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Chapter 1

Introduction

Algorithmic trading is a method of executing orders using automated pre-programmed trading

instructions accounting for variables such as time, price, and volume [2]. In recent years the

number of transactions on stock markets made by the machines is on the rise. It was estimated

that at the London Stack Exchange over 40% of orders in 2006 were executed by algorithms

[2]. According to the recent data, over 80% of trading in the FOREX market was performed

by trading algorithms rather than humans [3].

In most modern financial markets, trade occurs via a continuous double-auction mechanism

called a limit order book (LOB) [8]. During last few years much work was invested into

developing methods allowing fast and accurate predictions of changes in limit order books

[10, 17, 8, 9]. Techniques used varied from the more classical ones (logistic regression [7], SVMs)

to the modern ones (convolutional neural networks, recurrent neural networks, transformers).

The main task explored by those models is the prediction of mid-price change.

To the best of our knowledge, despite Hidden Markov Models (HMM) being used in financial

modelling, there is no Hidden Markov Model-based approach for mid-price change prediction.

In this work the novel approach to mid-price modelling is presented.
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Chapter 2

Problem statement

2.1 Basic definitions

The problem of LOB classification gained popularity in recent years [8, 7, 18, 10, 9]. Researchers

from different backgrounds try to apply their knowledge of economics, mathematics, computer

science and physics in order to develop novel prediction methods.

Nowadays electronic order books are in use in over half of the financial markets [8]. Trade in

an LOB occurs via an auction mechanism by which interested parties submit orders.

By an order x we understand the triple (px, ωx, tx) submitted with price px and size ωx at a

time tx. In case ωx > 0 an offer is a commitment to sell up to |ωx| units of the asset at a price

no less than px. Analogously, for ωx < 0 an offer is an obligation to buy up to |ωx| units of the

asset at a price no greater than px.

Whenever somebody submits a sell order x, a LOB’s algorithm checks whether there exists

a possible match to an active buy order y such that py ≥ px. If we can find such order the

matching happens immediately. When it’s not possible x remains active until it is matched

with an opposing order or is cancelled. Analogous mechanism works for buy orders.

Those kind of orders are called limit orders. The LOB L(t) is the set of all active orders for a
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2.1. Basic definitions 7

given asset on a given platform at a given time t.

The highest stated price among active buy orders is called bid price, which we define as:

b(t) := max
{x∈L(t)|ωx<0}

px,

similarly we call the lowest stated price among active sell orders, the ask price which we denote

as

a(t) := min
{x∈L(t)|ωx>0}

px.

The bid price and ask price are collectively called the best quotes. The bid-ask spread at time

t is

s(t) := a(t)− b(t).

Our main object of interest is the mid-price at a time t given by

m(t) :=
a(t) + b(t)

2
.

We say that a price p is on the sell side of L(t) if p ≥ a(t), on the buy side of L(t) if p ≤ b(t) or

inside the bid-ask spread if b(t) < p < a(t). On general, LOBs have two resolution parameters :

the tick size π ≥ 0, which specifies the smallest permissible price interval between different

orders, and the lot size σ > 0, which specifies the smallest amount of the asset that can be

traded.

Because the tick size cannot be negative, we treat the price axis of LOB as a one-dimensional

lattice, whose points correspond to the natural multiples of π. That way we can regard LOB

as a set of queues, each of which consists of active orders.

We can specify the total number of active sell orders at price p and time t as

na(p, t) :=
∑

{x∈L(t)|ωx>0,px=p}

ωx
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Figure 2.1: Visualisation of LOB.
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and the total size of active buy orders

nb(p, t) :=
∑

{x∈L(t)|ωx<0,px=p}

|ωx| .

As one can easily conclude, the value of a(t) drops each time a new sell limit order arrives

inside the spread and rises whenever the total volume of sell limit orders are price a(t) drops to

0. The value of b(t) behaves analogously. The value of m(t) changes according to the change

of a(t) or b(t).

For more information regarding limit orders please refer to [8], [7].

2.2 Queue Imbalance in a LOB

In their article M. Gould et al. [7] argued that the queue imbalance is particularly useful feature

in LOB classification. We denote it’s value at a specified time t by the formula

I(t) :=
nb (b(t), t)− na (a(t), t)

nb (b(t), t) + na (a(t), t)
.

The specified quantity measures the normalized difference between nb (b(t), t) and na (a(t), t).



Chapter 3

Existing methods

There were many attempts to predict mid-price movements in the recent years, using wide

variety of approaches ranging from logistiuc regression to deep neural networks. There is no

point in presenting all of them, but to better understand the problem it is good to review the

approach taken by M. Gould et al. [7] based on the queue imbalance as it gave foundations for

the newer, more sophisticated, methods.

3.1 Data and sample construction

The data studied by M. Gould et al. in [7] originated from the LOBSTER database, which

provided an event-by-event description of the temporal evolution of the LOB for each stock

listed on Nasdaq. To obtain their results, they limit the dataset to time-series for a subset of

10 liquid stocks during the entire year of 2014.

The Nasdaq platform operates from 9:30 to 16:00 on each working day. They excluded the first

and last 30 minutes of each trading behaviour that can occur shortly after the opening auction

or shortly before the closing auction. Concluding, the dataset consisted of 252 trading days

and activity from 10:00 to 15:30.

For each stock and each trading day in the sample, there was created an ordered set T of times

10
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Figure 3.1: Histograms of I for each of the 10 stocks in LOBSTER sample. The left panel
presents the results for large-tick stocks and the right panel presents the results for small-tick
stocks.
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Figure 3.2: Empirical cumulative density functions (ECDFs) of the best-quote queue lengths
nb(b(t), t) and na(a(t), t). The plots show the survivor functions (i.e., 1 − ECDF) in doubly
logarithmic coordinates.
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at which the mid-price changes,

T =

{
t|m(t) 6= lim

ε↓0
m(t− ε)

}
.

We denote the times in T as the increasing sequence t1, t2, t3, . . . , tN , additionally t0 is the time

of the first event for the given stock on the given day.

Let

yi :=

 1, if m (ti) > m (ti−1)

0, if m (ti) < m (ti−1)

be the indicator variable describing whether or not the mid-price movement as ti ∈ T was

upwards or downwards.

As one can observe the study of price change is restricted simply to the direction of price change,

rather than the signed change in mid-price. It is caused by the simple fact that the magnitude

of such price changes are affected by more factors than only nb (bt, t) and na (at, t). It is worth

noting here that we only say that the price will change, not how big the change will be.

For each time ti ∈ T , the time t̃i was chosen uniformly at random in the open interval (ti−1, ti).

Let’s denote imbalance as:

Ii = I
(
t̃i
)
.

3.2 Prediction

To perform a binary classification, authors seek to estimate a function ŷ that maps queue

imbalance onto some subset of R and threshold value y∗ ∈ R such that:

• if ŷ(Ii) > y∗, the they predict yi = 1,

• if ŷ(Ii) < y∗, the they predict yi = 0,
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• if ŷ(Ii) = y∗, the they predict yi = 1 or yi = 0, each with probability 1/2.

The question can also be considered in terms of a probabilistic classifier, which, for a given

queue imbalance Ii, seeks to predict the probability that yi = 1. Let’s note here that whether

we choose the function yi for binary classifier such that

ŷ : (−1, 1)→ [0, 1]

and if we interpret ŷi as

ŷi := P (yi = 1|Ii) ,

then we can use the same function ŷ to perform both binary classification and probabilistic

prediction.

