
A Sublogarithmic Approximation for
Tollbooth Pricing on Cactus Graphs

(Algorytm aproksymacyjny dla problemu rogatek na kaktusach)

Andrzej Turko

Praca licencjacka

Promotor: prof. Jarosław Byrka

Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

18 czerwca 2021





Abstract

We study a special case of the envy-free pricing problem, in which each buyer
wishes to buy a shortest path connecting her individual pair of vertices in a network
owned by a single vendor. The vendor sets the prices of individual edges with the aim
of maximizing the total revenue generated by all buyers. Each customer buys a path
as long as its cost does not exceed her individual budget. In this case, the revenue
generated by her equals the sum of prices of edges along this path. Otherwise, it
is zero. We consider the unlimited supply setting, where each edge can be sold
to arbitrarily many customers. The problem is to find a price assignment which
maximizes vendor’s revenue.

In the tollbooth problem we assume that the network is a tree. In this work we
consider a slightly more general model and do not require the network to be acyclic.
Instead, each edge can belong to at most one simple cycle. Our result is a polynomial
time O

(
logm

log logm

)
-approximation algorithm for this problem. It is a generalization

of a previous result for the original tollbooth problem with the same approximation
guarantee [4].



Streszczenie

Niniejsza praca poświęcona jest następującemu problemowi: dany jest zbiór po-
tencjalnych nabywców, z których każdy chciałby kupić ścieżkę pomiędzy ustalonymi
dwoma wierzchołkami w pewnej sieci. Sprzedawca, który jest właścicielem całej sieci,
ustala ceny jej poszczególnych krawędzi. Każdy klient wybiera najtańszą ścieżkę łą-
czącą jego wybrane dwa wierzchołki. Jeśli jej koszt nie przekracza jego budżetu,
kupuje ją, generując przychód sprzedawcy równy sumie cen krawędzi na tej ścieżce.
Rozważamy wariant z nieograniczoną podażą, to znaczy każda krawędź może być
sprzedana dowolnie wielu nabywcom. Problem polega na znalezieniu cen krawędzi,
które maksymalizują przychód sprzedawcy.

Problem rogatek dotyczy powyższego scenariusza z dodatkowym założeniem, że
sieć jest drzewem. W tej pracy rozpatrujemy ogólniejszą sytuację. Zakładamy jedy-
nie, że każda krawędź leży na co najwyżej jednym cyklu prostym. Prezentujemy wie-
lomianowy algorytm, który znajduje ceny krawędzi generujące dochód mniejszy od
optymalnego O

(
logm

log logm

)
razy. Ten wynik jest uogólnieniem znanego już algorytmu

rozwiązującego klasyczny problem rogatek, który zapewnia takie samo ograniczenie
dolne na wysokość uzyskanych przychodów [4].
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Chapter 1

Introduction

Picture a vendor offering a number of various goods to customers, who have different
preferences regarding them. Adjusting the prices of goods to match the profile of
potential buyers is a natural step to consider in order to maximize revenue. Especially
since the ever-increasing amount of customer data being collected makes it easier to
measure buyers’ valuations with greater precision.

The problem of maximizing revenue by setting optimal prices has been widely
studied in various settings. This work discusses the problem of envy-free pricing
for revenue maximization. In general, this problem can be modeled as a two phase
game. In the first step, vendor assigns prices to the offered goods. Then, each
buyer purchases her most preferred subset of goods based on given prices and her
own preferences. Every buyer aims to maximize her utility, and the seller aims to
maximize the total price paid by customers. The problem is to find an optimal
strategy for the vendor.

More precisely, an instance of the envy-free pricing problem consists of m goods
and n buyers. Each buyer is defined by a function which assigns a non-negative
valuation to every subset of the goods. It is assumed that the valuation of an empty
set for each customer equals zero. A solution to the problem is formed by non-
negative prices of goods and an envy-free allocation of goods to the buyers. Utility
of a buyer from a set of goods equals her valuation of this set minus the total price
of its elements. An allocation is envy-free when no buyer would like to change her
assigned set of goods. In other words, the set assigned to her must maximize her
utility. In this work we focus on the unlimited supply setting, where each one of
the m goods can be sold to arbitrarily many buyers. Such goods may be thought
of as intellectual property or access to infrastructure. Sometimes the limited supply
setting is also considered, where each good is available only in a certain number of
copies. In that case, the solution must not only satisfy the envy-freeness constraints,
but also the number of buyers any good is allocated to must not exceed its supply.

7



8 CHAPTER 1. INTRODUCTION

In this work we study a particular case of the envy-free pricing with unlimited
supply, where the goods can be modeled by edges in a graph and buyers wish to
purchase cheapest paths. More precisely, each buyer has equal positive valuations
for paths connecting a certain pair of vertices and zero valuation for all the other
sets of goods. Such a problem may be used to model a situation where the vendor
is an owner of a road network and buyers are drivers wishing to travel from one
city to another. Guruswami et al. [6] have defined and studied two subcases of this
scenario: the tollbooth and highway problems. In the former the underlying graph
is a tree and in the latter it is a path.

Envy-free pricing for revenue maximization is a computationally hard problem.
Even the tollbooth and highway problems have been shown to be NP-hard. Thus,
the main focus of works in this area is on approximation algorithms.

1.1 Our result

We consider the tollbooth problem on cactus graphs, a generalization of the tollbooth
problem with unlimited supply. Instead of a tree, the underlying graph is a cactus, i.e.
its every edge belongs to at most one simple cycle. Our contribution is a polynomial
approximation algorithm, which is a generalization of a similar result by Iftah Gamzu
and Danny Segev [4] for the classical tollbooth problem. The main difference between
the two models is that, unlike in a tree, in a cactus there can be multiple simple paths
connecting a single pair of vertices. Thus, each buyer can be interested in purchasing
multiple sets of goods, i.e. is not single-minded.

Our algorithm achieves an approximation ratio on revenue ofO
(

logm
log logm

)
, which

matches the guarantee given by [4]. To the best of our knowledge, no algorithms giv-
ing sublogarithmic guarantees on revenue in generalizations of the tollbooth problem
are known.

1.2 Related work

The problem of envy-free pricing for revenue maximization has been studied in var-
ious settings. Among the classes of buyers’ valuations, which have been considered,
we are going to survey mostly results for single-minded buyers, a model where each
buyer has positive valuation for exactly one set of goods. Although the tollbooth
problem on cactus does not fall into this category, this work is strongly related to
the classical tollbooth problem, where buyers are single-minded.

Guruswami et al. [6] have defined the single-minded buyers setting and pre-
sented a polynomial O (logm + log n)-approximation algorithm for the variant with
unlimited supply. Also for the unlimited supply setting, Balcan, Blum and Mansour
[1] have shown that a logarithmic guarantee on expected revenue can be achieved by
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randomly setting a single price to all the goods. That result holds for buyers with
arbitrary valuations.

In the unlimited supply setting with single-minded buyers, there are stronger
results for cases with additional assumptions about buyers’ valuations. For the toll-
booth problem, Gamzu and Segev [4] have achieved an O

(
logm

log logm

)
-approximation

of revenue with a polynomial algorithm. For the highway problem, Gradoni and
Rothvoß [5] have designed a polynomial time approximation scheme. Those two
problems have been used to show impossibility results for envy-free pricing with
single-minded buyers. Guruswami et al. [6] have proven that the tollbooth problem
is NP-hard. This was followed by a result from Briest and Krysta [2], who showed
the same for the highway problem.

Of course, those impossibility results hold for limited supply as well. In that
setting there also are several approximation results. Cheung and Swamy [3] have de-
signed an O (

√
m log umax)-approximation algorithm for the general envy-free pricing

problem with single-minded buyers (umax denotes the maximal number of copies of
a single good). In the tollbooth and highway problems they have obtained approxi-
mation ratio of O (log umax).

1.3 Model and preliminaries

Let us consider an instance of tollbooth problem on cactus graphs with m goods and
n buyers. Its description consists of a simple graph G with m edges such that no edge
lies on two simple cycles and a set B of buyers. Each customer i ∈ B is described
by a pair of vertices in this graph, denoted ui and vi, and her budget bi > 0. For
each subset of edges S, her valuation is defined in the following way:

fi(S) =

bi, if S consists of edges along a ui-vi path

0, otherwise

A solution to this problem is a real vector p assigning non-negative prices to the
edges of the graph. Let us treat the prices as lengths of edges and let di denote the
distance between vi and ui. If bi ≥ di i-th buyer purchases all edges along a shortest
path between vi and ui. Otherwise, she would buy nothing. Such an allocation is
envy-free. Note that in the case of numerous shortest ui-vi paths, choosing either
one does not change vendor’s revenue.

In this work we present an algorithm for finding such prices that the above-
mentioned way of allocating goods to buyers results in revenue O

(
logm

log logm

)
times

smaller than optimal. The following theorem formalizes our result.

Theorem 1. There exists a polynomial time approximation algorithm for the toll-
booth problem on cactus graphs with unlimited supply which achieves an approxima-
tion guarantee for revenue of O

(
logm

log logm

)
.
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1.4 Interesting techniques

In this section we describe the general idea behind the algorithm and highlight the
most important techniques.

First, the buyers are split into O
(

logm
log logm

)
subsets, which define separate in-

stances of the problem. Each of the subproblems is processed independently. Its
additional properties, which are ensured by the construction, allow the algorithm to
calculate prices generating revenue within a constant factor of the optimal revenue.
This is enough to obtain the desired bound on the global revenue, because the supply
of goods is unlimited and, thus, the revenue of a solution to a subproblem does not
decrease when applied to the initial instance with all the buyers.

For each subproblem the algorithm constructs a subgraph of G, called the skele-
ton, so that all paths desired by buyers in the given instance enter and leave the
skeleton exactly once. This way, each such path is split into three parts, one of
which is in the skeleton and the other two are not. Revenue generated by the former
is controlled by setting appropriate prices of the skeleton’s edges. The latter are
processed in groups entering or leaving the skeleton through the same vertex.

The subcase of the tollbooth problem where all customers want to buy paths
starting in a single vertex has been solved using dynamic programming in [6]. That
solution, which is employed by the algorithm for the original tollbooth problem, is
based on the uniqueness of paths in trees. Cactus graphs have a weaker property:
all simple paths between a fixed pair of vertices pass through the same biconnected
components. Thanks to this structure some dynamic programming algorithms, which
were originally designed for trees, can, after several modifications, be applied to cac-
tus graphs. Typically, such a dynamic programming would calculate partial results
for each subtree, where the result for a subtree of a given vertex is a function of
results for subtrees of its children. Intuitively, a cactus can be thought of as a tree,
in which some vertices have expanded to simple cycles. Thus, a corresponding dy-
namic programming for a cactus would calculate partial results for the subtree of
each biconnected component. Subtrees of individual edges would be very similar to
the subtrees of vertices in a tree. Subtrees of simple cycles, however, would have
to be processed differently since the transitions in the dynamic programming are
usually defined for individual vertices with unique ancestors. In some applications,
where the solutions are based only on the shortest paths to the root, one edge in
a cycle would be unused. By guessing this edge and removing it from the graph,
the cycle can be transformed to a path, which can be processed using the original
algorithm. Thanks to the tree-like structure of biconnected components of a cactus,
it is often enough to guess the unused edge in only one cycle at a time. This allows
to preserve the polynomial running time. We believe that this technique has a wide
range of applications in generalizing algorithms for a tree to a cactus. Its specific
usage for the tollbooth problem is described in Section 2.2.1.
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The skeleton is split into several parts with simple structure. Buyers forming
each subproblem are chosen in such a way, that each of them wishes to buy paths
with both endpoints in the same part. First, near-optimal solutions are found for
each part individually. Then, the global solution is constructed by merging them.
In the first phase, for each part, the algorithm iterates over many possible ways of
pricing its edges. In the second, the algorithm uses the tree-like structure of the
graph to resolve dependencies between particular parts.

Those dependencies originate from another fundamental difference between cac-
tus graphs and trees. A connected subgraph of a cactus does not necessarily contain
all paths between its vertices. Thus, even if a buyer wishes to buy a path starting
and ending in a particular connected subgraph, she may choose to purchase a path
not contained inside it. In order to avoid this, cycles of the cactus must not be split
into multiple parts. However, splitting them is vital to maintaining the polynomial
running time. Thus, those additional paths also need to be considered when process-
ing an individual part of the skeleton. The structure of a cactus guarantees them
to be disjoint, so each such path can be treated as a single edge. This allows the
algorithm to handle both phases efficiently.

