line and the predicted values are shown as
orange solid line. We will also analyse forecast errors plots. The blue dashed
lines indicate [−σ, σ] and [−3σ, 3σ] intervals.
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Figure 21: Comparison of 90–day forecasting and errors for temperature data
in Wroclaw, Poland.

For temperature data in Wroclaw the prediction doesn’t do very well with
weather anomaly like almost 10◦C at the beginning of February. It is also
clear on the forecast errors (residuals) plot. The point standing for residual
for that observation and its fitted value lays far outside the [−σ, σ] interval.
Another outstanding prediction error happens at the end of February, when
the model doesn’t fit to a sudden temperature drop and rise. Generally,
the prediction points for some rapid weather changes are badly fitted and
therefore their residuals indicate difference greater than the model’s standard
deviation σ.
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Figure 22: Comparison of 90–day forecasting and errors for temperature data
in Reykjavik, Iceland.

Reykjavik’s prediction reflects the trends and fluctuations of the data.
However, like in the previous example, it doesn’t do well with sudden tem-
perature changes like the ones in February or at the beginning of January.
February had both temperature measures below −5◦C and above 4◦C in a
very short time stamp. The highest temperature in this time interval was
measured on the 5th of February and was 4.25◦C high. The fitted value for
this observation has a forecast error equal to almost 4◦C. Another interesting
conclusion is the fact, that the lowest temperature was −7.47◦C and it was
measured on 3rd of January. The forecast error for this observation is quite
high – it is equal to almost −3◦C. However, it is the observation happening
on the following day that has the highest residual value and the least accu-
rate prediction. On the 4th of January 2020 the daily mean temperature was
about 0◦C. For the prediction model this is more of an anomaly than the
extremely low daily temperature on the previous day.
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Figure 23: Comparison of 90–day forecasting and errors for temperature data
in Melbourne, Australia.

Melbourne’s model has one of the worst–looking fitted values and errors
plots. The reason for that could be the infamous Australian “Black Summer”
that happened at the beginning of 2020. The term refers to unusually intense
bushfires. Before the 9th March they burnt over 18.6 million hectares of land.
In the state of Victoria, where Melbourne is, the bushfires destroyed about
1.5 million hectares and burnt about 400 homes. It is important to know,
that the bushfires in Australia are part of the summer season, however in the
summer of 2020 they were very severe mainly due to the drought and very
high temperatures, which can be seen on the plot. By the end of January, the
citizens of Melbourne experienced particularly hot days with the mean daily
temperature of about 30◦C. Especially last two days of January brought 30–
degree heat. This are also observations that the model had trouble predicting
very accurately.
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Figure 24: Comparison of 90–day forecasting and errors for temperature data
in Rio de Janeiro, Brasil.

Most of the residuals of Rio de Janeiro’s predicted data is between the
[−σ, σ] interval with a few exceptions. There was a drastic drop of tempera-
ture in the mid–January. In the second part of January 2020, the citizens of
Rio de Janeiro experienced a subtropical storm called Kurumi. The storm
has lead to a severe flooding and heavy rains. This could be the reason of
the quite low temperature measured in that time. The model has made some
actually good predictions. The reason is probably the overall monsoon char-
acteristic of Rio’s climate. The long heavy rains happen there all the time
between December and March, so the model should have included that.
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Figure 25: Comparison of 90–day forecasting and errors for temperature data
in New York City, USA.

January 2020 in the New York City had some pretty varying tempera-
tures, which once again were predicted by the model, but not very accurately
with some rather big forecast error values. Especially big differences hap-
pened in the first half of the month. The model didn’t perform well with the
sudden rise and drop of the temperature resulting in a residual value even
lower than −3σ.
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Figure 26: Comparison of 90–day forecasting and errors for temperature data
in New Delhi, India.

Even though the forecast plot for New Delhi’s data looks quite like the
actual temperature measures, there are a few forecasting errors outside the
[−σ, σ] interval. Especially high residual values are connected to predictions
of a significant temperature drop at the beginning of January and also a
drastic temperature rise at the end of March. Overall, the graph shows some
increasing trend tendency which is characteristic to the Spring time in Delhi.

6 Conclusion

We need to remember, that the temperature is extremely dependent on many
other factors related to different weather properties as well as geographic and
social characteristics. The wind, sudden weather anomalies like tornadoes
and floods or unusually intense bushfires are somewhat predictable for us,
but not really for a mathematical model as simple as the one presented.
The models used in serious meteorological predictions take many factors into
consideration and can produce very accurate predictions.

I started my thesis by quoting a famous writer, I will end it by referring
to George Box – “one of the greatest statistical minds of 20th century”:

All models are wrong, but some are useful.
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7 Code

The code for analysis was implemented using R programming language and
is available here: https://github.com/nelanz/BSc-Thesis.
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Wydawnictwo Naukowe PWN SA, Warszawa 2016.

[6] NASA Power

[7] Climate of Iceland, Wikipedia Article [access: 01.09.2020].

[8] The Icelandic Meteorogical Office, Climate summary 2015.

38


	Introduction
	Exploring the data
	About NASA Power
	The choice of cities
	Time series approach
	Time plots
	Seasonal plots
	Stationarity and the Autocorrelation Function

	Time series decomposition
	Data adjustment
	Theory
	Trend component
	Seasonal component
	Random noise component

	Modelling
	Theory
	Application of the Autoregressive Model
	Stationary solution of the Autoregressive Process

	Forecasting
	Theory
	Daily temperature forecasting

	Conclusion
	Code

