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Abstract

Many processor families are available today. In my work, I will present the process
of preparing an operating system port for a new family of processors on the example
of a Mimiker port for the AArch64 architecture. As this is the first port of that
system, it required some extra work to separate the architecture-dependent parts
from the independent ones. The port requires modification of many critical parts of
the kernel: handling processor exceptions, managing the address space of processes,
exchanging data between kernel threads and user programs. In addition, it was
needed to prepare a set of tools that support the selected architecture, such as a
compiler and a hardware debugger. The result of this work is the ability to run the
Mimiker system for the first time on widespread hardware - the Raspberry Pi 3.

Obecnie dostępnych jest wiele rodzin procesorów. W mojej pracy przedstawię
jak wygląda proces przygotowania portu systemu operacyjnego na nową rodzinę
procesorów na przykładzie portu systemu Mimiker na architekturę AArch64. Jako,
że jest to pierwszy port tego systemu, wymagał on dodatkowej pracy związanej
z rozdzieleniem części zależnych od architektury od niezależenych. Port wymaga mo-
dyfikacji wielu krytycznych części jądra: obsługa wyjątków procesora, zarządzanie
przestrzenią adresową procesów, wymiana danych pomiędzy wątkami jądra a progra-
mami użytkownika. Ponadto należało przygotować zestaw narzędzi, które wspierają
wybraną architekturę jak kompilator oraz sprzętowy debuger. Rezultatem tej pracy
jest możliwość uruchomienia po raz pierwszy systemu Mimiker na ogólnodostępnym
sprzęcie – Raspberry Pi 3.
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Chapter 1

Introduction

Nowadays we have multiple architectures of CPU. The most popular for customers
are x86 64 and AArch64. The first one is used in most personal computers since
2003. The second one was created in 2011 and is used mostly for smartphones and
IoT devices but last year Apple migrated their devices to that architecture. It is
expected that ARM architecture will become even more popular in the following
years.

From a software engineer’s point of view target architecture for software usually
doesn’t matter – we have a lot of abstractions over hardware and operating systems.
But somebody needs to create these abstractions.

In my thesis, I will guide the reader through the abstractions that need to be
created in an operating system for a new architecture.

I assume that the reader knows basic concepts from the standard course of
computer system architecture and basic facts about Unix kernel design.

The structure of this thesis is as follows: this chapter provides an introduction
to Mimiker operating system and explains what is a port. Chapter 2 describes the
most important facts about Raspberry Pi 3 board, it is a target of my port. In
Chapter 3 I explain the most important changes in MIPS and machine-independent
code of Mimiker. Chapter 4 describes implementation details for AArch64 port.
In Chapter 5 there are instructions how to run Mimiker of Raspberry Pi 3 and
the challenges of switching from an emulator to physical hardware. Chapter 5 is a
summary of my work and proposals for the future.

1.1 CPU architecture

The central processing unit is the most essential part of every computer. It performs
basic operations like arithmetic for the rest of devices. Each CPU provides an
interface for software called instruction set architecture – ISA. ISA is standardized
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12 CHAPTER 1. INTRODUCTION

for each CPU family. Each program that runs on the CPU is translated (directly
on indirectly) from its original source code to binary code which encodes instruction
understandable for a given CPU.

But CPU architecture is something more than an instruction set. CPU also
provides a standardized way (for each family) for things like interrupt handling and
virtual memory management.

In my thesis, I will show the most essential parts of CPU architecture that
kernel developers should become aware of.

1.2 Mimiker

Mimiker is a research operating system inspired by the world of Unix, and in par-
ticular by its *BSD flavour. The main effort of the project is currently improving
its kernel to the point it supports more Unix userspace programs [16].

It is a fully open-source project developed at the University of Wrocław.

Originally Mimiker was written for the Malta board which contains CPU be-
longing to the MIPS family.