Another technique used during both stages of processing the skeleton is rounding
the prices. The main idea is that because revenue with the prices two times lower is at
least half of the original revenue, considering prices in form c·2k for a certain constant
c is enough to obtain a constant factor approximation of revenue. This bounds the
number of possibilities the algorithm processes in the first phase. Furthermore, a
similar observation allowed to efficiently implement the second phase. The main
usage of this technique by our algorithm is presented in Lemma 5.1.





Chapter 2

Graph decompsition

Our algorithm employs a recursive decomposition of the cactus. At each step a subset
of buyers is chosen based on the partition of the graph G. For each constructed
subproblem prices achieving a constant factor approximation of optimal revenue can
be found in polynomial time. On the next level of decomposition each fragment of
the graph is split into smaller parts. This process is repeated until the subproblem
becomes trivial.

Let L be the number of levels in the decomposition process. Each buyer will be
processed at exactly one of them. Since optimal revenue is a subadditive function of
subsets of buyers, the optimal revenue in the whole problem does not exceed the sum
of optimal revenues for disjoint subsets of buyers. Thus, revenue obtained in one of
the subproblems will approximate the optimal one with a ratio of at most O (L).
This chapter defines a decomposition with bounded number of levels. This process,
along with classification of buyers, creates subproblems solved by the algorithm for
a single partition, which is described in Chapters 3, 4 and 5.

2.1 Tree of biconnected components

The algorithm relies on the structure of biconnected components of the cactus. An
arbitrarily chosen vertex of graph G will be fixed as its root for the duration of the
whole algorithm. A vertex or edge is said to be above another one, when it is closer
to the root. Note that every biconnected component of a cactus is either a single
edge or a simple cycle. Thus, it has a single topmost vertex and at most two topmost
edges, which are exactly those adjacent to the topmost vertex.

Definition 2.1. For each cycle in G, its two edges closest to the root of G, i.e.
topmost edges, form a pair of associated edges. Note that every edge belongs to
at most one such pair.

13



14 CHAPTER 2. GRAPH DECOMPSITION

Although each vertex can be a topmost vertex in arbitrarily many biconnected
components, it can belong to at most one without being its topmost vertex. Fur-
thermore, all vertices except for the root belong to exactly one such biconnected
component. Let us call it the main component of this vertex. For the root it is a
special component, consisting only of itself (a single vertex). Our algorithm uses
the tree of biconnected components rooted in this special component. Every other
component is a child of the main component of its topmost vertex. Note that such
a tree is unique.

Definition 2.2. A subtree graph of a component C is a graph consisting of all
the edges and vertices belonging to any descendant of C (inclusive) in the tree of
biconnected components. The subtree graph of the root component is the whole graph
G.

1
2

3

4

5

6

1

2

3

5

6

4

Figure 2.1: An example cactus graph with marked pairs of associated edges and
its tree of biconnected components. The arrows indicate respectively the root vertex
and the root component. On both drawings the subtree graph of the cycle number
5 is marked out.

2.2 Balanced decomposition

Decompositions D1, D2, . . . DL of G are defined recursively. Each of them is a family
of edge-disjoint subgraphs, called fragments, which cover the graph G. In D1 the
whole graph G forms a single fragment, and in DL each fragment consists of at most
two edges. For all i < L each fragment in the partition Di is split into a number of
subgraphs, which become fragments in Di+1.

Definition 2.3. A vertex which belongs to multiple fragments in partition Di+1 is
called a border vertex of i-th level. Furthermore, every vertex of G is considered to
be a border vertex of L-th level.
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It follows from the recursive structure of decomposition, that a border vertex of
i-th level is also a border vertex of (i + 1)-th level.

Lemma 2.1. Consider a family of decompositions D1, D2, . . . DL of a graph G sat-
isfying the following invariants for each valid i:

1. Each fragment in Di is split into O (k) fragments in Di+1.

2. The maximal number of edges in a fragment forming Di+2 is Ω (k) times
smaller than in Di.

3. Each fragment forming Di contains at most O (k) border vertices of i-th level.

4. Each pair of associated edges belongs to the same fragment of Di.

5. All fragments forming Di are connected subgraphs of G.

If G is a cactus graph, such a family can be found for any positive k in polynomial
time.

The second invariant ensures that the number of levels will be bounded by
O (logk m). By fixing k =

⌈
log

1
2 m
⌉
we achieve a O

(
logm

log logm

)
bound on L.

There are two procedures for obtaining Di+1 from Di. By applying them inter-
changeably the decompositions from Lemma 2.1 are created.

2.2.1 Reducing the number of edges

We devise a procedure for splitting each fragment in such a way that the size of
subparts in bounded. As all fragments are treated in the same way, we describe
an algorithm which for one of them, denoted F = 〈V,E〉, finds a decomposition
satisfying the following conditions:

• The number of subparts is between
⌊
k
4

⌋
and k.

• The number of edges in each subpart is at most 4 ·
⌈
|E|
k

⌉
.

• Associated edges belong to the same subpart.

The main idea is to partition F into connected subgraphs with the number of
edges between

⌈
|E|
k

⌉
and 4 ·

⌈
|E|
k

⌉
. We allow a single exception, one of the subparts

may have fewer edges. From this the bound on the number of subparts follows
immediately.

All cycles in F contain a pair of associated of edges. By erasing one of them from
each cycle, we can obtain a tree. Let us call this tree T . The algorithm first greedily
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partitions the edges of T . Then adds edges from F \ T into respective subparts, so
that the fourth invariant from Lemma 2.1 is preserved.

The algorithm for partitioning the tree also needs to deal with pairs of associated
edges, which may still be present in T . This is because the cycles of G, on which the
associated edges lie, do not have to be fully contained in F so it is possible that a
pair of associated edges is not a part of any cycle in F . Hence, both its edges may
belong to T . Let us root T in one of its topmost vertices (there can be two of them).
This way every pair of associated edges present in T shares their upper endpoint.
Using this property the algorithm makes sure they end up in the same subpart.

The algorithm for partitioning T maintains two kinds of subparts: open, to
which edges of T can still be added and closed, to which they cannot. This approach
yields the following procedure for partitioning edges from F :

1. From each pair of associated edges which is lying on a cycle in F erase an
arbitrarily chosen edge. Let us denote the resulting tree by T .

2. Root T in one of its topmost vertices and process every vertex v in the order
of non-increasing depths:
(a) For every child u of v in T : If there is an open subpart containing u, add

the (u, v) edge to it. Otherwise, initialize a new open subpart consisting
only of (u, v).

(b) Merge all pairs of subparts from the previous step containing edges asso-
ciated with each other.

(c) Mark each open subpart as closed if it contains at least
⌈
|E|
k

⌉
edges.

(d) As long as there are at least two open subparts, merge them. If their size
reached

⌈
|E|
k

⌉
, mark the resulting subpart as closed.

3. Add each edge from F \ T to the subpart containing the one associated with
it.

After v has been processed in the second step there is at most one open subpart
in the subtree of v and it contains strictly less than

⌈
|E|
k

⌉
edges. Hence, open subparts

created in the step 2a contain at most
⌈
|E|
k

⌉
of them. This results in the size of closed

subparts created in the second step being between
⌈
|E|
k

⌉
and 2

⌈
|E|
k

⌉
. When edges

from F \ T are added, the subparts created so far can at most double their size
because each edge is associated with at most one other edge. Thus, each subpart
can contain at most 4

⌈
|E|
k

⌉
edges. Furthermore, after the algorithm concludes, there

may be only one subpart with fewer than
⌈
|E|
k

⌉
edges.

2.2.2 Reducing the number of border vertices

Like previously, we restrict our attention to a single fragment F on a particular
level of decomposition, denoted i. We assume that F contains at most 18k border
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vertices from (i−1)-th level and define a procedure for splitting it into at most three
connected subparts in such a way that:

• Each subpart contains at most 14k border vertices of i-th level.

• F contains at most 20k border vertices of i-th level.

• Edges associated with each other are in the same subpart.

Let b be the number of border vertices of (i−1)-th level in F . First, F is rooted in
one of its vertices and a local tree of its biconnected components is created. Although
the tree is constructed locally (as if F was the whole graph G), pairs of associated
edges are still defined globally (Definition 2.1 still refers to the global root of G).
Then, the lowest component containing more than

⌊
b
2

⌋
border vertices in its subtree

graph is found in the local tree. Since the subtree of the root component is the whole
fragment with b border vertices, such a connected component is guaranteed to exist.
We will call it the pivot component. If it is not the root component, it can be either
a single edge or a cycle. If it is, we handle it as in the case of an edge, where the
root vertex is considered to be the lower vertex.

The case of a single edge: Consider the connected components of F resulting
from removing the lower vertex v of the pivot component. Each such subgraph has
exactly one edge adjacent to v and contains at most

⌈
b
2

⌉
+ 1 border vertices on

(i− 1)-level (we include v in all these subgraphs). This partition can, however, split
pairs of associated edges. Let edges (v, u1) and (v, u2) be associated and belong to
distinct subparts. If the number of border vertices of level i − 1 contained in the
union of those two subparts is at most

⌈
b
2

⌉
, the two subparts are merged. Otherwise,

edge (v, u1) is transferred to the subpart of (v, u2). In this case the subpart of u2
gained only one additional vertex and the subpart of u1 is still connected, as the
edge (v, u1) must have been its only edge adjacent to v.

In the partition defined this way every subpart (fragment on (i + 1)-th level of
decomposition) contains at most

⌈
b
2

⌉
+ 2 border vertices of (i− 1)-th level. Further-

more, at most two new border vertices are created in F on i-th level (one is v and
the other one results from transferring the associated edge to another subpart, which
can happen only once).

However, such a partition may result in too many fragments on (i + 1)-th level
contained in F . Thus, as long as there are two subparts whose union contains no
more than

⌈
b
2

⌉
+ 2 border vertices of (i−1)-level they are merged. Afterwords, there

can be at most three subparts in the partition.

The case of a cycle: Let us denote the cycle being the pivot component as C.
Consider connected components of F resulting from removing all the edges of C.
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If no such component has more than
⌊
b
2

⌋
border vertices on the (i − 1)-level,

we can choose a number of consecutive vertices on C such that their connected
components contain between

⌊
b
3

⌋
and

⌈
2b
3

⌉
border vertices of (i − 1)-level in total.

Let us paint all the vertices in their connected components black and the rest of
the vertices in F white. All the edges between pairs of two black and two white
vertices are painted respectively black and white. Note that both the black and
white subgraphs are connected. All white edges will form the first subpart and black
ones the second. The edges between vertices of different colors can be assigned to
either one. It is possible not to split pairs of associated edges since they share a
vertex and thus cannot be both painted and have distinct colors.

Each subpart contains at most
⌈
2b
3

⌉
border vertices of level (i − 1). The new

border vertices in F on i-th level can be created only by the edges connecting vertices
with distinct colors. From the construction it follows that there are exactly two such
edges and hence at most two new border vertices in F on i-th level.

If one of the connected components resulting from removing edges of C contains
at least

⌊
b
2

⌋
+1 border vertices of the (i−1)-level, we implement a different approach.

Let v be the vertex from C belonging to this component. First, we add all edges
from C back to the graph, then remove v from it. Note that each resulting connected
component contains at most

⌈
b
2

⌉
vertices. Thus, we can use the previously described

procedure for the case of a single edge, where v is treated like the lower vertex.

Regardless of whether the pivot component is a cycle or a single edge, the above
algorithm results in at most two new border vertices in F on i-th level of decompo-
sition. Furthermore, each subpart contains at most

⌈
2b
3

⌉
+ 2 border vertices of i-th

level. With b ≤ 18k this gives an upper bound of 14k on their number in a single
subpart of F .

2.2.3 Recursive decomposition

Using subprocedures from Sections 2.2.1 and 2.2.2 we can define the recursive de-
composition. Each fragment of Di is split into subparts. For odd i the procedure
of reducing the number of edges is used. For even i reducing the number of border
vertices is applied. Then, the subparts become fragments of Di+1 and the process
continues until all fragments consist of at most two edges.

Recall that both kinds of steps create O (k) connected subparts from each frag-
ment and do not split associated edges. Reducing the number of edges every second
step of the decomposition guarantees that the second invariant holds too. The fol-
lowing lemmas imply that our construction satisfies the third invariant and thus
conclude the proof of Lemma 2.1.
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Lemma 2.2. Consider a fragment F split into s edge-disjoint connected subparts in
such a way, that the topmost edges of each biconnected component belong to the same
subpart. Then, at most 2s− 2 vertices belong to more than one subpart.