Let us consider two queue imbalances Ii′ and Ij′ chosen randomly with uniform distribution, Ii′

among all observations for which yi = 1 and respectively Ij′ among all observations for which

yi = 0.

If Ii provides enough information to perform binary classification, then ŷ will satisfy

P (ŷi′ > ŷj′) > 1/2.

On contrary if Ii doesn’t provide enough predictive power to perform binary classification, ŷ

will satisfy the equations

P (ŷi′ > ŷj′) = P (ŷj′ > ŷi′) = 1/2.

Analogously, if Ii enables us to do probabilistic classification

P (ŷi′ > 1/2) > 1/2 and P (ŷj′ > 1/2) < 1/2.

However, if Ii doesn’t supply us with enough predictive power to perform such classification,

then ŷ satisfies

P (ŷi′ > 1/2) = 1/2 and P (ŷj′ > 1/2) = 1/2.
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To estimate the function ŷ, we perform a logistic regression of yi onto Ii. Namely,

ŷ(I) =
1

1 + e−(x0+Ix1)
,

where x0 and x1 are the coefficients we want to estimate.

Authors compared output of their binary classifier to a simple null model in which they assume

I doesn’t bring any predictive power. That means

ŷ(I) = 1/2 for all I.

To asses the predictive power of their fitted logistic regressions for performing probabilistic

classification, they use function ŷ to make out-of-sample predictions ŷi for each Ii in the testing

set, and compute residuals:

ri := ŷi − yi.

Then they computed the mean squared residual (MSR) across all observations in the testing

set. For the null model yi = 0.5 for all i, so ri is given by

ri =

 −1/2, if yi = 1

1/2, if yi = 0

thus MSR is exactly 0.25.

3.2.1 Training and testing data

The exact number of mid-price movements that occur in a single trading day varies considerably

between different days, also differs between different stocks. To ensure the reduction of that

disproportion between data samples, authors draw a random subsample with a fixed size among

the N possible choices in the set T. For the results presented below they used a random

subsample size of 100. For each stock, they aggregated the subsamples from each of the 252
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different trading days to produce an aggregated data set of 25200 data points.They randomly

divided each stock’s aggregated dataset into two disjoint subsets: a training set, which contained

80% of the data (i.e., 20160 data points), and a testing set containing 20% of the data (i.e.,

5040 data points). They perform the fits of logistic regressions and local logistic regressions

using the training set (i.e., “in sample”), then evaluate the predictive power of these fits using

the testing set (i.e., “out of sample”).

3.2.2 Results

Full results are presented in Table 3.1, Table 3.2, Table 3.3 and Table 3.4. We may conclude

that Queue Imbalance brings some predictive power.

In each tested case, the out-of-sample ROC curves lie above the grey line on Figure 3.3, which

means that the logistic regression fits outperform the out-of-sample predictive power of the

fully random null model.

For large-tick stocks, the the ROC AUC ranges from about 0.7 to about 0.8. For small-tick

stocks, the results are significantly lower, and range from about 0.6 to about 0.65. Never-

theless, in both cases obtained results indicate that Queue Imbalance provides a substantial

improvement in the out-of-sample predictive power of the binary classifier. In order to verify

that these results are not caused by over-fitting, the authors also calculated the area under the

corresponding ROC curves for the in-sample fits.

For large-tick stocks, the values of MSR range from about 0.18 to about 0.2. For small-tick

stocks, the values of MSR range from about 0.235 to about 0.245. For the random null model,

the MSR is exactly 0.25. Therefore, when compared to the random model, the logistic regression

fits provide a reduction in MSR of about 20% to 30% for large-tick stocks, and about 2% to 6%

for small-tick stocks. For all stocks, the in-sample values of the MSR are very similar to the

corresponding out-of-sample values, which confirms that the logistic regressions do not suffer

from over-fitting.

When it comes to local logistic regression, for large-tick stocks, their regression curves are
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x0 x1
Estimate St. Err. Estimate St. Err.

MSFT 0.01 (0.02) 2.49 (0.04)
INTC 0.03 (0.02) 2.56 (0.04)
MU 0.03 (0.02) 2.03 (0.04)
CSCO 0.06 (0.02) 2.73 (0.04)
ORCL 0.05 (0.02) 2.25 (0.04)

GOOG 0.03 (0.01) 0.54 (0.02)
AMZN 0.03 (0.01) 0.85 (0.03)
TSLA −0.01 (0.01) 0.60 (0.03)
PCLN 0.03 (0.01) 0.50 (0.02)
NFLX 0.01 (0.01) 0.65 (0.02)

Table 3.1: Maximum likelihood estimates of the intercept x0 and coefficient x1 in the logistic
regression fits of ŷ versus I. Adopted from [7].

almost monotone increasing functions of I, which suggests that larger values of Ii correspond

to larger values of yi. Once again, the local logistic regressions predict that the probability of an

upward price movement ranges from approximately 0.8 to 0.9 when I is close to 1. In contrast

to the logistic regression curves, however, the local logistic regression curves suggest that the

behaviour of the system exhibits 2 different regimes. For values of I from about −0.25 to about

0.25, the ŷ curve is quite steep, meaning that when the bid and ask queues are of similar length,

a relatively small difference in the queue imbalance corresponds to a considerable change in the

probability that the next price movement will be upwards. Outside of this part, the level of

steepness of the ŷ curve decreases largely. Therefore, for values of I less than about −0.25

or greater than about 0.25, a further difference in queue imbalance corresponds to a smaller

change in the probability that the next price movement will be upwards. For small-tick stocks,

the local logistic regression curves predict that the probability of an upward price movement

is about 0.6 when I is close to 1. For all small-tick stocks except PCLN, the local logistic

regression curves are nonmonotonic in I. This result is rather puzzling, because it suggests

that there are cases when a weaker imbalance increases the probability of an upward mid-price

movement. This counter-intuitive finding brings into question whether the fitted local logistic

regressions ŷ really detect a meaningful relationship, or simply over-fit to noise.

For the in-depth analysis of results and its predictive power, please refer to full publication [7].
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In Sample Out of Sample
MSFT 0.781 0.762
INTC 0.791 0.798
MU 0.747 0.752
CSCO 0.802 0.805
ORCL 0.770 0.770

GOOG 0.592 0.581
AMZN 0.635 0.642
TSLA 0.602 0.602
PCLN 0.592 0.583
NFLX 0.616 0.627

Table 3.2: Area under the ROC curves (see Figure 3.3). Adopted from [7].
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Figure 3.3: Receiver operating characteristic (ROC) curves for the out-of-sample predictive
power of a binary classifier, based on the logistic regression fits of ŷ versus I. Adopted from
[7].