MIPS architecture was introduced in 1986 but it lost popularity in last years.
As a result in March 2021, MIPS announced that the development of the MIPS
architecture had ended.

Unfortunately, it is very difficult to get a working Malta board, so we decided
to rewrite Mimiker to a new architecture. AArch64 is our choice because it is easily
accessible for everyone by cheap boards like Raspberry Pi which have become very
popular in recent years.

The result of my thesis is fully working port for that board and run Mimiker
on a physical machine for the first time ever.

1.3 What is a port?

As mentioned in section 1.1 each program needs to be translated into binary code
that is understandable by the CPU. We also know that different families of CPUs
can have different instruction sets and different interfaces for hardware management.
When a kernel is compiled it can’t be run on different CPUs, because they do not
understand binary encoding of instructions. Even if we generate the correct encoding
of instructions the hardware interface could be different. Port of an operating system
is a special version of kernel and user-space programs adapted to specific architecture
with drivers for devices used by the new hardware.



1.4. WHAT IS NEEDED FOR A PORT? 13

Each port should contain only a minimal subset of machine-dependent code
which is used by the rest of the kernel through the hardware abstraction layer (HAL),
the reason behind that is simple – more lines of code means more potential defects.

HAL is a set of interfaces that are needed to be implemented by device drivers
and by a port that allows writing generic code in the kernel. This set also implies how
to write a new driver for a given system. It speeds up the process of implementation
support for new hardware because we have already provided high-level interface of
our driver.

Portability is a very important feature of code. Portable code can be easily
reused on newer hardware – this saves the developer’s time and reduces resources
needed to create a new version of the code. Portable systems are more likely to gain
popularity.

1.4 What is needed for a port?

First of all, we need a toolchain that allows creating binaries for a given architecture.
In our case, it will be the gnu toolchain with GCC compiler. We also need a set
of tools for testing and debugging code. As a software debugger, we use gdb. The
emulator of Raspberry Pi 3 of our choice is QEMU. For more information about
toolchain see 5.1.

We also need to find which subsystems need to be rewritten for supporting new
architecture. Here is a short introduction to the most important parts.

Kernel bootstrapping is the first phase of kernel initialization. We need to
configure the CPU and enable MMU before jumping to machine-independent part
of the code. It is the most sensitive part of machine-dependent code. We need to do
that only once during system startup but every decision made during bootstrapping
will affect the behavior of the hardware. For example, we can define how the CPU
should react to unaligned accesses.

Interaction with MMU is required for the virtual memory concept. In our case,
it is handled by the pmap module which is described at 4.3.

We need to be able to react for external events e.g. key pressing on keyboard.
They are passed as CPU exceptions. It is described at 4.6.

Context switching allows us to run multiple programs in parallel. It is machine-
dependent because each CPU can have a different set of general-purpose registers.
It is described at 4.7.

Kernel without user-space processes is useless. Basic interaction with them
needs to be machine-dependent because of different ISAs between CPUs. It also
uses exception handling – as a way for system calls – which is also specific for CPU.
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These interaction are described at 4.2.

A system that can only use CPU can’t do anything interesting. External de-
vices are important to interact with the world. Since we have working terminals
in Mimiker we want to implement a driver for UART for communicating with the
system. The second important device is the timer – without it we do not have any
possibility for time measurement which is important for process management. For
drivers implementation see 4.8.1.



Chapter 2

RPI 3

Raspberry Pi is a small single-board computer developed by the Raspberry Pi Foun-
dation in association with Broadcom [25]. It is a simple, easily accessible platform.
In my work, I base on Raspberry Pi 3 with BCM2837 board [21].

Here I will describe basic information about the hardware required for the port-
ing process. It includes facts about the memory management unit in AArch64 archi-
tecture, CPU exceptions needed for external events handling, timer interface, and
PL011 UART device.

2.1 CPU

In this section, I introduce important facts about quad-core ARM Cortex-A53 CPU
used by Raspberry Pi 3 [22].