Proof. Consider a cycle C in F , whose edges belong to multiple subparts. Since the
topmost edges of C must belong to the same subpart, at least one of them does not
contain any topmost edge. Let us denote it by S. In such a case, the topmost vertex
of C does not belong to S, so S must be fully contained in the subtree graph of C.
Thus, for fixed S there can be only one such cycle C. Furthermore, if S contains
a topmost vertex of F , no such cycle exists. Hence, there are at most s − 1 cycles
whose edges belong to multiple subparts.

Let us transform F into a tree T by removing one of the topmost edges from
each cycle. Consider a cycle C and let S be the subpart containing its topmost
edges. If all edges in C belong to S, this subpart is still connected. Otherwise, let v
be the topmost vertex and u be the other endpoint of the erased edge. If u is incident
to another edge of S, S no longer is connected. Let us denote the two connected
components of S as S1 and S2. This can happen in only q ≤ s−1 cycles. Otherwise,
the remaining edges of S still form a connected subgraph.

In the tree T there are s + q connected subparts, so there are s + q − 1 vertices
shared by them. Let us check how this changes when a previously removed (u, v)

edge is added to the cycle C. If all edges in C belong to the same subpart (S),
no vertex is added to S. Let us consider the opposite case. If u has been incident
to another edge in S, the subparts S1 and S2 are in fact a single subpart S, which
contained u and v even before adding the (u, v) edge. Otherwise, u is added to S

and shared with the subparts it previously belonged to. This can happen at most
s− 1− q times.

Summarizing, at most 2s−2 vertices of F belong to multiple subparts contained
in F .

Lemma 2.3. For all i each fragment of Di contains at most 20k border vertices of
i-th level. Among them, at most 18k are border vertices of the previous level.

Proof. We show the above lemma using induction over even levels of decomposition.
In D3 there are at most 3k fragments in total, so there are only 6k−2 border vertices
on the second level of decomposition and the lemma holds for i ≤ 2.

Let us consider a decomposition Di for even i, for which Lemma 2.3 holds.
Since Di+1 is created using the procedure from Section 2.2.2, each fragment in Di+1

contains at most 14k border vertices on i-th level. Because the odd step splits each
fragment into at most k subparts, by Lemma 2.2 there are at most 16k − 2 border
vertices on level (i + 1) in each fragment of Di+1.
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Naturally, the same bound holds for fragments in Di+2. Since each fragment in
Di+2 is split into at most three fragments of Di+3, it can contain at most 16k + 2

border vertices of (i+ 2)-th level. Thus, Lemma 2.3 holds for Di+1 and Di+2, which
concludes the proof of the inductive step.

2.3 Classification of buyers

A pair of vertices u and v is said to be connected in a decomposition Di if there
exists a path from u to v fully contained in a single fragment from Di. The buyer
represented by vertices u, v and budget b will be processed at the last level, where
his vertices are connected. This criterion unambiguously assigns every buyer to a
single decomposition.

b

c

a

d

b

c

a

d

Figure 2.2: Two levels of a recursive decomposition, which satisfy Lemma 2.1, but
do not necessarily result from the construction described in Section 2.2. Fragments
from levels j and j + 1 are marked respectively on the left and right hand side.
Highlighted vertices are shared between the fragments and the ones on the right
hand side are border vertices on j-th [sic] level. A buyer wishing to purchase an
a-b path would not be processed on j-th level, but a buyer interested in a-c paths
would. The pair of vertices c and d is connected in at all levels of decomposition, so
corresponding customers would be assigned to its last level.

Remark 2.1. Consider a buyer wishing to purchase a u-v path assigned to i-th level
of the recursive decomposition. Then, every u-v path in the whole graph contains a
border vertex on the i-th level.

Proof. Since for DL each vertex is a border vertex, we consider Di for i < l. In such
a case, no u-v path can be contained inside a single subpart (fragment of Di+1).
Otherwise, the buyer would be assigned to a lower level of decomposition. Since
every u-v path contains edges from distinct fragments of Di+1, one of its vertices
must be shared between them and be a border vertex on i-th level.



Chapter 3

Algorithm for a single
decomposition

In the previous chapter buyers have been divided into subsets by a recursive graph
decomposition. Now we focus on a single (j-th) level of decomposition. By exploiting
its properties we prove the following lemma:

Lemma 3.1. Let Bj be the set of buyers assigned to Dj from Lemma 2.1. There
exists a polynomial time algorithm for the instance of the tollbooth problem on cac-
tus graphs defined by buyers from Bj which gives a constant factor approximation
guarantee on revenue.

Recursive decomposition of the graph was used to create subproblems by parti-
tioning the buyers. The main idea behind the algorithm for a single decomposition is
to split the paths desired by buyers into smaller sections and handle them separately.
In this chapter we define a partitioning of those paths.

3.1 The skeleton

Definition 3.1. Skeleton on j-th level, denoted SKj, is a minimal subgraph of
G containing all simple paths between border vertices of j-th level. Equivalently, an
edge belongs to the skeleton, i.e. is a skeleton edge, if and only if a simple path
connecting two border vertices passes through it. A vertex adjacent to a skeleton edge
is called a skeleton vertex.

Note that, by the definition of a border vertex, SKj+1 is always a superset of
SKj and SKL = G.

Definition 3.2. A non-skeleton component on j-th level is a maximal connected
subgraph of a fragment from Dj+1 containing no edges from SKj.

21
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Lemma 3.2. Every simple path connecting two skeleton vertices passes only though
skeleton edges.

Proof. We assume that there are at least two border vertices of j-th level. Otherwise,
the lemma is trivially true. The proof is by contradiction. Let us say there is a
simple path between two skeleton vertices passing though a number of non-skeleton
edges. Consider a maximal part of this path consisting only of non-skeleton edges.
It must start and end at skeleton vertices, let us denote them by u and v. From
the construction of SKj it follows that there exists another u-v path fully contained
in the skeleton. Those two paths are of course disjoint, so u and v lie on a simple
cycle. Consider an arbitrary skeleton edge on this simple cycle and a path between
two border vertices, s and t, which passes through it. Let u′ be such vertex on this
s-t path that lies on the cycle and is the closest one to u. Similarly, let v′ be the one
closest to v. Without loss of generality we assume that u′ appears before v′ on the
s-t path. Consider the following path:

• From s to u′ along the original s-t path.

• From u′ to u along the skeleton u-v path.

• From u to v along the non-skeleton u-v path.

• From v to v′ along the skeleton u-v path.

• From v′ to t along the original s-t path.

It follows from the choice of u′ and v′ that the above path has no cycles (is simple).
This leads to contradiction and concludes the proof.

Corollary 3.2.1. Each non-skeleton component contains exactly one skeleton vertex.

Definition 3.3. Let us define a skeleton representative of a vertex v on j-th level
denoted by reprj(v). If v is a skeleton vertex in Dj, then reprj(v) = v. Otherwise,
the representative of v is the unique skeleton vertex in the non-skeleton component
on the j-th level containing v.

Consider a buyer i from Bj wishing to buy the cheapest ui-vi path. Recall from
Chapter 2 that each ui-vi path contains at least one border vertex of j-th level.
By Corollary 3.2.1 each path from a vertex s to any skeleton vertex passes through
reprj(s). Hence, each path from ui to vi contains vertices ui, reprj(ui), reprj(vi), vi.
Although some of those four vertices may be equal, they are guaranteed to appear
in this order. This allows us to split every such path into three parts (some of which
may be empty):

• First non-skeleton section – a simple path from ui to reprj(ui), which con-
tains no skeleton edges.
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b

a

d
c

Figure 3.1: A cactus from Fig-
ure 2.3 with highlighted bor-
der vertices and the skeleton
on j-th level. Each connected
group of edges dotted in a
same style forms a single non-
skeleton component. Each a-d
path is split into a skeleton sec-
tion (a b-c path) and two non-
skeleton sections: a-b and c-d
paths.

• A skeleton section – a simple path from reprj(ui) to reprj(vi). By Lemma
3.2, it passes only through skeleton edges.

• Second non-skeleton section – a simple path from reprj(vi) to vi. Similarly
to the first one, it does not contain skeleton edges.

3.2 The skeleton and non-skeleton edges

For each level of decomposition j < L the algorithm handles two subproblems. Since
SKL = G, on the last level only the skeleton subproblem is processed.

The skeleton subproblem: Consider a buyer i ∈ Bj wishing to purchase the
cheapest ui-vi path. In this subproblem they will buy the cheapest path between
reprj(ui) and reprj(vi) as long as its cost does not exceed bi (her original budget).
Such a situation may be achieved by setting the price of all non-skeleton edges to
zero.

The non-skeleton subproblem: In this case, we set the prices of all the skeleton
edges to zero. Each buyer i ∈ Bj will purchase the cheapest paths from ui to reprj(ui)

and from vi to reprj(vi) if their total cost does not exceed bi.

Let us introduce additional notation:

• Let OPTj be the maximal revenue obtained by any price vector and envy-free
assignment of paths to the buyers from Bj .

• Let SKOPTj and NSKOPTj be the maximal revenues for the skeleton and
non-skeleton subproblem respectively.
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Note that any envy-free solution for the whole graph immediately yields envy-
free solutions for both subproblems. Thus, SKOPTj + NSKOPTj ≥ OPTj .

The algorithm solves both subproblems independently. Then, the computed
solutions are compared and the one with greater revenue is chosen. Chapters 5
and 4 describe polynomial time approximation algorithms for the skeleton and non-
skeleton subproblem respectively.



Chapter 4

Non-skeleton edges

This chapter describes an algorithm for solving the non-skeleton subproblem on j-th
level. Let Bj be the set of buyers assigned to this level. The prices of all edges in
the skeleton on j-th level are set to zero. The focus of this chapter is on pricing
the non-skeleton edges and maximizing revenue generated by non-skeleton sections
of paths allocated to buyers from Bj . Recall that on the last level of decomposition
the skeleton contains the whole graph G. Thus, we assume that j < L. Let the
optimal revenue for the given instance of the non-skeleton subproblem be denoted
by NSKOPTj . The algorithm presented in this chapter finds prices generating at
least NSKOPTj

4 revenue.

4.1 The rooted case

Before describing the method for pricing non-skeleton edges, let us discuss an easier
problem, whose solution is a subprocedure used by the final algorithm.

Definition 4.1. Consider an instance of the tollbooth problem on cactus graphs
defined by a cactus H and a set of buyers BH . We will say that it is a rooted
instance if there exists a vertex in H, called root, which is an endpoint of every path
desired by the buyers.

Definition 4.2. Consider a buyer i ∈ BH in a rooted instance, who wishes to pur-
chase a cheapest ui-vi path. Her destination vertex is the one of vertices ui or vi

that is not the root.

Lemma 4.1. Any rooted instance of the tollbooth problem on cactus graphs can be
solved in polynomial time. It is also true if we admit only those price assignments,
under which the distances from the root to some vertices are equal to arbitrarily fixed
constants.

Regardless of the prices, in every envy-free allocation each buyer is assigned a
shortest path from her destination vertex to the root as long as its cost does not

25
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exceed her budget. Thus, presenting a polynomial algorithm for finding optimal
prices is sufficient to prove the above lemma.

The algorithm is based on dynamic programming, whose subproblems mimic
the structure of the tree of biconnected components of H rooted in r – the root from
Definition 4.1. For each biconnected component C it calculates values dpC,d, which
are defined in the following way: Let us assume that the distance, i.e. cost of a
cheapest path, from r to C (its depth) equals d. Then dpC,d equals the maximum
revenue generated by buyers whose destination vertices belong to the subtree graph
of C (excluding its topmost vertex). Note that the distance from C to the root is
in fact the distance between r and the topmost vertex of C. The following lemma
allows our algorithm to consider only polynomially many values d.

Lemma 4.2. For any rooted instance of the tollbooth problem on cactus graphs there
exists an optimal solution, such that the distance from each vertex to the root belongs
to the set D containing zero and buyers’ budgets:

D = {0} ∪ {bi | i ∈ BH}

Proof. Let us call a price assignment regular if it satisfies the condition from the
above lemma. Consider optimal prices that are not regular. We prove the lemma by
showing the existence of a regular price assignment which generates at least as much
revenue.

By T let us denote a shortest-path tree of H rooted in r, which is an acyclic
subgraph of H containing a shortest path from every vertex to the root. Let us
increase the price of all edges in H \ T to the maximal budget bmax = maxBH .
While it does not change the distances from vertices to the root, it guarantees that
each vertex has a shortest path to the root contained in T under any regular prices.