In Sample Out of Sample
MSFT 0.191 0.198
INTC 0.186 0.183
MU 0.204 0.202
CSCO 0.181 0.180
ORCL 0.195 0.195

GOOG 0.244 0.246
AMZN 0.237 0.235
TSLA 0.243 0.243
PCLN 0.244 0.245
NFLX 0.240 0.239

Table 3.3: Mean squared residual ri of the logistic regression fits of ŷ versus I. Adopted from
[7].
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Area Under ROC Curve Mean Squared Residual
In Sample Out of Sample In Sample Out of Sample

MSFT 0.781 0.762 0.190 0.198
INTC 0.791 0.798 0.185 0.183
MU 0.747 0.752 0.204 0.202
CSCO 0.802 0.805 0.181 0.179
ORCL 0.770 0.770 0.195 0.195

GOOG 0.592 0.581 0.244 0.246
AMZN 0.636 0.642 0.236 0.235
TSLA 0.602 0.603 0.242 0.242
PCLN 0.592 0.583 0.244 0.245
NFLX 0.616 0.627 0.240 0.239

Table 3.4: Statistics describing the predictive power of the local logistic regression fits of ŷ
versus I. Adopted from [7].
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Figure 3.4: Local logistic regression fits of ŷ versus I. For each curve, we use a tricube weight
function and a nearest-neighbour bandwidth of 0.65. The left panel shows the results for
large-tick stocks and the right panel shows the results for small-tick stocks. Adopted from [7]
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Figure 3.5: Receiver operating characteristic (ROC) curves for the out-of-sample predictive
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in each plot denotes the expected performance of the null model, which assumes that the
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Chapter 4

Hidden Markov Models

4.1 Markov model

Surprisingly many processes happening in our lives we can model using a stochastic process

depending only on the immediately preceding state of the process. One very classical example

is “random walk”(“birth and death chain”) [6]. The state space is {0, 1, 2, . . . , L} The chain goes

to the right with probability p and to the left with probability 1 − p, additionally we assume

that going left from 0 or going right from L means staying put.

Turning now to the formal definition, we say that Xn is a discrete time Markov chain with

transition matrix p(i, j) if for any j, i, in−1, . . . i0

P (Xn+1 = j|Xn = i,Xn−1 = in−1, . . . , X0 = i0) = p(i, j). (4.1)

Above equation explains well what we mean by phrase “given the current state Xn, any other

information about the past is irrelevant for predicting Xn+1”. In formulating 4.1 we have

restricted our attention to the temporally homogeneous case in which the transition probability

p(i, j) = P (Xn+1 = j|Xn = i)

20
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does not depend on the time n.

To better illustrate how the Markov process functions, let’s look at the simple example.

Example 1. Let r, s, w be three states, namely rainy, sunny and windy. The weather can

transition from one state at time n to another at time n+ 1 with probability p(xn, xn+1).

We can assume that the model is constructed during the spring and it is sunny most of the time.

We can define a state transition matrix:

A =

rainy sunny windy

rainy 0.1 0.1 0.8

sunny 0.2 0.7 0.1

windy 0.2 0.7 0.1

4.2 Observations

Following [5] we define HMM as follows:

λ = (A,B, π)

where S is our state alphabet set, and V is the observation alphabet set:

S = (s1, s2, · · · , sN)

V = (v1, v2, · · · , vM) .

We define Q to be a fixed state sequence of length T, and corresponding observations O:

Q = q1, q2, · · · , qT

O = o1, o2, · · · , oT
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A is a transition matrix, storing the probability of state j following state i. Note here that the

state transition probabilities are independent of time:

A = [aij] , aij = P (qt = sj|qt−1 = si) ,

B is the observation matrix, storing the probability of observation k being produced from the

state j, independent of t:

B = [bi(k)] , bi(k) = P (xt = vk|qt = si) ,

π is the initial probability matrix:

π = [πi] , πi = P (q1 = si) .

Here, two assumptions are made by the model. The first is called the Markov assumption.

It states that the current state is dependent only on the previous state. This represents the

memory of the model:

P (qt|q1 . . . , qt−1) = P (qt|qt−1) .

The second one, called the independence assumption. states that the output observation at

time t is dependent only on the current state and it is independent of previous observations

and states:

P (ot|o1, . . . , ot−1, q1, . . . qt) = P (ot|qt) .

Example 2. Let’s get back to our model in Example 1. Let’s assume that we want to model

one’s behavior according to the weather outside. Let’s name our hypothetical person Bob. Bob

enjoys four activities: walking in park, shopping, cleaning flat and visiting girlfriend.
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R W

S

P(r|r)
P(w|r)

P(r|w)

P(w|w)

P(w|s)

P(s|w)P(r|s)

P(s|r)

P(s|s)

Figure 4.1: Simple weather model with three different states: (R)ainy, (S)unny and (W)indy.

We can code it in observation probability matrix B defined as

B =

walk in park shopping clean flat visit girlfriend

rainy 0.05 0.05 0.25 0.65

sunny 0.7 0.15 0.05 0.1

windy 0.25 0.4 0.05 0.3
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Figure 4.2: Hidden Markov Model with three hidden states: (R)ainy, (S)unny and (W)indy.
There are four types of observations: walking in the park (WP), shopping (SH), cleaning flat
(CF) and visiting girlfriend (VG).



Chapter 5

Evaluation

Knowing joint distribution of the sequence of observations O and states Q conditioned on λ we

can easily compute the probability we are looking for using the law of total probability.

Theorem 1 ([5]).

P (O|Q, λ) =
T∏
t=1

bqt (ot) . (5.1)

Proof. Using the Markov property we get

P (O|Q, λ) = P (o1, . . . , oT |q1, . . . , qT , λ) =
P (o1, . . . , oT , q1, . . . , qT , λ)

P (q1, . . . , qT , λ)

=
P (oT |o1, . . . , oT−1, q1, . . . , qT , λ)P (o1, . . . , oT−1, q1, . . . , qT , λ)

P (q1, . . . , qT , λ)

=
P (oT |qT , λ)P (oT−1|o1, . . . , oT−2, q1, . . . , qT , λ)P (o1, . . . , oT−2, q1, . . . , qT , λ)

P (q1, . . . , qT , λ)
.

Observation oT−1 is independent of the state qT , so we can get

P (oT−1|o1, . . . , oT−2, q1, . . . , qT , λ) = P (oT−1|o1, . . . , oT−2, q1, . . . , qT−1, λ) .

Analogously:

P (O|Q, λ) =
P (oT |qt, λ) . . . P (o1|q1, λ)P (q1, . . . , qT , λ)

P (q1, . . . , qT , λ)
=

T∏
t=1

P (ot|qt, λ) .
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As P (ot|qt, λ) = bqt(ot) we get

P (O|Q, λ) =
T∏
t=1

bqt (ot) .

Theorem 2 ([5]). The probability of observing O under condition λ is given by the equation:

P (O|λ) =
∑

q1...qT∈QT

µq1bq1 (o1) aq1q2bq2 (o2) . . . aqT−1qT bqT (oT ) .

Proof. We can notice that probability P (q1, . . . , qT |λ) is equivalent to probability that transition

between subsequent states occurs according to transition matrix A

P (q1 . . . qT |λ) = P (q1)P (q2|q1) . . . P (qT−1|qT ) = µq1aq1q2 . . . aqT−1qT . (5.2)

From the formula for total probability we obtain:

P (O|λ) =
P (O, λ)

P (λ)
=

∑
q1...qT∈QT

P (O, λ|q1 . . . qT )P (q1 . . . qT )

P (λ)

=
∑

q1...qT∈QT

P (O, λ, q1 . . . qT )P (q1 . . . qT )

P (q1 . . . qT )P (λ)
=

∑
q1...qT∈QT

P (O, λ, q1 . . . qT )

P (λ)

=
∑

q1...qT∈QT

P (O|q1 . . . qT , λ)P (q1 . . . qT , λ)

P (λ)
=

∑
q1...qT∈QT

P (O|q1 . . . qT , λ)P (q1 . . . qT |λ) .

(5.3)

Using this result would potentially allow us to evaluate the probability of O, but evaluating it

directly has exponential complexity.