That CPU implements ARMv8-A 64-bit instruction set [2] which implements
64-bit extension of the ARM architecture called AArch64. In this work, we will be
using these terms interchangeably.

2.1.1 MMU

The memory management unit is responsible for translating addresses from virtual
to physical memory.

In modern operating systems each process has its own separate address space.
From a process point of view, no other process exists and every address belongs to
that process. The only requirement for using given address of memory is system call
for kernel that makes given address valid. In that scenario, multiple processes can
have the same chunk of memory, but they shouldn’t share that memory. For that
purpose, we have the concept of virtual memory. For each memory address used
by a process, we have a mapping from virtual address to a physical address. To
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16 CHAPTER 2. RPI 3

achieve that we need support from hardware and it is the role of the MMU. MMU
does address translation and the kernel manages where virtual memory region of the
process should be mapped to physical memory. For more information about role of
memory management unit and virtual memory see [14].

For that purpose, we use page table data structure.

Page Table layout

For general information about how page table works see [14]. In my thesis, I’m using
4 levels page table (levels from 0 to 3) where the third level contains final mapping
into physical memory.

We use 4 levels because our CPU supports that and we want to be able to use
as much memory as possible. The newer version of Raspberry Pi supports up to
8 GiB of RAM which is not addressable by 2 levels page table used by the MIPS
version of Mimiker.

bits [47:39] bits [38:30] bits [29:21] bits [20:12] bits [11:0]

Level 0 index Level 1 index Level 2 index Level 3 index Offset on page

Table 2.1: Virtual address format

Each PDE (page directory entry) has 512 64-bits entries and needs exactly one
page (4096 bytes). We can see that in this way it is possible to address 256TiB by
a single page table.

Level 0 Level 1 Level 2 Level 3

256TiB 512GiB 1GiB 2MiB

Table 2.2: Page table mapping size

This table describes how much memory can be addressed using a page table on
a given level. Let’s say that we have single page at second level. The page has 4096
bytes of memory. A single entry in the page table always has 8 bytes (in our CPU)
which means we have 512 entries. The same goes for the third level. A single entry
describes one page which is 4096 bytes of memory. Finally, we have 512×512×4096

bytes of memory which is 1GiB.

In addition to mapping, page table contains permission bits for each page. We’re
interested in the following bits which are provided by the memory management unit
in our CPU. They are translated to user-friendly format in 2.3:

• AF [10] - access permission; without that bit, every access to page triggers
CPU exception; it is used by Mimiker for tracing accesses for every page; for
more see 4.3.5;
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• USER [6] - unprivileged permission; without that bit, every access to page
from exception level 0 triggers CPU exception;

• RO [7] - read only; with that bit every write access to page triggers CPU
exception;

• UXN [54] - unprivileged execution never; with that bit, execution access to
page from exception level 0 triggers CPU exception; for information about
exception levels see 2.1.2;

• PXN [53] - privileged execution never; with that bit, execution access to the
page from higher exception levels triggers CPU exception;

Figure 2.1: Page table entry

For more details see [3].

access AF USER RO UXN & PXN
user read 1 1 * *

user write 1 1 0 *

user exec 1 1 * 0

kernel read 1 * * *

kernel write 1 * 0 *

kernel exec 1 * * 0

Table 2.3: Protection map

This table describes which access bits need to be set in the page table entry for
successful memory translation by MMU. Other configurations cause memory fault.

Two different page tables can be active at the same time. The addresses of
page tables are located at ttbr0 and ttbr1 CPU registers. The first page table is
dedicated to user-space, the second one for kernel-space.

CPU decides which page table will be used based on the highest bits of virtual
address. Of course, CPU must be in the correct exception level to use that page
table.
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2.1.2 Exception levels

In ARMv8 execution takes place on one of the exception levels. A higher exception
level means fewer privileges for executed code. It is a common practice to give a
program access only to necessary resources. In Mimiker we use exception levels for
separate user-space and kernel-space threads.