Let us consider a vertex v and let dv be the distance from v to r under initial
prices. We set d′v to the smallest element of D greater or equal than dv or to bmax

if no such element exists. Note that if for any two vertices u and v du ≥ dv, then
d′u ≥ d′v. Hence, the values of d′v are non-decreasing on the paths from r to every
leaf in T . Thus, there exist prices for edges in T such that the distance from r to v

equals d′v for every v.

Consider a vertex v and customers whose destination vertex is v. If d′v > dv,
none of them has a budget from [dv, d

′
v). Hence, they now generate no less revenue

than under the original prices. If d′v < dv, then dv > bmax, so in this case no buyer
could have been allocated a v-r path under the original prices. Thus, the regular
prices result in at least as much revenue as optimal ones.

In Chapter 5 the algorithm needs to find optimal prices given constraints on the
distance from certain vertices to the root. The following corollary allows for handling
such cases.
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Corollary 4.2.1. Consider a rooted instance of the tollbooth problem on cactus
graphs and a subset S of vertices of H such that for each v ∈ S required depth
ev of this vertex is given. Prices of edges in H are said to be feasible if the cost of
a cheapest r-v path equals ev for each v ∈ S. Let us assume, that there is at least
one such price assignment. Then, there exists a feasible price assignment maximizing
revenue for which the distance from r to each vertex v 6∈ S belongs to the set D′:

D′ = {0} ∪ {bi | i ∈ BH} ∪ {ei | i ∈ S}

The proof of this corollary follows immediately from the proof of Lemma 4.2.
Note that all buyers with destination vertices in S generate the same revenue under
all feasible price assignments. The argument for vertices outside S remains the same.

4.1.1 Dynamic programming

The input of the procedure consists of a graph H, buyers BH and a set of constraints
S (possibly empty) from Corollary 4.2.1. For each vertex v we define a set of its
possible depths Dv in the following way:

Dv =

{ev} , v ∈ S

{0} ∪ {bi | i ∈ BH} ∪ {eu | u ∈ S} , v 6∈ S

By Corollary 4.2.1, in order to find optimal prices which satisfy the constraints
it is sufficient to consider only such price assignments that the costs of a cheapest
r-v path belongs to Dv for each v ∈ H. Thus, for each biconnected component C

the algorithm calculates the values of dpC,d for every d ∈ Dv where v is the topmost
vertex of C. It is possible that some values of d inevitably lead to violation of the
constraints on depths of vertices from S. In such a case we set dpC,d = −∞. For
simplicity, we also assume that dpC,d = −∞ for each d 6∈ Dv.

The biconnected components of H are processed bottom up based on the struc-
ture of the tree of biconnected components. The algorithm handles biconnected
components differently depending on whether they consist of a single edge or a cy-
cle. The root component R, which is the root of the tree of biconnected components,
contains the whole H in its subtree graph and is treated in yet another way. Let us
introduce useful notation:

• cntv,x – the number of buyers, whose budgets are at least x and whose desti-
nation vertex is v.

• Cv – the set of all biconnected components whose topmost vertex is v.

The case of a single edge: Let us denote the lower vertex of the considered
biconnected component C as v and the upper as u. Note that the subtree graph of
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C consists of the (u, v) edge and subtree graphs of biconnected components from Cv,
which are edge disjoint and share only the topmost vertex. All simple paths to the
root from vertices contained in the latter pass though v. Furthermore, each simple
path from v to the root must contain u. Basing on those observations, the algorithm
calculates dpC,d for each d ∈ Du according to the following formula:

dpC,d = max
d′∈Dv ; d′≥d

cntd′,v · d′ +
∑

C′∈Cv

dpC′,d′


The optimal value of d′ is stored along with dpC,d in order to find the prices after
calculating optimal revenue ((d′ − d) is the price of the (u, v) edge).

The case of the root component: The root must have depth 0, hence for this
component only a single value (dpR,0) is calculated. It is equal to the optimal revenue
satisfying the constraints on depths of vertices in S. The algorithm calculates dpR,0

as follows:
dpR,0 =

∑
C′∈Cr

dpC′,0

The case of a cycle: Let us denote the considered cycle by C, its topmost vertex
as v and its subtree graph by GC . GC consists of C itself and the subtree graphs of
components from Cu for all u ∈ C \ {v}.

Let us examine how different prices of edges in C affect the shortest paths from
vertices of GC to the root. First of all, they all pass through v. Next, consider a
vertex s belonging to a subtree component of C ′ ∈ Cu for u ∈ C \ {v}. It follows
from the structure of the cactus, that any simple s-v path passes though u. Prices
assigned to edges of C only influence the shortest u-v paths, which are always fully
contained in C. Thus, prices of edges from GC \ C do not influence the dephts of
vertices on C. However, depths of those vertices influence the optimal prices of edges
in GC \ C.

Consider any prices assigned to the edges in C. Let T be a shortest-path tree
of C rooted in v. Exactly one edge from C does not belong to T , we will say that it
is unused. After removing this edge, the cost of a cheapest path from any vertex in
GC to v does not change. Thus, its price can be set to bmax + 1 without impacting
the revenue (bmax = max {bi | i ∈ BH}).

The algorithm iterates over all edges in C fixing the current one, denoted e, to
be the unused edge. In this step the algorithm finds an optimal solution among those
price assignments which result in e being an unused edge in C. First, the price of e
is set to bmax + 1. This effectively removes e from the graph, as no buyer will ever
purchase a path containing it.

Let us consider the graph GC without e for a moment. The other edges of C
do not form a single biconnected component anymore. Instead, C \ {e} is a path
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and each one of its edges is a biconnected component on its own. Furthermore,
GC \ {e} is formed by this path and subtree graphs belonging to components from
Cu for u ∈ C \ {v}. Note that the optimal solutions for the latter have already been
calculated for every valid depth of their topmost vertices.

a

b
c

d

a d

b

c

Figure 4.1: Processing a cycle for a fixed unused edge. The dotted line marks out its
subtree graph on both the cactus graph (left) and the temporary tree of biconnected
components (right). Solid lines enclose subproblems which already have been solved.
The algorithm calculates the values of dpe for biconnected components c, b, a and d

(in this order).

Erasing e from the graph is also reflected in the tree of biconnected components.
The single biconnected component of C is replaced by multiple components, each one
formed by an individual edge in C \{e}. However, all the children of C in the original
tree remain the same after removing e. Each one belonging to Cu for u ∈ C \ {v}
is a child of the unique edge for which u is the lower vertex. Note that the already
calculated values of dp for those components are still valid in the new tree.

Let C ′ be a biconnected component formed by an edge in C \ {e}. We define
the values of dpeC′,d the same way as the original dp, but based on the temporary
tree of biconnected components. The algorithm processes these new biconnected
components in the bottom-up order from the temporary tree and calculates dpe

for each of them. Let C ′ be the current biconnected component formed by an s-
t edge and let t be the topmost vertex. For each value of d ∈ Dt the algorithm
must calculate dpeC′,d. It is of course equal to the revenue generated by buyers with
destination somewhere in the subtree graph of a component whose topmost vertex
is s. Such biconnected components are children of C ′ in the tree. Each of them
either is an edge from C \ {e} or it must have been a child of C in the original tree
of biconnected components. Either way, the values of dpe or dp have already been
calculated for them for each valid depth of s. Hence, the problem of calculating
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dpeC′,d is the same as calculating dpC′′,d for any biconnected component C ′′ in H

formed by a single edge.

Let C1 and C2 be the biconnected components formed by edges of C which are
adjacent to v. If e, the unused edge, happens to be adjacent to v, there is, in fact,
only one such component. In this case C2 is just a placeholder with an empty subtree
graph and dpeC2, d equal zero for all d ∈ R. Note that the union of subtree graphs
of C1 and C2 in the temporary tree contains the same vertices and edges (except for
e) as GC . Furthermore, the two subtree graphs can only share one vertex: v. Thus,
if we admit only such solutions, where e is unused, then dpC,d = dpeC1,d

+ dpeC2,d
.

Since for every possible price assignment there exists an optimal allocation, where
one edge of C is unused, it is enough to iterate over all possible edges e ∈ C:

dpC,d = max
e∈C

(
dpeC1,d + dpeC2,d

)
Using this formula the algorithm computes dpC,d for every d ∈ Dv. Like previously,
respective price assignments to edges of C are stored along with the results.

Let us summarize how the procedure calculating dpC,d works. The algorithm
iterates over all possible edges e ∈ C. For every possibility, new biconnected com-
ponents C ′ are created, one for each edge in C \ {e}. Then, the subprocedure for
the case of a single edge finds all values of dpeC′,d, which is done in polynomial time.
Thus, the running time of the whole procedure is also polynomial.

Since all the above procedures run in polynomial time and each biconnected com-
ponent is processed only once, the solution is found in polynomial time. Prices
obtaining the computed maximal revenue can be easily calculated using additional
information stored alongside the values of dpC,d. This proves Lemma 4.1.

4.2 The non-skeleton subproblem

In order to solve the non-skeleton subproblem the algorithm utilizes a special struc-
ture of non-skeleton components on j-th level. For each of them, a rooted instance
of the tollbooth problem on cactus graphs is created. Those subproblems are solved
by the procedure described in Section 4.1. The price assignments for individual non-
skeleton components are merged by a probabilistic procedure which can, however,
be derandomized.

4.2.1 Non-skeleton components

Recall that each buyer i ∈ Bj is defined by a triple (ui, vi, bi), which means that she
has a valuation of bi for all ui-vi paths. Since the skeleton edges are given away for
free, the algorithm only processes respective non-skeleton sections, which are modeled
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by two independent copies of i-th buyer. If ui 6= reprj(ui), ui is not a skeleton
vertex on the j-th level and thus belongs to exactly one non-skeleton component,
denoted C. In this case a buyer defined by the triple

(
ui, reprj(ui), bi

)
is added to

the instance associated with C. If vi 6= reprj(vi), we add a buyer
(
vi, reprj(vi), bi

)
to

the instance associated with the respective non-skeleton component. Since reprj(s) is
the same for all vertices s within a single non-skeleton component (Corollary 3.2.1),
all subproblems defined this way will indeed be rooted instances.

Remark 4.1. For i ∈ Bj such that ui 6= reprj(ui) and vi 6= reprj(vi) let C1 and C2

be the non-skeleton components containing respectively ui and vi. Then, C1 and C2

are contained in a single fragment of Dj, but they belong to different fragments of
Dj+1.

Proof. By Definition 3.2 each skeleton component on the j-th level is fully contained
within a fragment in Dj+1. Recall that in order for i-th buyer to be processed on
level j (for j < L), ui and vi must belong to the same fragment in Dj , but no
path between them can be contained within a fragment in Dj+1. Since ui ∈ C1 and
vi ∈ C2, this concludes the proof.

4.2.2 The randomized algorithm

Let us begin by introducing additional definitions:

• A price vector p is said to be feasible for the non-skeleton subproblem if it
assigns zero to all skeleton edges.

• For any feasible prices p let revj(p) be the revenue generated by buyers from
Bj under prices p.

• For a non-skeleton component C and feasible prices p by revj,C(p) let us denote
the part of revj(p) resulting from selling edges from C. It is well-defined, i.e.
is the same regardless of which shortest path between ui and vi is assigned to
i-th buyer for all i ∈ Bj . For a fragment F from Dj or Dj+1 let us define
revj,F (p) in a similar way. Since each such F is a union of a subgraph of the
skeleton and non-skeleton components, revj,F (p) is also well-defined.

• For any subgraph S of G, by Bj,S let us denote the set of such buyers i ∈ Bj

that ui or vi is not a skeleton vertex and belongs to S.

By Remark 4.1, for each H ∈ Dj and any feasible prices p only buyers from Bj,H

contribute to revj,H(p), which depends solely on the prices of edges in H. Thus, all
fragments H ∈ Dj can be processed separately, each with the respective set of buyers
– Bj,H . Here follows a description of an algorithm for handling a single fragment
H ∈ Dj .
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The algorithm handles all subparts of H, i.e. fragments from Dj+1 contained
in H, individually. First, each of them is equiprobably and independently colored
either white or black. In white subparts the price of all edges is set to zero. For each
non-skeleton component contained in a black subpart, the associated rooted instance
is solved using the procedure presented in section 4.1. Edges of this non-skeleton
component are priced according to the obtained optimal solution.