A much better approach is to acknowledge that many redundant calculations is made by di-

rectly evaluating (5.3) and therefore caching calculations can lead to reduced complexity. We

implement the cache as a grid of states at each time step, calculating the cached valued (called

α ) for each state as a sum over all states at the previous time step. By α we understand the

probability of the partial observation sequence o1, o2 · · · ot and state si at time t. Therefore, we

define the forward probability variable:

αt(i) = P (o1o2 · · · ot, qt = si|λ) .
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If we work through the grid filling in the values of α the sum of the final column of the grid

will equal the probability of the observation sequence. Mixing (5.1) and (5.2)

Definition 1 (Forward algorithm). 1. Initialisation:

α1(i) = πibi (o1) , 1 ≤ i ≤ N,

2. Induction:

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj (ot+1) , 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N,

3. Termination:

P (O|λ) =
N∑
i=1

αT (i),

The induction step is the core of the forward algorithm. For each state sj, αj(t) stores the

probability of arriving in that state after observing the observation sequence up until time t.

It is easy to notice that by caching α values, the forward algorithm reduces the complexity

of calculations involved to roughly N2T rather than 2TNT . We can also define an analogous

backward algorithm which is the exact reverse of the forward algorithm with the backward

variable:

βt(i) = P (ot+1ot+2 · · · oT |qt = si, λ) ,

as the probability of the partial observation sequence from t+ 1 to T, starting in state si.

We can easily extend algorithm to work for continuous observation space.
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Decoding

The aim of decoding is to discover the hidden state sequence that was most likely to have

produced a given observation sequence. One solution to this problem is to use the Viterbi

algorithm [12] to find the single best state sequence for an observation sequence. We want to

compute

q̂ = arg max
q

P (q|o).

In general, solving this equation would demand a tedious search of all possible observation state

sequences o, which would become impossible because of exponential complexity of this problem.

Luckily, the structure of hidden Markov models brings us a reduction in the computational

complexity.

We know from Bayes’ theorem that the posterior probability of observing a vector q given that

we have series of observations o is expressed in terms of the observation likelihood P (q|o), the

prior distribution P (o) and the marginal distribution P (o) as

P (q|o) =
P (o|q)P (q)

P (o)
.
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We can write observation likelihood using the independence property of observations:

P (o|q) = P (oN , oN−1, · · · , o2, o1, o0|qN , qN−1, · · · , q2, q1, q0) =

P (oN |qN) · · ·P (o2|q2)P (o1|q1)P (o0|q0) =
∏N

n=0 P (on|qn) .

The probability of observing the vector of states q is given by considering the Markov property,

using only the model transition probabilities:

P (q) = P (qN , · · · , q2, q1, q0) =

P (qN |qN−1, · · · , q2, q1, q0)P (qN−1|qN−2, · · · , q2, q1, q0) · · ·P (q1|q0)P (q0) =

P (qN |qN−1)P (qN−1|qN−2) · · ·P (q1|q0)P (q0) =
∏N

n=1 P (qn|qn−1)P (q0) .

Using Bayes’ rule we can write the a-posteriori probability as:

P (q|o) =

∏N
n=1 P (on|qn)P (qn|qn−1)P (q0)∑

qN∈S · · ·
∑

q1∈S
∑

q0∈S
∏N

m=1 P (on|qn)P (qn|qn−1)P (q0)
,

where S is the set of all possible state values. The double product reduces to single product

because each observation is conditionally dependent to a single Markov chain state.

The nested sum denominator of (6) is computationally expensive. Luckily, we don’t have to

compute it because it ends up being a constant term. Actually, we can arrive at the same

desired solution by maximizing the joint probability:

arg max
q

P (q|o) = arg max
q

P (q,o),

which can be expanded using the observational conditional dependency and Markov properties

to

q̂ = arg max
q

N∏
n=1

P (on|qn)P (qn|qn−1)P (q0) .

From a practical viewpoint it is often easier to maximize the log probability, because we avoid

numerical errors:

q̂ = arg max
q

N∑
n=1

(logP (on|qn) + logP (qn|qn−1)) + logP (q0) .
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We can now reduce the search to exploring a dataset for q of size N2
S· using this algorithm,

because now the exploration of all the permutations of q and x became redundant. At each

time step, we check the paths that lead to each state from the possible old states. For each

possible new state, we keep only the path coming from the previous state that has the largest

probability, that is:

V i
q = max

(
V i−1
q′ + logP (q|q′) + logP

(
o|qi
))

for each time step. V i
q at each time step equals to the maximum cumulative log-probability

achieved so far in transitioning from state q′ to q. By recursively maximizing the joint probability

for each possible new state, we maximize the final posterior probability of the entire sequence of

states. At any time step k we use the running sum of log-probabilities as the prior probability

P(1)

P(2)

P(3)

t0 t1 V1
1=V2

0+logP(q1=1|q0=2)+logP(o1=i|q1=1)

V2
1=V1

0+logP(q1=2|q0=1)+logP(o1=i|q1=2)

V3
1=V3

0+logP(q1=3|q0=3)+logP(o1=i|q1=3)1

1
1

2

3 4 5
Figure 6.1: A single step in the Viterbi algorithm. By 1 we denote path segments that exhibit
largest Vn observing backward from Time 1 to Time 0. By 2 we denote the probability of ob-
serving qn equal to i given transition with maximal likelihood. By 3 we denote prior probability.
By 4 we denote likelihood of transition. By 5 we denote observation likelihood for observing
output state i
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Figure 6.2: The development of the full paths from beginning to end.
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V k−1
1,2,3 . Next, we explore all possible transitions leading to the present state, leaving only the

transition yielding the highest updated log-probabilities V k
1,2,3. We keep a list of the most likely

transitions and move on to the next step. After putting it all together, we build a series of paths.

When we reach the end of the observation sequence, we choose the final sequence that has the

highest log-probability and move backwards, following the transitions with highest probability

until the start is reached. The path will trace out the most likely sequence of hidden states

traversed by the Markov model.
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Baum-Welch algorithm

Sometimes we want to find parameters λ maximizing probability P (O|λ). In most cases we

can’t do it analytically. One of the possible solutions is to find a good approximation using for

example Baum-Welch algorithm [5].

Definition 2. Let ξt(i, j) be the probability of being in state si at moment t and being in state

sj at moment t+ 1 under the condition, that the model has parameters λ and we observe O:

ξt(i, j) = P (qt = si, qt+1 = sj|O, λ) , i, j ∈ {1, . . . , N}, t ∈ {1, . . . , T − 1}.

Theorem 3 ([5]).

ξt(i, j) =
αt(i)aijbj (ot+1) βt+1(j)∑N

l=1

∑N
k=1 αt(l)alkbk (ot+1) βt+1(k)

,

for i, j ∈ {1, . . . , T − 1}.

Proof. Using the definition of ξt(i, j) we get

ξt(i, j) = P (qt = si, qt+1 = sj|O, λ) =
P (qt = si, qt+1 = sj, O, λ)

P (O, λ)

=
P (qt = si, qt+1 = sj, O|λ)

P (O,λ)
P (O,λ)
P (λ)

=
P (qt = si, qt+1 = sj, O|λ)

P (O|λ)

.

Let’s just make two observations:
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1.

P (qt = si, qt+1 = sj, O|λ) = αt(i)aijbj (ot+1) βt+1(j), (7.1)

2.