Lemma 4.3. Let p be the price vector found by the above randomized algorithm and
q be any price vector feasible for the non-skeleton subproblem. Then, the following
inequality holds:

E [revj,H(p)] ≥ 1

4
revj,H(q)

Proof. Consider a non-skeleton component C and a fragment F in Dj+1 containing
C. Assume that F has been painted black and all the other subparts of H have
been painted white. Then, by Remmark 4.1 each buyer i ∈ Bj,C has a budget of bi
for purchasing a path in C from her destination vertex to its skeleton representative
because her other non-skeleton section is either empty or in a white subpart. Note
that this exactly reflects the situation modeled by the rooted instance associated
with C. Since only buyers from Bj,C contribute to revj,C , p maximizes revj,C .

revj,C(p) ≥ revj,C(q)

In reality, however, the other fragments from Dj+1 contained in H also can be
black. Nevertheless, each of them is white independently of the color of F with
probability 1

2 . Thus each buyer i ∈ Bj,C can spend up to bi on her non-skeleton
section in C with probability at least 1

2 .

E [revj,C(p) | F is black] ≥ 1

2
revj,C(q)

E [revj,C(p)] ≥ 1

4
revj,C(q)

By summing the above inequality over all non-skeleton components in H, we
obtain the desired lower bound:

E [revj,H(p)] ≥ 1

4
revj,H(q)

4.2.3 Derandomization

Corollary 4.3.1. There exists a deterministic polynomial algorithm which for a non-
skeleton subproblem on j-th level finds prices achieving at least NSKOPTj

4 revenue.
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Proof. Let us begin the proof by derandomizing the procedure from Lemma 4.3
for pricing edges in a single fragment H ∈ Dj . Note that in at least one of its
outcomes the computed prices generate at least as must revenue as the expected
value. Each possible outcome is determined by assigning one of two colors for each
fragment F ∈ Dj+1 contained in H. Since the number of them is O (k), there
are only 2ck possibilities (for a constant c). As k =

⌈
log

1
2 m
⌉
, this number can

be bounded by a polynomial in m. The algorithm iterates over all possible color
assignments and chooses the solution maximizing revenue in H. Prices p found
this way achieve revenue not smaller than the expected revenue achieved by the
randomized procedure. Thus, for any feasible prices q:

revj,H(p) ≥ 1

4
revj,H(q) (1)

The algorithm performs this derandomized procedure for each fragment of Dj

and prices the edges accordingly. Let us denote the resulting price assignment by
pfull. Recall that the procedure from Section 4.2.2 does not make any assumptions
on prices of edges outside the single part H. Thus, Inequality 1 holds for pfull, too.
By taking q = popt, an optimal solution to the non-skeleton subproblem on j-th level,
we obtain the desired upper bound on generated revenue.

∑
H∈Dj

revj,H(pfull) ≥
∑

H∈Dj

1

4
revj,H(popt)

revj(pfull) ≥
1

4
revj(popt) =

1

4
NSKOPTj





Chapter 5

Skeleton edges

This chapter describes an algorithm solving the skeleton subproblem on a single, j-th
level of decomposition. In this case, all buyers assigned to j-th level, denoted Bj , wish
to buy paths connecting their pairs of vertices with the cheapest skeleton sections.
Non-skeleton sections do not influence the envy-freeness of a solution because they
are given away for free. Hence, a buyer i ∈ Bj wishing to buy an ui-vi path in the
original problem can be thought of as a buyer with the same budget wishing to buy
a shortest reprj(ui)-reprj(vi) path.

Let SKOPTj be the maximum revenue generated by customers from Bj under
the condition that the price of all non-skeleton edges, that is those outside SKj ,
equals zero. This chapter describes a polynomial time algorithm which finds prices
for edges in SKj generating at least SKOPTj

2048 revenue.

5.1 Decomposing the skeleton

Before describing the algorithm itself, let us explore important properties of the
skeleton subproblem.

Remark 5.1. For each buyer i ∈ Bj, there exists a fragment in Dj containing
the skeleton representatives of both ui and vi. Furthermore, every path between the
skeleton representatives contains a border vertex of j-th level.

This property is true for ui and vi, which follows from the way buyers are
assigned to levels of decomposition. It also holds for their representatives because
by Definition 3.3 each vertex and its representative on j-th level belong to the same
fragment of Dj+1 (for j = L they are the same vertex). In order to take advantage
of this property, it is convenient to decompose SKj into smaller subgraphs.

Consider a process of compressing SKj by applying the following operations:

35
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1. Let there be two edges: (u, v), (v, w) such that v is not a border vertex and
has degree equal two. Merge them into a single edge (u,w) and erase v from
the graph.

2. For any two vertices u and v, if there are parallel (u, v) edges, merge them.

The process concludes when none of the above operations can be executed anymore.

Definition 5.1. A segment on j-th level is a subgraph of SKj which is contracted
into a single edge by the above procedure. The endpoints of a segment are the
endpoints of the corresponding edge in the compressed graph. The cost or length of
a segment is the cost of a cheapest path between its endpoints which is fully contained
within the segment.

Note that the only vertices shared by segments are their endpoints. Furthermore,
every border vertex on j-th level is an endpoint of a segment because border vertices
are never erased from SKj during the compression.

Definition 5.2. The skeleton of a fragment F ∈ Dj is the minimal subgraph of G
containing all simple paths between skeleton vertices from F . It is denoted SKj(F ).

Recall that by Lemma 3.2 all simple paths between skeleton vertices are con-
tained in the skeleton. Hence, SKj(F ) ⊆ SKj .

Definition 5.3. Let F be a fragment in Dj. A segment which is contained in F is
said to be an inner segment of SKj(F ). A simple path which connects two skeleton
vertices of F and contains no edges from F is called an outer segment of SKj(F ).

Each outer segment starts and ends in a border vertex. Thus, it consists of
several whole segments, i.e. traversed from one endpoint to another.

Remark 5.2. Inner and outer segments form an edge-disjoint partition of SKj(F ).

Proof. Let us begin the proof by showing that inner segments form an edge-disjoint
partition of SKj(F ) ∩ F , that is all skeleton edges inside F . Since every border
vertex is an endpoint of a segment, each segment is fully contained within a certain
fragment in the current decomposition. Thus, as segments form a disjoint cover of
SKj , the inner segments of the skeleton of F form a disjoint cover of SKj(F ) ∩ F .

By definition, each edge in SKj(F ) \ F belongs to an outer segment of SKj(F ).
Note that every outer segment defines a simple cycle in SKj(F ) consisting of two
non-empty paths: the outer segment itself and a path in F connecting its endpoints.
Thus, if an edge belonged to two distinct outer segments, it would lie on two simple
cycles, which leads to contradiction.
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B

C

A

F

Figure 5.1: An example cactus graph with its border vertices and skeleton on j-th
level highlighted. Non-skeleton edges are marked by light dotted lines on the left
and omitted on the right. Skeleton edges are grouped on the left by the fragments
they belong to and on the right by segments on j-th level. Edges from the fragment
F ∈ Dj are marked by solid black lines. B and C are the outer segments of its
skeleton, denoted A.

5.2 Rounding

If a simple path neither starts nor ends in a given segment, it will either traverse
this segment from one endpoint to another or not at all. Thus, for such paths it is
sufficient to consider the cost of the segment and not the prices of individual edges.
Let us formalize this observation.

Definition 5.4. A buyer i ∈ Bj is said to be involved in a segment on j-th level if
either reprj(ui) or reprj(vi) belongs to this segment and is not its endpoint.

Remark 5.3. For fixed costs of segments, changing prices of individual edges inside
a segment influences only the involved buyers.

Using this observation, the algorithm could guess the costs of segments and
then distribute those costs among individual edges in a way that would maximize
the revenue of involved buyers. However, such a naive approach cannot be used by a
deterministic algorithm because there are infinitely many combinations of segments’
costs. The following lemma allows for considering only finitely many of them.

Lemma 5.1. (rounding) There exists a price assignment obtaining revenue of at
least SKOPTj

4 such that each segment’s length belongs to the following set:

P =

{
mbmax

2t

∣∣∣∣ t ∈ {0, 1, . . . ,
⌈
log
(
1024 ·m2 · |Bj |

)⌉}}
∪ {0}



38 CHAPTER 5. SKELETON EDGES

Here bmax is the greatest budget of buyers in Bj and m is the number of edges in the
whole cactus graph G.

Proof. Consider any prices generating revenue SKOPTs. If a price of any edge is
greater than bmax, it can be lowered to bmax without loss of revenue. After such a
modification, the length of any path is at most m ·bmax. We further round the prices
down so that the price of each segment belongs to P . Let us consider a segment s

with cost ps and let u, v be its endpoints. We choose a u-v path of length ps fully
contained within s and set a maximal such x ∈ [0, 1] that ps · x ∈ P . Note that
either x > 1

2 or x = 0, which implies ps < bmax
1024·m·|Bj | . Next we multiply the cost of

the edges along the chosen path by x. By applying this procedure to all segments in
the graph, we ensure that segments’ lengths belong to P . Let us fix any path, which
initially has length d. After rounding the prices down, its cost is at least d

2−
bmax

1024·|Bj | .
As a consequence, the cost of a cheapest path desired by a buyer, which initially was
equal d, will be between d

2 −
bmax

1024·|Bj | and d after the rounding. Summing these

inequalities for all buyers results in a lower bound on the revenue of SKOPTj

2 − bmax
1024 .

As SKOPTj ≥ bmax, this concludes the proof.

5.3 Pricing strategies

The number of segments can potentially be large. In particular, there arem segments
on L-th level. Thus, the algorithm can not explicitly iterate over all combinations of
their rounded costs. Instead, it uses the structure of paths desired by customers in
Bj to handle each fragment in the current decomposition separately.

Recall that for each buyer i ∈ Bj there exists at least one fragment in Dj such
that both reprj(ui) and reprj(vi) belong to it (Remark 5.1). The algorithm assigns
each customer from Bj to one of such fragments. Let us fix a fragment F ∈ Dj

and denote the set of buyers assigned to it by Bj,F . By definition, the skeleton of
F contains the skeleton sections of all paths desired by buyers from Bj,F . Thus,
revenue generated by those buyers in the skeleton subproblem under any prices p,
denoted revj,F (p), depends only on the costs of edges in SKj(F ).

Having said that, particular fragments in Dj cannot be processed completely
independently, as their skeletons overlap. More specifically, each outer segment of
SKj(F ) consist of several inner segments from different fragments in Dj . However,
simple paths starting and ending in F traverse the outer segments only as a whole,
from one endpoint to another. Thus, the costs of individual edges, or even segments,
forming the outer segments of SKj(F ) do not influence revj,F (p). Only the total
costs of outer segments themselves do. An outer segment’s length is a sum of costs
of several inner segments from different fragments. Thus, even if considering only
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price assignments satisfying the rounding lemma (5.1), it may not belong to P .
Because of this, they need to be treated differently than inner segments.

Definition 5.5. For a fragment F ∈ Dj a pricing strategy s for its skeleton edges
is defined by:

• A single number ps,i ∈ P for each inner segment i of SKj(F ).

• Two consecutive numbers from ls,o, rs,o ∈ P ′ for each outer segment o of
SKj(F ). P ′ is defined as follows:

P ′ =

{
m2bmax

2k

∣∣∣∣ k ∈ {0, 1, . . . ,
⌈
log
(
1024 ·m3 · |Bj |

)⌉}}
∪ {0}

Alternatively, ls,o and rs,o can be both equal to zero.

Prices of edges in inner segments of SKj(F ) implement the strategy s if the length of
each segment i in F equals ps,i. A global price assignment implements this strategy
if additionally the length of each outer segment o of SKj(F ) is in the interval (ls,o, rs,o]

or equals zero if ls,o = rs,o = 0. A combination of pricing strategies is valid if it’s
not contradictory, i.e. the costs assigned to inner segments satisfy the requirements
given on the lengths of outer segments.

On the high level, the algorithm for solving the skeleton subproblem works in two
phases. In the first phase, described in Section 5.4, for each fragment from Dj and
each pricing strategy for it near-optimal prices implementing that strategy are found.
Then, using dynamic programming the algorithm constructs a valid combination of
strategies which achieves high overall revenue.

5.3.1 Approximating revenue

For each fragment F ∈ Dj , the algorithm iterates over all possible strategies. For
each of them it calculates near-optimal prices of edges in inner segments of SKj(F )

without any additional assumptions about prices of edges in SKj(F )\F . However, if
instead of the exact lengths of outer segments only intervals of their possible values
are known, it is impossible to calculate the revenue generated by buyers from Bj,F .
It is possible to provide an approximation, though.

Definition 5.6. Consider a fragment F ∈ Dj, pricing strategy s for it and any
prices implementing s, denoted p. The approximate revenue generated by those
prices, denoted revj,F,s(p), is the revenue generated by customers from Bj,F under
the following assumptions:

• The skeleton edges of F are priced according to p.

• Each outer segment o in SKj(F ) has length rs,o.
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The following lemma allows the algorithm to focus on maximizing the values of
approximate revenue calculated locally for each fragment and pricing strategy.

Lemma 5.2. Consider a valid combination of pricing strategies and denote the strat-
egy for a fragment F ∈ Dj as sF . Let p be any assignment of prices to all skeleton
edges which implements that combination of strategies. Then, the inequality∑

F∈Dj

revj,F,sF (p) ≥ bmax

512

implies

rev(p) ≥ 1

4

∑
F∈Dj

revj,F,sF (p)

Proof. Consider a fragment F ∈ Dj and a buyer i from Bj,F , who desires paths
connecting ui and vi. We fix any such path and by d, d′ denote its length given
respectively the prices p or prices p modified in such a way, that the length of each
outer segment o of SKj(F ) equals rsF ,o. If lsF ,o = 0, then rsF ,o ≤ bmax

1024·m·|Bj | . Thus,
due to decreasing the cost of each outer segment o from rsF ,o to its original cost, the
path’s length can decrease by at most bmax

1024|Bj | . Otherwise, rsF ,o = 2lsF ,o so strategy
sF assumes each outer segment o of SKj(F ) to be at most two times longer than it
is under prices p. Hence, d ≥ d′

2 −
bmax

1024|Bj | . Of course, d ≤ d′.

Since the above inequalities hold for all ui-vi paths, it is also true for the distance
between ui and vi. Hence, every buyer contributing to revj,F,sF (p) also contributes
to revj,F (p). By summing the inequality for all those buyers, we obtain:

revj,F (p) ≥
revj,F,sF (p)

2
− |Bj,F | ·

bmax

1024|Bj |

When applying to all parts of the current decomposition, we have:

revj(p) ≥ 1

2

∑
F∈Dj

revj,F,sF (p)− bmax

1024

As
∑

F∈Dj
revj,F,sF (p) ≥ bmax

512 , this concludes the proof.

5.3.2 Bounding the number of pricing strategies

Since for each fragment F ∈ Dj the algorithm iterates over all possible pricing
strategies, it is vital to make sure that their number is polynomial. This is achieved
by the following lemma.

Lemma 5.3. For each fragment F ∈ Dj, there are O (k) inner and outer segments
in its skeleton.
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Proof. Let us consider a graph resulting from converting each inner and outer seg-
ment from SKj(F ) into a single edge, let us denote it by H. We will prove that H
contains O (k) vertices, which is sufficient, since H, being a cactus, can have at most
twice as many edges as vertices.

Like in SKj(F ), all edges of H must lie on a path between border vertices on
j-th level. If it was not the case, no edge of the corresponding segment would lie
on such a path in SKj(F ) and hence the whole segment would not belong to the
skeleton on j-th level.

Consider a tree of biconnected components of H rooted in a vertex denoted
r. Each one of its leaves may be either a cycle or a single edge. Either way, at
least one of its non-topmost (relative to r) vertices must be a border one. If it
was not the case, edges of that biconnected component would not lie on any simple
path connecting border vertices. Since a vertex can be non-topmost in only one
biconnected component, this results in an upper bound of O (k) on the number of
leaf components in the tree.

Let us define a coloring of biconnected components in H. A biconnected com-
ponent is said to be black either if it has at least two children in the rooted tree of
biconnected components or one of its non-topmost vertices is a border vertex. Oth-
erwise, it is colored red. Since the numbers of border vertices and leaf components
are bounded, there are only O (k) black components.

Note that a red component must be single edge in H. It’s because only its
topmost vertex and its child’s topmost vertex can have degree greater than two.
Any other vertex in a red component, having degree two and not being a border
vertex, would be removed during the compression, so would not be an endpoint of a
segment.

Let us say that, hypothetically, a red component is a child of another red com-
ponent. Then the corresponding biconnected components could be merged using the
first operation of the compressing procedure from Definition 5.1. Hence, every red
biconnected component can have only black children. Thus, there can be only as
many non-leaf red components as there are black components. From this follows
that there are O (k) biconnected components in H.

Note that every vertex in H with degree greater than two is a topmost vertex
of a biconnected component. Hence, each vertex in H is either a topmost vertex of
a biconnected component or a border vertex. There are only O (k) vertices and thus
O (k) edges in H. Since each inner or outer segment in SKj(F ) corresponds to an
edge in H, there are only O (k) of them in the skeleton of F .

Corollary 5.3.1. For each fragment on j-th level of decomposition, the number of
pricing strategies is polynomial in m and n.
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Proof. Let us fix a single fragment F ∈ Dj . A pricing strategy assigns one of |P |
possible values to each inner segment of SKj(F ) and one of |P ′| intervals to each
outer segment. Note that |P | ≤ |P ′| and |P ′| is O (logmn) (n = |B|, so n ≥ |Bj |).
Thus, there exist such constants c1 and c2 that the number of strategies can be
bounded by (c1 · logmn)c2k, which can be bounded by a polynomial in n and m:

(c1 · logmn)c2k ≤ 2(log c1·log logmn)·2c2
√
logm ≤ 22c2 log c1·lognm = (nm)2c2 log c1

5.4 Solution for a single fragment

In the first phase the algorithm iterates over all possible pricing strategies for each
fragment in the current decomposition. Let us fix a single fragment F ∈ Dj and a
pricing strategy sF . This section presents a polynomial procedure for finding prices of
skeleton edges in F which implement the strategy sF and achieve high approximate
revenue. More precisely, let SKOPTj,F,sF be the maximum value of revj,F,sF (p)

among p implementing sF . Then, the prices found using the method presented here
achieve at least SKOPTj,F,sF

32 approximate revenue.

For ease of presentation we describe a randomized procedure, which will be later
derandomized. It processes each segment contained in F individually and indepen-
dently. Let us fix a single inner segment S of SKj(F ) and introduce the following
notation:

• The subset of buyers from Bj,F involved in S is denoted as BS .

• Endpoints of S are l and r.

• The cost of S given by sF is denoted c.

For a buyer i ∈ BS wishing to purchase the cheapest reprj(ui)-reprj(vi) path we
will assume without loss of generality that reprj(ui) lies strictly inside S (is not an
endpoint). On the other hand, reprj(vi) either lies strictly inside another segment or
is an endpoint of a segment (possibly of S). In the former case we set v′i and v′′i to be
the endpoints of the segment containing reprj(vi), in the latter reprj(vi) = v′i = v′′i .
The pricing strategy for F is fixed, and we are interested only in approximate revenue.
Thus, in this section costs of paths are always calculated with the assumption that
the length of each outer segment o of SKj(F ) equals rsF ,o. This way, distances
between endpoints of inner and outer segments in SKj(F ) are determined by sF .
This metric is denoted distsF .

Let B′S be any subset of BS . By CONTRIBS,B′
S ,sF

let us denote the maximum
cost paid by buyers from B′S for the edges of S in any envy-free solution based on
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prices implementing sF . In other words, CONTRIBS,B′
S ,sF

is the maximum possible
contribution towards revj,F,sF resulting from buyers of B′S purchasing edges in S.

Now follows the description of two subprocedures. The first one handles seg-
ments S which contain cycles and the other the ones which do not.

5.4.1 Cyclic segments

I

II

III

IV

Let S be a segment containing a cycle.
Since the whole graph is a cactus, there
can be no path from l to r bypassing
edges of S. Otherwise, edges on the cy-
cle inside S would lie on two simple cy-
cles. Thus, BS can be split into two dis-
joint sets:

• BS,l – such buyers i, that every
reprj(ui)-reprj(vi) path contains l.

• BS,r – such buyers i, that every
reprj(ui)-reprj(vi) path contains
r.

The algorithm chooses one of the follow-
ing four options uniformly at random.

First option: Set the price of all edges neighboring the vertex l to c and the price
of all the others to 0. This way each buyer from BS,l must pay c for leaving the
segment S through the l. Buyers from BS,r pay nothing for edges inside S because
leaving the segment through r is free.

Second option: The same as the previous one, but this time edges adjacent to r

have price c. Leaving S is free for BS,l and costs c for BS, r.

Third option: In this case the edges are priced only with buyers from BS,l in
mind. Since for all i ∈ BS,l every reprj(ui)-reprj(vi) path passes through l, we focus
on the revenue generated by the respective reprj(ui)-l paths. For a buyer i ∈ BS,l

we define:
b′i = bi −min

{
distsF (l, v′i), distsF (l, v′′i )

}
Note that the segment S and buyers from BS,l with their reprj(ui)-l paths

and reduced budgets b′i form a rooted instance of the tollbooth problem on cactus
(definition 4.1). Recall that the procedure for solving such subproblems presented
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in Section 4.1 allowed for predefining distances from the root to some vertices. By
adding a constraint that the depth of r must equal c, we restrict ourselves only to
those prices in S, which implement sF . Using the procedure described in Section 4.1
the algorithm finds an optimal solution for this artificial rooted instance and prices
the edges in S accordingly.

Lemma 5.4. Let us assume that the third option was chosen in S. Then, the expected
approximate revenue under sF generated by buyers from BS,l purchasing edges from
S is at least 1

4CONTRIBS,BS,l,sF

Proof. Note that a buyer i ∈ BS,l cannot pay more than b′i for edges in S under any
prices implementing sF . Thus, revenue achieved in the artificial rooted instance is
not smaller than CONTRIBS,BS,l,sF .

With probability of at least one-fourth a buyer i ∈ BS,l is able to afford to
pay b′i for a reprj(ui)-l path, as the first two options in the segment of reprj(vi)

(regardless whether it’s cyclic or not) guarantee her a free path from reprj(vi) to
v′i or v

′′
i . Thus, the expected revenue is at least one-fourth of the revenue from the

hypothetical rooted instance, which concludes the proof.

Fourth option: This case is analogous to the previous one, but the algorithm
optimizes approximate revenue generated in S by BS,r. Of course, for this case an
analog of Lemma 5.4 also holds.

5.4.2 Acyclic segments

I

II

III

IV

If the inner segment S does not contain
any cycles, it must be a path. There are
four possible ways of assigning prices to
individual edges of S which are chosen
uniformly at random. All of them guar-
antee the length of S to be equal c.

First option: The same as in the case
of a cyclic segment, cost c is assigned to
the edge in S adjacent to l.

Second option: Price of the edge ad-
jacent to r is set to c, all the other edges are given away for free.
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Third option: The price of the first and last edge of the path is set to c
2 . However,

if S consists of a single edge, its price equals c. This way each buyer from BS must
pay c

2 for edges in the segment S (if only one edge belongs to S, BS is empty).

Similarly as in the cyclic case, let us define the upper bound on i-th buyer’s
budget for edges in S:

b′i = bi −min
{

distsF (l, v′i),distsF (l, v′′i ), distsF (r, v′i),distsF (r, v′′i )
}

Let B′S ⊆ Bs consist of those buyers i whose b′i is at least
c
2 .

Lemma 5.5. Let us assume that the third option was chosen in S. Then, the ex-
pected approximate revenue under sF generated in S by buyers from B′S is at least
1
8CONTRIBS,B′

S ,sF
.

Proof. With probability at least 1
4 distsF (v′′i , reprj(vi)) = 0, the same holds for

distsF (v′i, reprj(vi)). Thus, for each buyer i ∈ B′s with probability at least 1
4 there

exists a reprj(ui)-reprj(vi) path of length at most bi. In such a case, she would pay
c
2 for edges in S. Since S is a path connecting l and r, it is impossible for a buyer
to pay more than c for a simple path within S under any prices implementing sF .
Thus, each customer from B′s with probability at least 1

4 pays at least half as much
for edges in s as they would given any other price assignment. Hence, the expected
contribution of B′S towards revj,F,sF generated by purchasing edges from S is at most
eight times smaller than its maximal possible value.

Fourth option: In this case let us restrict our attention to B′′s = Bs\B′s, i.e. buyers
whose b′i is strictly smaller than ps

2 . Consider any prices of edges in S implementing
sF . Note that the subsets of vertices in S reachable from l and r through a path in
S of length at most c

2 are disjoint. Since S is a path, there is exactly one edge in S

connecting these sets. Let us call it the pivot edge. Note that no buyer with b′i <
c
2

would purchase a pivot edge. Thus, removal of the pivot edge does not influence
revenue generated by B′′s .

Let us fix an edge e in S and consider only such price assignments, which result
in e being the pivot edge. B′′S is split into disjoint sets: B′′S,l and B′′S,r, the buyers
i such that reprj(ui) is on the same side of the pivot edge as l and r respectively.
Each subset of buyers is processed independently in its part of the segment.