P (O|λ) =
N∑
i=1

N∑
j=1

αt(i)aijbj (ot+1) βt+1(j). (7.2)

The probability of obtaining sequence of observations o1, o2, . . . , ot and being in the state si in

the moment t is given by forward variable αt(i). Probability of the transition from state si to

sj given observation ot+1 is equal to product aijbj (ot+1). The probability of being in state sj

in the moment t + 1 given sequence of observations ot+2 . . . oT is equal to backward variable

βt+1(j).

If we want to obtain the probability of observing the sequence of observations O = o1 . . . oT

we have to repeat those steps for every possible value of states qt and qt+1 and sum obtained

probabilities.

Definition 3. By γt(i) we denote the probability of being in state si at the moment t, under

conditions that model is of the form λ and we observe sequence of observations O:

γt(i) = P (qt = si|O, λ) , i ∈ {1, . . . , N}, t ∈ {1, . . . , T}.

Observation 1.

γt(i) = P (qt = si|O, λ) =
N∑
j=1

P (qt = si, qt+1 = sj|O, λ) =
N∑
j=1

ξt(i, j).

Let the random variable Ct(i) be equal to 1 at the moment t while process is in state si under

the condition that model is of the form λ and we observe the sequence O and 0 otherwise,

Ct(i) = 1 (qt = si|O, λ) , i ∈ {1, . . . , N}, t ∈ {1, . . . , T}.
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Figure 7.1: Steps required to compute ξt(i, j)
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By D(i) =
∑T

t=1Ct(i) we denote random variable counting how many times process achieved

state si.

Observation 2.

E[D(i)] = E

[
T∑
t=1

Ct(i)

]
=

T∑
t=1

E [I (qt = si|O, λ)] =
T∑
t=1

P (qt = si|O, λ) =
T∑
t=1

γt(i).

By decreasing sum interval to t ∈ {1, . . . , T − 1} we obtain expected number of transitions

coming out of si. Analogously wan can prove that the value of
∑T−1

t=1 ξt(i, j) is equal to expected

value of transitions from si to sj.

Definition 4. By µi we denote expected value of frequency of starting the process in state si.

By aij we understand the ratio of expected number of transitions from the state si to the state sj

to the expected number of processes starting in the state si. Finally bj(k) is ratio of number of

situations where state vk is observed and the process is in the state sj to the cumulative expected

value of frequency of being in state sj:

µi = γ1(i), i ∈ {1, . . . , N}

aij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

, i, j ∈ {1, . . . , N}

bj(k) =

∑T
t=1,{t:ot=vk} γt(j)∑T

t=1 γt(j)
, j ∈ {1, . . . , N}, k ∈ {1, . . . ,M}.

Let:
Ā = [aij], i, j ∈ {1, . . . , N}

B = [bj(k)], j ∈ {1, . . . , N}, k ∈ {1, . . . ,M}

µ̄ = [µi], i ∈ {1, . . . , N}

,

it can be shown that the model λ̄ = (Ā, B̄, µ̄) doesn’t decrease the conditional probability of

obtaining given sequence of observations i.e.

P (O|λ) 6 P (O|λ̄).



36 Chapter 7. Baum-Welch algorithm

Definition 5 (Baum-Welch Algorithm). 1. Setting pleasing value of probability P (O|λ).

2. Defining initial value of parameter λ.

3. Computing value of model λ.

4. replacing old values of λ.

We repeat steps 3 and 4 until we get satisfying values of the probability P (O|λ).

Observation 3. Parameters of model λ fulfill conditions:

∑N
i=1 µ̄i = 1,∑N
j=1 aij = 1, i ∈ {1, . . . , N}∑M

k=1 bj(k) = 1, j ∈ {1, . . . , N}

.

Proof.
N∑
i=1

µ̄i =
N∑
i=1

γ1(i) =
N∑
i=1

P (q1 = si|O, λ) = 1.

For i ∈ {1, . . . , N}

∑N
j=1 aij =

∑N
j=1

∑T−1
t=1 ξt(i,j)∑T−1
t=1 γt(i)

=
∑N
j=1

∑T−1
t=1 P (qt=si,qt+1=sj |O,λ)∑T−1
t=1 P (qt=si|O,λ)

=
∑T−1
t=1

∑N
j=1 P (qt=si,qt+1=sj |O,λ)∑T−1
t=1 P (qt=si|O,λ)

=
∑T−1
t=1 P (qt=si|O,λ)∑T−1
t=1 P (qt=si|O,λ)

= 1

For j ∈ {1, . . . , N}∑M
k=1 b̄j(k) =

∑M
k=1

∑T
t=1,{t:ot=vk}

γt(j)∑T
t=1 γt(j)

=
∑T
t=1 γt(j)∑T
t=1 γt(j)

= 1

.

We assumed that the emission variable has discrete distribution, but the above algorithms work

also for a continuous emission space.

We consider a mixture of Mmultivariate Gaussians for each state where bj (ot) =
∑M

`=1 cj`N (ot | µj`,Σj`) =∑M
`=1 cj`bj` (ot).

For Gaussian mixtures, we define the probability that the `th component of the ith mixture
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generated observation ot as

γi`(t) = γi(t)
ci`bi` (ot)

bi (ot)
= p (Qt = i,Xit = ` | O, λ) ,

where Xit is a random variable indicating the mixture component at the time t for state i. We

might guess that the update equations for this case are:

ci` =
∑T
t=1 γi`(t)∑T
t=1 γi(t)

µi` =
∑T
t=1 γi`(t)ot∑T
t=1 γi`(t)

Σi` =
∑T
t=1 γi`(t)(ot−µi`)(ot−µi`)

T∑T
t=1 γi`(t)

.

When there are E observation sequences the eth being of length Te, the update equations

become:
πi =

∑E
e=1 γ

e
i (1)

E

ci` =
∑E
e=1

∑Te
t=1 γ

e
i`(t)∑E

e=1

∑Te
t=1 γ

e
i (t)

µi` =
∑E
e=1

∑Te
t=1 γ

e
i`(t)o

e
t∑E

e=1

∑Te
t=1 γ

e
i`(t)

.

Σi` =

∑E
e=1

∑Te
t=1 γ

e
i`(t) (oet − µi`) (oet − µi`)

T∑E
e=1

∑Te
t=1 γ

e
i`(t)

and

aij =

∑E
e=1

∑Te
t=1 ξ

e
ij(t)∑E

e=1

∑Te
t=1 γ

e
i (t)

.

Full derivation can be found in [4].
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Performance measures

In literature there are many different measures used to determine the quality of classification.

The most straightforward one is accuracy which we define as the number of correct labels

divided by the sample size. The main drawback of this performance measure is that it’s very

sensitive to class size imbalance. In order to minimize the impact of disproportion between

sample sizes, few other performance measures were introduced.

First, let’s assume that we perform a binary classification task. A false positive (fp) is an error

in data reporting in which a test result improperly indicates presence of a condition, such as

a disease (the result is positive), when in reality it is not present, while a false negative (fn)

is an error in which a test result improperly indicates no presence of a condition (the result is

negative), when in reality it is present. These are the two kinds of errors in a binary test (and

are contrasted with a correct result, either a true positive (tp) or a true negative (tn)).

We define a precision [1] (the fraction of relevant instances among the retrieved instances) as:

Precision :=
tp

tp+ fp
.

Additionally a recall [1] (the fraction of the total amount of relevant instances that were actually

38
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Table 8.1: Sample classes.