The algorithm constructs a rooted instance of the tollbooth problem on cactus
using B′′S,l. Each buyer i ∈ B′′S,l wishes to buy a reprj(ui)-l path and has the budget
of b′′i defined in the following way:

b′′i = bi −min
{
dist(l, v′i), dist(l, v

′′
i )
}

Such a problem is solved by the dynamic programming algorithm described in Section
4.1. Edges between l and the pivot edge are priced according to this solution.
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The costs of edges on a path from the pivot edge to r are set in an analogous
way. The price of e is set in such a way, that the length of S would be equal to c.
Such a price assignment is constructed for each possible pivot edge. The algorithm
chooses the one maximizing the sum of revenues achieved in the two rooted instances.

Lemma 5.6. Let us assume that the fourth option was chosen in S. Then, the
expected approximate revenue under sF generated by buyers from B′′s by purchasing
edges from S is at least 1

4CONTRIBS,B′′
S ,sF

.

Proof. It is sufficient to prove the lemma for a fixed pivot edge because the algorithm
iterates over all possibilities. We will first show that the edge designated to be a pivot
edge, denoted e, indeed is one. Then, we will prove that the found prices result in
high approximate revenue compared to other solutions, in which no buyer purchases
e.

Since the budgets of buyers in the rooted instances are smaller than c
2 , the

distances from both l and r to the pivot edge must be too. Thus, the price of e is
positive, and it indeed divides the vertices within the distance of p

2 from l and r.

Note that no customer i ∈ B′′S can pay more than b′′i for edges inside S under
any prices implementing sF as long as she does not buy e. Thus, in this case the
revenue achieved in the two rooted instances by optimal solutions is not smaller than
the maximal approximate revenue generated by B′′S in S.

Thanks to the first two options, each customer i ∈ B′′S with probability at least
1
4 pays nothing for edges in the other segment she is involved in, so she has a budget
of b′′i to pay for edges in S. Thus, the expected approximate revenue in S from
B′′S is at most four times smaller than the total revenue obtained in the two rooted
instances, which concludes the proof.

5.4.3 Analysis of the expected value

Lemma 5.7. Let p and q be two price assignments implementing sF such that q

maximizes revj,F,sF and p is the result of the randomized algorithm for pricing the
skeleton edges of a single fragment. Then, the following inequality holds:

E [revj,F,sF (p)] ≥ 1

32
revj,F,sF (q)

Proof. Let us fix any two assignments of paths to the buyers such that each buyer
i ∈ Bj,F is assigned a ui-vi path, which is the cheapest under prices p or q respectively.
Of course, only as long as its cost does not exceed bi. Furthermore, each outer
segment o of SKj(F ) is assumed to have length equal rsF ,o.

By invj,S,sF (p) let us denote the total cost paid by buyers from BS for edges in
the inner segment S and by invj,F,sF (p) its sum over all inner segments of SKj(F ).
The total cost paid by buyers from Bj,F in segments they are not involved in is
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denoted fullj,F,sF (p). Note that this includes the whole revenue generated by Bj,F in
outer segments of SKj(F ). Obviously revj,F,sF (p) = invj,F,sF (p) + fullj,F,sF (p). The
same equality holds for q, for which both values are defined in the same way. We
will prove the lemma by separately showing lower bounds for revenue generated by
selling parts of segments to involved buyers and selling whole segments to all others.

Selling whole segments: Consider any buyer i ∈ Bj,F buying a reprj(ui)-reprj(vi)

path under the prices q. By u′i and v′i let us denote respectively the first and last
endpoint of a segment on this path. Obviously, she contributes distsF (u′i, v

′
i) towards

fullj,F,sF (q). Let u′′i and v′′i be the other endpoints of segments she is involved in. If
she is not involved in the given segment, for example because reprj(ui) = u′i, we set
u′i = u′′i (or v′i = v′′i ).

Note that the buyer i cannot be ’doubly’ involved in a segment. In other words,
if reprj(ui) and reprj(vi) are not endpoints of segments, they must belong to different
ones. Thus, there is such a combination of the first two options for the segments
she is involved in, that there exist free reprj(ui)-u′i and reprj(vi)-v′i paths in those
segments. In that case reprj(vi)-v′′i and reprj(ui)-u′′i paths in those segments are
not cheaper under the prices p than they are under prices q. Thus, under the prices
p a cheapest reprj(ui)-reprj(vi) path has length distsF (u′i, v

′
i) and leads through v′i

and u′i. Although other shortest reprj(ui)-reprj(vi) paths can exist, their cost must
also include paying distsF (u′i, v

′
i) for traversing whole segments. Thus, i contributes

distsF (u′i, v
′
i) towards fullj,F,sF (p).

Options for all the inner segments of SKj(F ) are chosen independently and each
one with probability 1

4 . Hence, the situation described above occurs with probability
at least 1

16 , which yields the following inequality:

E [fullj,F,sF (p)] ≥ 1

16
fullj,F,sF (q) (2)

Selling parts of segments: Let us consider a single inner segment S of SKj(F )

and let BS be the set of buyers involved in S.

If S contains at least one cycle, let us split BS into two disjoint sets: BS,l and
BS,r, which are defined in Section 5.4.1. If the third option is chosen, Lemma 5.4
guarantees that the expected total cost paid by BS,l for edges in S is at most four
times smaller than it is under prices q. If the fourth option is chosen, the same holds
for BS,r. Since both options are chosen with probabilities equal 1

4 , this reasoning
yields the following bound:

E
[
invj,S,sF (p) ≥ 1

16
invj,S,sF (q)

]
(3)

If S contains no cycles, its prices were constructed using the procedure from
Section 5.4.2. Let us consider B′S and B′′S separately. By Lemma 5.5, choosing the
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third option guarantees the expected approximate revenue from B′S in S under prices
p to be at most eight times smaller than under prices q. If the fourth option was
chosen, by Lemma 5.6 B′′S contributes towards E [invj,S,sF (p)] at least one-fourth of
what it contributes towards invj,S,sF (q). Both options are chosen with probability 1

4

so this results in the following lower bound:

E [invj,S,sF (p)] ≥ 1

32
invj,S,sF (q) (4)

Applying Inequalities 3 and 4 to all inner segments of SKj(F ) and combining
them with 2 concludes the proof:

E [revj,F,sF (p)] ≥ 1

32
revj,F,sF (q)

5.4.4 Derandomization

The above algorithm can be derandomized yielding the same lower bound on revj,F,sF (p)

as on its expected value. There must exist such a price assignment p′, that p = p′

with non-zero probability and revj,F,sF (p′) ≥ E [revj,F,sF (p)]. It turns out that the
number of possible outcomes of the randomized algorithm can be bounded by a
polynomial. There are only four possibilities for each inner segment, of which there
are only O (k). Hence, there are only 4O(

√
logm) combinations. Thus, the algorithm

can iterate over all possible combinations and find corresponding prices p′. Note
that when the price assignment p′ is known, revj,F,sF (p′) can be found simply by
calculating distances between reprj(ui) and reprj(vi) for all i ∈ Bj,F . The algorithm
chooses the prices p′ maximizing revj,F,sF (p′), which must satisfy the bound from
Lemma 5.7. Let us formalize this observation:

Corollary 5.7.1. Consider a single fragment F ∈ Dj and a fixed strategy sF . Let
q be a price assignment implementing sF which maximizes revj,F,sF . There exists a
deterministic polynomial procedure which finds prices p implementing sF such that
the following inequality holds:

revj,F,sF (p) ≥ 1

32
revj,F,sF (q)

5.5 Solution for the whole graph

After applying the procedure from the previous section to each fragment F ∈ Dj

and every pricing strategy, the algorithm merges the resulting partial solutions into
a global price assignment for SKj . More formally, for each fragment F ∈ Dj there is
polynomially many assignments of prices to its skeleton edges. Each one implements
a particular pricing strategy for F . This way every valid combination of pricing
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strategies for all fragments of Dj defines a global price assignment for SKj . The
procedure presented in this section finds a valid combination maximizing total ap-
proximate revenue obtained by respective price assignments in particular fragments.
In other words, it finds a valid combination of pricing strategies which maximizes
the global score.

Definition 5.7. Let F be a fragment in Dj, s a pricing strategy for F and p the
prices constructed by the procedure described in Section 5.4 for F and s. Then, the
score of s equals revj,F,s(p).

The score of a valid combination of pricing strategies for a set of fragments is
defined as a sum of respective scores.

Before describing the algorithm, let us discuss the dependencies between skele-
tons of particular fragments in j-th level of decomposition. Consider a fragment
F ∈ Dj . Inner segments of SKj(F ) by definition contain only skeleton edges from F

and are guaranteed not to intersect with inner segments in skeletons of other frag-
ments. Thus, it is enough to consider dependencies caused by outer segments. Let
o be an outer segment in SKj(F ). By definition, o is a path between two skeleton
vertices u and v in F consisting of edges from outside of F . Furthermore, by Lemma
3.2, there must exist a u-v path consiststing of skeleton edges fully contained in F .
Thus, u and v lie on a simple cycle C, which is contained in SKj . Note that it’s
length is a sum of lengths of o and of inner segments of SKj(F ) contained in C be-
cause they form the second u-v path. Thus, by giving bounds for the length of o and
setting the costs of inner segments, a pricing strategy for F in fact imposes certain
constraints on the length of C. Using this observation the algorithm ensures that the
constructed combination of strategies is valid by controlling lengths of cycles which
are shared between fragments.

5.5.1 The dynamic programming

The subproblems of the dynamic programming are subsets of fragments in Dj . They
are constructed using the tree of biconnected components of G rooted in vertex r,
which is defined in Section 2.1. The algorithm iterates over all biconnected compo-
nents in the bottom-up order defined by the tree. If certain criteria are met, the
algorithm constructs and solves the subproblems using previously calculated solu-
tions.

Now we present the method used to process each biconnected component. Let
C be the current biconnected component.

• If C is a cycle and its edges are split into multiple fragments from Dj , an open
subproblem is created. It consists of all the fragments in Dj contained in the
subtree graph of C except for the fragment containing the two topmost edges
of C. For an open subproblem multiple solutions are found.
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• Let v be the topmost vertex of C. If there exists a biconnected component,
which has not been processed yet and whose topmost vertex is v, the algorithm
solves no subproblems. Otherwise, a separate closed subproblem is created
for each fragment F whose topmost vertex is v. Let CF be the set of all
biconnected components whose topmost vertex is v and whose topmost edges
belong to F . A closed subproblem for F is formed by all fragments in the
subtree graphs of components from CF (including F ). It is solved by the
procedure described in Section 5.5.3. That procedure finds exactly one solution
for this subproblem, a valid combination of strategies maximizing the score.

Note that while processing a cycle the algorithm may create both closed and open
subproblems. In such a case, the open subproblem is processed first and then the
closed ones. It is worth mentioning that the closed subproblems created in the
second step are always disjoint. The reason for this is that the topmost edges of any
biconnected component always belong to the same fragment.

A B

C

Figure 5.2: Example structure
of the dynamic programming.
Connected sets of edges marked
using the same style belong to
the same fragments. Those
marked by bold lines are skele-
ton edges. The arrow points
to the root of the tree of bi-
connected components. A is
an open subproblem, whereas B
and C are closed ones.

Remark 5.4. Let S be a closed subproblem. Then, merging any two valid combina-
tions of pricing strategies for segments in S and in Dj \ S results in a valid global
combination of strategies.

Proof. A subgraph of G corresponding to S is a union of subtree graphs of bicon-
nected components. Thus, it contains only whole biconnected components and no
cycle is shared between a fragment from S and a fragment from Dj \ S. Because of
that, the combinations of strategies for those two sets of fragments can be chosen
independently of each other.

At the end of the procedure, the root of the tree of biconnected components
will be processed as v. The resulting closed subproblems will form a disjoint cover of
Dj . Together, their solutions form the score-maximizing valid combination of pricing
strategies.
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Definition 5.8. Let S be a subproblem (a subset of Dj) processed by the algorithm
as a result of the above procedure. A child subproblem of S is such a maximal
strict subset of S that also is a subproblem processed by the algorithm.

It follows from the structure of the tree of biconnected components, that child
subproblems of S must be disjoint.

5.5.2 Open subproblems

Let us denote the current subproblem as S and the subtree graph of C as GC .
Furthermore, let F0 be the fragment containing both topmost edges of C. Existence
of such a fragment is guaranteed by one of the invariants of the decomposition. Note
that F0 is the only fragment which may contain edges both from GC and outside it.
It is because the only edges from GC incident to the topmost vertex of C are the
two topmost edges of C.

Recall that S is constituted by all the fragments of Dj present in GC apart from
F0. Hence, C can be split into two parts: one formed by edges belonging to F0 and
the other by edges included in the subproblem. Let u and v be two vertices on C

common for both of them. Obviously, there are two u-v paths: the upper path
contained in F0 and the lower path contained in fragments from S.

Note that no cycle in G is split between GC and G \GC . Thus, only edges from
C belong to skeletons of fragments in S as well as of fragments in Dj \S. Hence, for
fixed costs of the upper and lower paths, combinations of strategies implemented in S

and in the rest of Dj are completely independent. Thus, the algorithm finds multiple
optimal combinations of strategies for S, one for each pair of possible lengths of the
upper and lower paths. By up and low we denote the currently processed lengths of
respectively the former and the latter.

Remark 5.5. Let L be the set of possible lengths of any simple path between border
vertices under prices satisfying the rounding lemma (5.1). Then, there are only
polynomially many elements of L.

Proof. Any simple path between two border vertices consists of several whole seg-
ments. Thus, its length must be a sum of elements of P from the rounding lemma.
Because all positive elements of P are in the form mbmax

2k
, L consists of zero and

multiples of pmin = minP \ {0} not greater than m2bmax. Since pmin ≥ bmax
2048·m·|Bj | ,

|L| is bounded by a polynomial.

Let us discuss the structure of S. Consider those fragments in S, which contain
some edges of C. Let us call them the upper fragments. They do not belong to
any child problem of S because their topmost edges are contained in C. All the other
fragments from S belong to child problems. The algorithm handles open and closed
child subproblems differently.
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Closed child subproblems: Recall that the combination of stragies for closed
subproblems can be chosen independently of the rest of the graph. Since all child
subproblems has already been processed, a score-maximizing combination of strate-
gies for each of them is already known. The edges in such subproblems are priced
according to those solutions. Resulting scores will be included in the score of each
solution to S.

Open child subproblems: Let us consider an open child subproblem S′ formed
by a cycle C ′ and let F ′0 ∈ Dj be the fragment containing the topmost edges of
C ′. F ′0 must be one of the upper fragments, because any subproblem containing F ′0
would also contain S′ and the child subproblems of S are disjoint. Note that F ′0 is
the only fragment in Dj \ S′ sharing a cycle with any fragment forming S′. Thus,
for a fixed strategy applied to F ′0 a score-maximizing valid combination of strategies
for S′ is known. F ′0 contains the upper path of S′. The lower path of S′ is an outer
segment of SKj(F ). Hence, a pricing strategy for F ′0 determines the exact length of
the former and gives constraints on the length of the latter.

For each strategy for F ′0 the algorithm finds a solution for S′ with the biggest
score among those computed for compatible upper and lower path lengths. This
combination of strategies will be used to price edges within S′ only if that particular
pricing strategy is applied to F ′0. Thus, its score is added to the score of the strategy
of F ′0.

The upper fragments: Pricing of edges in the closed child subproblems is already
determined, and the solution to each open child subproblem is also known for a fixed
strategy in a corresponding fragment of F ′0. This way we have reduced solving S to
finding a valid score-maximizing combination of strategies for the upper segments.

Let us discuss the structure of the upper fragments. Each of them consists of
several consecutive edges from C and possibly some more edges from GC \C. Since
the topmost edges of each cycle always belong to the same fragment, the upper
fragments cannot share a cycle other than C. Thus, they only dependencies between
them stem from the fact that they all contribute to and depend on the length of C.
The algorithm iterates over all possible lengths of the lower and upper paths, so we
can consider the length of C to be fixed and equal low+up. Under this assumption it
is already known which strategies for upper fragments would be applicable, i.e. their
constrains on the length of respective outer segments in C would be satisfied. What
remains is finding a score-maximizing combination of them which assigns such prices
to individual inner segments forming the lower path, that the prior assumption on
its length is true.

We denote the upper segments as F1, F2, . . . Fq in the order of their appearance
on the lower path. Let u0, u1, . . . uq be such vertices that u0 = u, uq = v and for the
other i the vertex ui is shared by Fi and Fi+1. For each fragment Fi and for each l ∈ L
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we are only interested in the strategy which makes the length of the ui−1-ui path
equal l and is compatible with the length of C being equal low+up. Recall that the
intervals, which define constrains on lengths of outer segments, are disjoint. Thus,
there is at most one such strategy. Let scoreup+low,i,l denote its score, including the
scores of corresponding strategies for the open subproblems depending on Fi. It may
happen that there is no such strategy. In that case we set scoreup+low,i,l = −∞.

The algorithm ensures that the lower path has the previously assumed length
using backpack packing. For each l ∈ L and i ≤ k let dpup+low,i,l be the maximum
score of a combination of strategies for segments F1, F2, . . . Fi, which sets the cost of
the u0-ui path contained in the lower path to l. The algorithm calculates the values
of dp using the following formula:

dpup+low,i,l = max
d∈L

scoreup+low,i,d + dpup+low,i,l−d

By definition dpup+low,q,low is the maximum score of any valid combination of strate-
gies for fragments in S for the lower path of length low and upper of length up. Along
with this value, the algorithm also stores an optimal combination of strategies.

Remark 5.6. The above procedure processes a subproblem in polynomial time.

Proof. Since up and low are chosen from the set L, which has polynomially many
elements, it is sufficient to show that for fixed values of up and low the procedure finds
a solution in polynomial time. Note that processing each closed child subproblem is
performed in constant time. Processing an open child subproblem requires checking
only the pairs formed by one of the |L|2 solutions to the subproblem and a strategy
for corresponding upper fragment. Hence, it is also done in polynomial time. In the
last phase only polynomially many values of dp are computed, which concludes the
proof.

5.5.3 Closed subproblems

Let F be the fragment, for which the closed subproblem S was created. It follows
from construction of the subproblems, that F is the only fragment in S not contained
in any child subproblem.

Thus, any open child subproblem of S depends only on F . More precisely, F
is the fragment containing the upper path of any open child subproblem of S. The
algorithm processes open child subproblems as described in Section 5.5.2: for each
strategy s for F a score-maximizing compatible solution to the child subproblem is
found and its score is added to the score of s.

Edges inside closed child subproblems are simply priced according to previously
computed optimal combination of strategies. The scores of those solutions are added
to the score of every possible strategy for F .
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In order to solve the closed subproblem the algorithm iterates over all possible
strategies for F and chooses the one with greatest score (including the scores from
child subproblems). An optimal combination of pricing strategies for fragments in S

is also stored alongside the maximal score.

5.6 Summing up

The above algorithm constructed a price assignment to all skeleton edges. In this
section we show that its revenue is indeed only a constant factor away from SKOPTj .

First, we have restricted our attention to prices, for which costs of inner segments
on j-th level belong to the set P . Let Qj denote the set of all such price assignments.
The rounding lemma (5.1) guarantees that one of such price assignments obtains
at least SKOPTj

4 revenue. Then, the algorithm handled fragments in the current
decomposition independently. For every fragment F ∈ Dj and every strategy sF the
algorithm found prices psF , which obtained near-optimal approximate revenue in F

(revj,F,sF ). More precisely, by Corollary 5.7.1, for each such price assignment psF
the following holds:

revj,F,sF (psF ) ≥ max
q∈Qj

1

32
revj,F,sF (q) (5)

The procedure from Section 5.5 has constructed a global solution p based on
the local price assignments psF Note that each price assignment q ∈ Qj implements
a unique valid combination of pricing strategies. By sq,F let us denote the strategy
applied to F ∈ Dj in that combination. Since the prices p originate from a score-
maximizing combination of pricing strategies, the following immediately follows from
inequality 5:

∑
F∈Dj

revj,F,sp,F (p) ≥ 1

32
max
q∈Qj

∑
F∈Dj

revj,F,sq,F (q) (6)

By Lemma 5.2 high score (approximate revenue) of the combination of pricing
strategies results in high revenue. We have already shown that the score of the
constructed combination is close to optimal. However, we still must provide a lower
bound for the maximal score.

Lemma 5.8. There exists a price assignment q ∈ Qj which implements a combina-
tion of strategies with total approximate revenue at most 4 times smaller than the
maximal revenue obtained by any prices in Qj:

∑
F∈Dj

revj,F,sq,F (q) ≥ 1

4
max
q′∈Qj

revj(q
′)
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Proof. The lemma is proven by constructing the prices q. Let q′ ∈ Qj be a price
assignment maximizing revj(q

′). Consider any segment S in on j-th level. We
define the main edges of S as the ones lying on any shortest (under prices q′) path
connecting its endpoints and fully contained inside it. By pmin let us denote the
smallest positive element of P from the rounding lemma (5.1). Prices q for edges of
S are defined in the following way:

• If the length of S is greater than pmin (equivalently at least 2pmin), the prices
of main edges of S are two times smaller than in q′. Otherwise, they are set to
zero.

• All the other edges in S have the same prices as in q′.

Note that the length of S under prices q belongs to the set P from Lemma 5.1.

Since revj(q
′) =

∑
F∈Dj

revj,F (q′), it is enough to show the inequality for a fixed
part F ∈ Dj . Consider an outer segment o in SKj(F ). Let d and d′ be its lengths
under prices q and q′ respectively. If d′ < 2pmin, then d = 0 and rsF,q ,o = 0, i.e. the
strategy implemented in F assumes that the length of 0 is exactly zero. Otherwise,
lsF,q′ ,o ≥

d′

2 and d ≤ d′

2 so d ≤ lsF,q′ ,o. Hence, rsF,q ,o ≤ lsF,q′ ,o < d′. Thus, in both
cases the strategy for F implemented by q assumes an upper bound for the length
of o not exceeding the actual length of o under prices q′.

Note that using the upper bounds on lengths of outer segments instead of their
actual lengths is the only difference between calculating approximate and actual
revenue. Thus, the length of each simple path desired by a buyer from Bj,F is
not more expensive with regard to revj,F,sF,q

(q) than to revj,F (q′). Hence, a buyer
contributing to revj,F (q′) also contributes to revj,F,sF,q

(q). Now we are going to show
that she does not contribute much less.

When calculating revj,F,sF,q
(q) the cost of each path is never understated in

comparison to revj,F (q). Thus, it is enough to show that under prices q the paths
in SKj(F ) are not much shorter than under q′. Note that if the price assigned to an
edge by q is zero, then its price in q′ could have been at most pmin. Otherwise, it
is at most two times cheaper under q then under q′. Hence, for each e ∈ SKj(F ),
q(e) ≥ q′(e)

2 −pmin. Thus, the distance between any two vertices under prices q is not
smaller than d′

2 −m · pmin, where d′ is the distance between them under q′. Since by
calculating approximate revenue the algorithm overstates the distances, this results
in the following bound on approximate revenue:

revj,F,sF,q
(q) ≥ 1

2
revj,F (q′)−m · |Bj,F | · pmin

∑
F∈Dj

revj,F,sq,F (q) ≥ 1

2
revj(q

′)−m · |Bj | ·
bmax

1024 ·m · |Bj |

Since revj(q
′) ≥ bmax, this concludes the proof.
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By combining Inequality 6 and Lemma 5.8, we achieve the following bound on
the score of p:∑

F∈Dj

revj,F,sp,F (p) ≥ 1

32
max
q∈Qj

∑
F∈Dj

revj,F,sq,F (q) ≥ 1

4 · 32
max
q′∈Q

revj(q
′)

The rounding lemma (5.1) guarantees that maxq∈Qj revj(q
′) ≥ 1

4SKOPTj , so:∑
F∈Dj

revj,F,sp,F (p) ≥ 1

512
SKOPTj

Obviously, SKOPTj ≥ bmax, so by Lemma 5.2:

revj(p) ≥ 1

4

∑
F∈Dj

revj,F,sp,F (p) ≥ 1

2048
SKOPTj

By proving this inequality we have shown that the polynomial algorithm for the
skeleton subproblem achieves constant approximation ratio.



Chapter 6

Concluding remarks

In Chapters 4 and 5 we have presented polynomial time constant factor approxima-
tion algorithms for the non-skeleton and skeleton subproblems. Thus, we have shown
that prices achieving at least a constant fraction of optimal revenue can be found
in polynomial time for each of the L levels of decomposition (Lemma 3.1). Recall
that by setting k =

⌈
log

1
2 m
⌉
we ensure L to be O

(
logm

log logm

)
. Hence, our polyno-

mial algorithm for the tollbooth problem on cactus graphs yields an O
(

logm
log logm

)
approximation guarantee on revenue.

It remains an open question whether there exist polynomial time algorithms giv-
ing sublogarithmic guarantees on revenue for further generalizations of the tollbooth
problem, for example for the cases where the underlying graphs are only assumed to
have bounded treewidth.
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