True
rise fall same

Predicted
rise 4 6 3
fall 1 2 0
same 1 2 6

Table 8.2: Sample classes.

class precision recall F-score
rise 0.308 0.667 0.421
fall 0.667 0.200 0.308
same 0.667 0.667 0.667

retrieved) is defined as:

Recall :=
tp

tp+ fn
.

The common practice is to use harmonic mean of these two, namely F-measure defined as:

F := 2 · precision · recall
precision + recall

.

When it comes to multi-class metrics we can define them in several ways. First, we have to

compute per-class measures:

Example 3. The classification’s results are given in Table 8.1.

The measures of particular scores are presented in Table 8.2.

If we want to measure the quality of multi-class labeling we can do macro-averaging [1], that

means simply compute arithmetic measure of score.

Example 4.

Macro-F1 = (0.421 + 0.308 + 0.667)/3 = 0.465,

Macro-precision = (0.31 + 0.67 + 0.67)/3 = 0.547,

Macro-recall = (0.67 + 0.20 + 0.67)/3 = 0.511.
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We can also used weighted average [1] to compute score.

Example 5. We have 25 samples in Table 8.2: 6 rises, 10 falls and 9 lacks of changes.

Weighted-F1 = (6 · 0.421 + 10 · 0.308 + 9 · 0.667)/25 = 0.464,

Weighted-precision = (6 · 0.308 + 10 · 0.667 + 9 · 0.667)/25 = 0.581,

Weighted-recall = (6 · 0.667 + 10 · 0.200 + 9 · 0.667)/25 = 0.480.

In the following chapters weighted measures are used.
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Gaussian Hidden Markov Model

9.1 Model description

For the fixed time step t and window size k we are given observation X(t, k) and mid-prices at

time steps t− k + 1, . . . , t:

X(t, k) := (m(t− k + 1),m(t− k + 2), . . . ,m(t)).

Our goal is to predict if the mid-price in the next step, i.e., m(t + 1) will increase or decrease

(or changes just slightly), given observation X(t, k). To be more exact we aim at predicting

l(t) ∈ {−1, 0, 1}, where:

l(t) :=


−1 if m(t+1)−m(t)

m(t)
< −ε,

0 if |m(t+1)−m(t)
m(t)

| ≤ ε,

1 if m(t+1)−m(t)
m(t)

> ε,

(9.1)

for the fixed ε. In other words, we want to classify X(t, k) into 3 classes, -1,0,+1. Let’s denote

the resulting classification value by l̂(t).

41
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Construction of l̂(t + 1). The precise procedure Predict_l is given in Algorithm 3.

Roughly speaking, we treat values X(t, k) := (m(t − k + 1),m(t − k + 2), . . . ,m(t)) as ob-

servations of a stochastic process Mt−k+1,Mt−k+2, . . . ,Mt. We assume that the process is a

hidden Markov model with three hidden states. We identify the hidden states with s1 =bull

(upward), s2 =bear (downward) and s3 = stable markets. We also assume that Mw given

Qw = si has a normal N (µi, σ
2
i ) distribution, w = t − k + 1, . . . , t. Using the Baum-Welch

Algorithm we train the HMM model obtaining the transition matrix A (of size 3 × 3) and

parameters µi, σ2
i , i = 1, 2, 3. Using the Viterbi algorithm we find the most likely sequence of

hidden states qt−k+1, . . . , qt. The idea is following: we assume that currently (i.e., at step t) the

hidden state is indeed qt. Note that we know the current mid-price m(t) and wish to predict

the change in next step. To achieve it we set a−1 = a0 = a1 and we repeat R times the following

procedure:

• Simulate Z ∈ {1, 2, 3} according to a distribution A(qt, ·), i.e.,

P (Z = i) = A(qt, i).

• Assuming that in the next step the system is in a hidden state Z we simulate its emission

– a random variable N ∼ (µZ , σ
2
Z).

• We recored if simulated mid-price at step t + 1, i.e., N is larger or smaller then the

mid-price at step t, i.e., m(t). To be more exact we set (here α > 0 is a parameter)

if N −mt < −α then a−1 = a−1 + 1,

if |N −mt| ≤ α then a0 = a0 + 1,

if N −mt > α then a1 = a1 + 1.

Finally, we predict l̂(t+ 1) according to a situation which happened most frequently:

l̂(t+ 1) = arg max
j∈{−1,0,1}

aj.
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Algorithm 1 Predicting change in mid-prices: fixed t
1: procedure Predict_l(t, k,X(t, k), R, α)

2: Input time step t, window size k, number of iterations R, parameter α > 0,

3: observations X(t, k) := (m(t− k + 1),m(t− k + 2), . . . ,m(t))

4: Output l̂(t+ 1), prediction of l(t+ 1)

5: M ← hidden Markov model with 3 states s1, s2, s3, transition matrix A and emission

probabilities N (µi, σ
2
i ), i = 1, 2, 3.

6: Train (use Baum-Welch algorithm)M on X(t, k) obtaining A and µi, σ2
i , i = 1, 2, 3.

7: Apply the Viterbi algorithm to find the most likely sequence of hidden states

qt−k+1, . . . , qt.

8: Set a−1 = a0 = a1 = 0.

9: for r = 1 to R do

10: Simulate Z ∈ {1, 2, 3} with distribution P (Z = i) = A(qt, i), i = 1, 2, 3.

11: Simulate N ∼ N (µZ , σ
2
Z).

12: if N −mt < −α then a−1 = a−1 + 1

13: if |N −mt| ≤ α then a0 = a0 + 1

14: if N −mt > α then a1 = a1 + 1

15: end for

16: return l̂(t+ 1) = arg maxj∈{−1,0,1} aj

17: end procedure

Classification of changes in all sequence of mid-prices. Given all sequence of mid-prices

m(1), . . . ,m(T )

and a window size k, we want to predict l(k + 1) based on X(k, k), then l(k + 2) based on

X(k + 1, k) and so on (till l(T ) based on X(T − 1, k)). Thus, as in standard machine learning

cases, we have a ground truth l(k + 1), . . . , l(T ) and predictions l̂(k + 1), . . . , l̂(T ) – and may

thus evaluate whole model by computing accuracy, precision, recall and F-score (see Chapter

8). The procedure is given in Algorithm 4.
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Algorithm 2 Evaluating the predicting of changes in mid-prices
1: procedure Eval((m(1), . . . ,m(T )), k, R, α)

2: Compute l(t+ 1) for t = k, . . . , T − 1 using (9.1) . compute “ground-truth”

3: Set l̂(t+ 1) = empty t = k, . . . , T − 1

4:

5: for i = k to T − 1 do

6: l̂(i+ 1) =Predict_l(i, k,X(i, k), R, α)

7: end for

8: return performance measures for {(l(t), l̂(t)), t = k, . . . , T − 1}

9: end procedure

9.2 Data used

This model was tested on one sample company from London Stock Exchange Rebuild Order

Book dataset. Data was registered in period 01.09.2013-15.09.2013. The University of Wroclaw

is the owner of the dataset.

While creating labels ε was set to 0.0003 to obtain the most balanced distribution of classes.

9.3 Results

In Table 9.1 we can see results of classification for different prediction horizons, window sizes

(k), time-steps in minutes (∆t) and values of parameter α.

From observed values we can conclude that the model for short prediction horizons is close

to a random prediction. On the other side it gets better results for long-term forecasting (10

minutes).

Table 9.1: Results for univariate Gaussiam emission model.



9.3. Results 45

k ∆t α Accuracy Precision Recall F-Score

100 1 0.00000001 0.355 0.356 0.341 0.328

100 5 0.00000001 0.474 0.326 0.322 0.324

100 10 0.00000001 0.466 0.324 0.314 0.319

50 1 0.00000001 0.303 0.368 0.345 0.297

50 5 0.00000001 0.305 0.370 0.346 0.299

50 10 0.00000001 0.457 0.319 0.314 0.316

100 1 0.0003 0.335 0.349 0.356 0.314

100 5 0.0003 0.344 0.338 0.350 0.282

100 10 0.0003 0.334 0.311 0.226 0.262

100 1 0.000015 0.357 0.357 0.343 0.329

100 5 0.000015 0.472 0.326 0.320 0.322

100 10 0.000015 0.466 0.346 0.380 0.353

100 1 0.1 0.296 0.099 0.333 0.152

100 1 0.01 0.288 0.096 0.333 0.149

100 1 0.001 0.302 0.395 0.342 0.182

100 1 0.0001 0.351 0.350 0.348 0.348

100 1 0.00001 0.358 0.358 0.345 0.330

100 1 0.000001 0.358 0.356 0.344 0.329

100 1 0.0000001 0.356 0.358 0.342 0.329

100 5 0.1 0.020 0.007 0.333 0.013

100 5 0.01 0.018 0.006 0.333 0.012

100 5 0.001 0.117 0.302 0.344 0.125

100 5 0.0001 0.441 0.337 0.357 0.326

100 5 0.00001 0.472 0.325 0.320 0.323

100 5 0.000001 0.478 0.329 0.326 0.327

100 5 0.0000001 0.479 0.330 0.326 0.328

100 10 0.1 0.019 0.006 0.333 0.012
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100 10 0.01 0.016 0.338 0.336 0.013

100 10 0.001 0.166 0.310 0.241 0.166

100 10 0.0001 0.447 0.333 0.302 0.317

100 10 0.00001 0.475 0.331 0.321 0.326

100 10 0.000001 0.487 0.340 0.329 0.334

100 10 0.0000001 0.475 0.331 0.322 0.326

50 1 0.1 0.464 0.155 0.333 0.211

50 1 0.01 0.458 0.153 0.333 0.209

50 1 0.001 0.463 0.355 0.339 0.238

50 1 0.0001 0.345 0.360 0.355 0.343

50 1 0.00001 0.306 0.369 0.348 0.299

50 1 0.000001 0.302 0.364 0.346 0.296

50 1 0.0000001 0.303 0.367 0.347 0.297

50 5 0.1 0.113 0.038 0.333 0.067

50 5 0.01 0.114 0.038 0.333 0.068

50 5 0.001 0.204 0.358 0.355 0.203

50 5 0.0001 0.415 0.345 0.345 0.345

50 5 0.00001 0.435 0.335 0.336 0.327

50 5 0.000001 0.427 0.306 0.325 0.312

50 5 0.0000001 0.450 0.321 0.334 0.325

50 10 0.1 0.024 0.008 0.333 0.016

50 10 0.01 0.022 0.007 0.333 0.014

50 10 0.001 0.186 0.326 0.253 0.185

50 10 0.0001 0.441 0.329 0.302 0.315

50 10 0.00001 0.462 0.322 0.315 0.318

50 10 0.000001 0.465 0.324 0.320 0.322

50 10 0.0000001 0.465 0.324 0.318 0.321

150 1 0.1 0.195 0.065 0.333 0.109
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150 1 0.01 0.203 0.068 0.333 0.113

150 1 0.001 0.209 0.350 0.339 0.137

150 1 0.0001 0.345 0.332 0.333 0.330

150 1 0.00001 0.378 0.336 0.334 0.329

150 1 0.000001 0.380 0.341 0.337 0.333

150 1 0.0000001 0.374 0.329 0.329 0.323

150 5 0.1 0.010 0.003 0.333 0.007

150 5 0.01 0.009 0.003 0.333 0.006

150 5 0.001 0.129 0.344 0.320 0.138

150 5 0.0001 0.452 0.344 0.345 0.328

150 5 0.00001 0.493 0.341 0.333 0.337

150 5 0.000001 0.501 0.359 0.392 0.362

150 5 0.0000001 0.493 0.341 0.333 0.337

150 10 0.1 0.000 0.000 0.000 0.000

150 10 0.01 0.000 0.000 0.000 0.000

150 10 0.001 0.159 0.303 0.105 0.154

150 10 0.0001 0.437 0.331 0.295 0.307

150 10 0.00001 0.474 0.332 0.319 0.320

150 10 0.000001 0.463 0.325 0.312 0.312

150 10 0.0000001 0.467 0.327 0.315 0.315
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Multivariate Gaussian Hidden Markov

Model

10.1 Model description

Hidden Markov Models allow us to do something more sophisticated than previous one-dimensional

model. We can elaborate Gould’s Imbalance idea similarly to Xu et al. [16].

Let b(k)(t) be the k-th highest price at the bid side at moment t, namely

b(1)(t) := b(t),

b(k+1)(t) := max
{x∈L(t)|ωx<0,px(t)<bk(t)}

px(t),

nbk(t) := nb(b(k)(t), t),

analogously let a(k)(t) be the k-th lowest price at the ask side ad moment t, precisely

a(1)(t) := a(t),

a(k+1)(t) := min
{x∈L(t)|ωx>0,px(t)>ak(t)}

px(t),

nak(t) := na(a(k)(t), t).

48
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Then we define following dynamic features:

∆p(i)(t) := a(i)(t)− b(i)(t),

∆v(i)(t) := nai (t)− nbi(t).

We assume that vector x(t) := (∆p(1)(t),∆v(1)(t),∆p(2)(t),∆v(2)(t), . . .∆p(10)(t),∆v(10)(t)) ∈

R20 is sampled from multivariate Gaussian distribution. Then we define our observations as:

X(t, k) := (x(t− k + 1),x(t− k + 2), . . . ,x(t))

We generalize our label definition to:

l(t) :=


−1 if

1
h

∑h
i=1m(t+i)−m(t)

m(t)
< −ε,

0 if |
1
h

∑h
i=1m(t+i)−m(t)

m(t)
| ≤ ε,

1 if
1
h

∑h
i=1m(t+i)−m(t)

m(t)
> ε,

(10.1)

where h is a parameter called prediction We treat label l(t) as a hidden state at moment t.

This allows us to estimate transition matrix A ∈ R3×3, mean vector µ ∈ R20 and covariance

matrix Σ ∈ R20×20.

By Y(t, k) we understand:

Y(t, k) := (l(t− k + 1), l(t− k + 2), . . . , l(t))

This solutions differs significantly from the previous one in the fact, that we actually observe

past values of hidden states. This allows us to estimate parameters of Hidden Markov Model

directly, not using Baum-Welch algorithm.

In the single algorithm iteration we use last k observations to estimate transition matrix Ak ∈

R3×3, mean vector µk ∈ R20 and covariance matrix Σk ∈ R20×20. Next to predict l(t + 1) we

assume that πk(l(t)) = 1, next using Viterbi algorithm on observations {X(t),X(t + 1)}, see
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Figure 10.1.

Algorithm 3 Predicting change in mid-prices: fixed t
1: procedure Predict_l(t, k,X(t, k),Y(t, k),x(t+ 1))

2: Input time step t, window size k, ,

3: observations X(t, k),x(t+ 1),Y(t, k)

4: Output l̂(t+ 1), prediction of l(t+ 1)

5: M ← hidden Markov model with 3 states s1, s2, s3, transition matrix A and emission

probabilities N (µi,Σi), i = 1, 2, 3.

6: EstimateM on Y (t, k), computing transitions frequency of subsequent states obtaining

A and compute sample means and covariance matrix µi,Σi, i = 1, 2, 3.

7: Set πl(t) = 1

8: Apply the Viterbi algorithm to find the most likely sequence of hidden states (q(t), q(t+

1)) for observations (x(t),x(t+ 1)).

9: return l̂(t+ 1) = q(t+ 1)

10: end procedure

Algorithm 4 Evaluating the predicting of changes in mid-prices
1: procedure Eval((x(1), . . . ,x(T )), k,Y(t, k),x(t+ 1))

2: Set l̂(t) = empty t = k + 1, . . . , T

3:

4: for i = k to T − 1 do

5: l̂(i+ 1) =Predict_l(i, k,X(i, k),Y(t, k),x(t+ 1)α)

6: end for

7: return performance measures for {(l(t), l̂(t)), t = k + 1, . . . , T}

8: end procedure
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l(4) l(5) l(6) l(t-1) l(t) l(t+1)

X(t+1)X(t)X(t-1)X(6)X(5)X(4)

l(1) l(2) l(3)

X(3)X(2)X(1)

k

Figure 10.1: Illustration of model construction.
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10.2 Data used

In order to evaluate the model and compare it with other state-of-the-art solutions we used

FI2010 dataset. Feed data is day-specific and market wide, which means there is one file per

day with data over all securities. The information is extracted from five stocks traded on the

NASDAQ OMX Nordic at the Helsinki exchange from 1 June 2010 to 14 June 2010 counting

ten working days (01.06, 02.06, 03.06, 04.06, 07.06, 08.06, 09.06, 10.06, 11.06, 14.06) Those five

stocks are traded exclusively on Helsinki stock exchange.

The Helsinki Stock Exchange, operated by NASDAQ Nordic, is a pure electronic limit order

market. The ITCH feed keeps a record of all the events, including those that take place outside

active trading hours. At the Helsinki exchange, the trading period goes from 10:00 to 18:25

(local time, UTC/GMT +2 hours).

Labels are created using Equation (10.1). The value of ε is 0.002 percent. In the dataset there

are labels for five prediction horizons: 10, 20, 30, 50 and 100.

Data is normalized using z-score.

Full dataset description can be found in [10].

10.3 Results

Described model was implemented in Python using hmmlearn library. In Table 10.2 and 10.3

we present comparison of our model with current state-of-the-art. As we can see our model

outperforms significantly other used solutions. In Table 10.3 we present more results for different

choices of model parameters. For the longest prediction horizon HMM obtained results very

close to the current most advanced model - DeepLOB which is based on deep neural networks.

It is worth noting, that the training time for neural network models is several days and training

and evaluation of HMM took approximately 12 hours. We also cannot forget about the main

benefit coming from the “moving window” learning scheme. DeepLOB was train on the data
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from n days to predict movements on (n + 1) − th day, which amounts for a large amount of

data, but our model needs only 50 archived states of LOB to make accurate predictions.

Table 10.1: Results for multivariate Gaussian model.

k horizon Accuracy Precision Recall F-Score

50 10 0.573 0.573 0.613 0.589

50 20 0.587 0.587 0.605 0.594

50 30 0.624 0.624 0.637 0.628

50 50 0.683 0.683 0.690 0.685

50 100 0.767 0.767 0.769 0.766

100 10 0.567 0.567 0.615 0.585

100 20 0.585 0.585 0.607 0.594

100 30 0.619 0.619 0.634 0.624

100 50 0.671 0.671 0.678 0.673

100 100 0.747 0.747 0.749 0.747

150 10 0.572 0.572 0.615 0.589

150 20 0.591 0.591 0.611 0.599

150 30 0.621 0.621 0.636 0.626

150 50 0.671 0.671 0.677 0.672

150 100 0.740 0.740 0.741 0.740

200 10 0.576 0.576 0.613 0.591

200 20 0.597 0.597 0.613 0.604

200 30 0.625 0.625 0.638 0.629

200 50 0.672 0.672 0.678 0.673

200 100 0.740 0.740 0.740 0.739
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Table 10.2: Current state of the art models. Adopted from [17].

Model Accuracy Precision Recall F1

Prediction Horizon k = 10

RR [10] 0.480 0.418 0.435 0.410

SLFN [10] 0.643 0.512 0.366 0.327

LDA [15] 0.638 0.379 0.458 0.363

MDA [15] 0.719 0.442 0.601 0.461

MCSDA [13] 0.834 0.461 0.480 0.467

MTR [15] 0.861 0.517 0.408 0.401

WMTR [15] 0.819 0.463 0.513 0.479

BoF [11] 0.576 0.393 0.514 0.363

N-BoF [11] 0.627 0.423 0.614 0.416

B(TABL) [14] 0.736 0.662 0.688 0.671

C(TABL) [14] 0.780 0.720 0.740 0.728

DeepLOB 0.789 0.785 0.789 0.777

Ours 0.573 0.573 0.613 0.589
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Table 10.3: Current state of the art models. Adopted from [17].

Model Accuracy Precision Recall F1

Prediction Horizon k = 50

RR [10] 0.439 0.436 0.433 0.427

SLFN [10] 0.473 0.468 0.464 0.459

BoF [11] 0.502 0.426 0.496 0.396

N-BoF [11] 0.565 0.472 0.582 0.462

B(TABL) [14] 0.695 0.691 0.688 0.688

C(TABL) [14] 0.748 0.746 0.743 0.743

DeepLOB 0.750 0.751 0.750 0.750

Ours 0.683 0.621 0.623 0.620

Prediction Horizon k = 100

RR [10] 0.429 0.429 0.429 0.416

SLFN [10] 0.477 0.453 0.432 0.410

BoF [11] 0.510 0.425 0.478 0.408

N-BoF [11] 0.564 0.473 0.550 0.469

B(TABL) [14] 0.693 0.690 0.694 0.689

C(TABL) [14] 0.741 0.735 0.738 0.735

DeepLOB 0.767 0.768 0.767 0.766

Ours 0.767 0.767 0.769 0.766



Chapter 11

Future work

Obtained results encourage to put more work into researching the applications of HMM in LOB

data analysis.

In this work we only used small subset of information contained in the Limit Order Book, but

there are more features we can work on. Authors of FI2010 dataset handcrafted 144 features to

make LOB predictions. Zihao Zhang et al. [17] used convolutional neural networks for feature

extraction. Perhaps, combining neural network based feature extraction could be combined

with hmm modelling.

Treating imbalances as sort of the input to model worked well in this work. A well known

modification of Hidden Markov Models called Input-Output Hidden Markov Model could benefit

this approach.

It is also worth taking note here, that the only aspect explored in this work is mid-price move-

ment prediction. More work can be invested into developping portfolio optimization methods

based on HMM classifier.
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Conclusions

In this work two HMM based classifiers for mid-price change were created. One of them

got similar results to the other solutions presented in literature, reaching top scores for long

prediction horizons, but the main advantage over competing models is fast learning time and

low data demand.

Both models showed tendency to give better scores with longer prediction horizons.

This work may be a starting points for research of applications of more advanced probabilistic

models with Markov dynamics in LOB prediction. These include Input-Output Hidden Markov

Models or switching Linear Dynamical Systems.
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