When an exception occurs, CPU jumps to a special procedure defined separately
for each kind of exception and for each exception level. We can implement interrupt
handlers or system calls using this mechanism.

There is four exception levels on AArch64

• EL0 – application; usually it is an exception level where user-space lives

• EL1 – kernel; usually it is an exception level where kernel-space lives

• EL2 – hypervisor; used by the hypervisor

• EL3 – firmware; reserved by low-level firmware and security code

These exception levels determine privileges for memory and registers access.

Mimiker uses EL3 & EL2 levels only to configure EL1 at the beginning of kernel
bootstrap code. Next, we will switch to EL1 where the kernel lives and to EL0 for
user-space programs.

2.1.3 Exceptions

In AArch64 we have two main kinds of exceptions 4.2.

• synchronous

• asynchronous

For each type of exception, we need to define a special function called exception
handler that will be executed when the exception occurs.

These functions need to be known when the exception occurs. There is an
exception vector structure that contains these functions and this vector is stored at
vbar register.

Interrupts

Interrupts are asynchronous events generated from the outside world. A good ex-
ample is the timer tick. When we configure the timer we say that in x time units
we want to generate an interrupt. It can be used not only for time measurement,
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but also for scheduling. After x ticks, we want to decide if we want to change the
running thread to another thread.

It is important that interrupt can appear any point at time, even in the middle
of another instruction. So we can’t do any special assumptions about the state of
CPU.

Traps

Traps are synchronous exceptions generated by special instructions. For example, if
we want to transfer control to kernel-space from user-space we can use svc instruc-
tion which generates trap – in fact, we use that instruction for the implementation
of system calls in Mimiker.

Aborts

Aborts are synchronous exceptions generated by instructions but unlike traps, they
are not intended. hey can occur as a result of wrong access to memory..

2.1.4 Timer

Our CPU provides an ARM timer. We do not need any advanced features of timers
so let’s discuss only the basics.

We have the following registers

• cntpct el0 – it contains current value of timer

• cntp ctl el0 – this register controls if timer is enabled

• cntp cval el0 – compare register; if current value of timer will be greater of
equal then timer sends interrupt to CPU

With that knowledge, we can implement a driver for that timer 4.8.2. It is
required for task scheduling. We want to give a time slice for a process when it can
run on CPU. After that, we want to decide which process should be run next. For
that we use timer interrupts which trigger the scheduling subsystem.

2.2 UART

On Raspberry Pi 3 there is PL011 UART [15].

This universal asynchronous receiver/transmitter provides:
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• separate 16x8 transmit and 16x12 receive FIFO memory

• programmable baud rate generator

• standard asynchronous communication bits

• false start bit detection

• line break generation and detection

• support of the modem control functions CTS and RTS

• programmable hardware flow control

• fully-programmable serial interface characteristics:

– data can be 5, 6, 7 or 8 bits

– even, odd, stick or no-parity bit generation and detection

– 1 or 2 stop bit generation

– baud rate generation

This UART generates two interrupts:

• UARTRXINTR – the transmit interrupt

• UARTRTINTR – the receive interrupt

These interrupts are necessary to implement a terminal over that UART. For
now terminal over UART is the only way to run interactive user sessions with shell
in Mimiker.

The last important part is the location of registers used to control PL011. All
of them are listed in [15].



Chapter 3

Preparing the system for
porting process

In this chapter, I will describe the most important changes that have been done
before we could implement AArch64 support for Mimiker.

It starts with a short dictionary of the most frequently used C constructions
in the Mimiker codebase. Next, I will go through changes in the CPU context
representation, the memory mapping subsystem, kernel address sanitizer routines,
and new hardware abstraction layout over UART devices.

3.1 Dictionary

We use some specific constructions in our code. Here I will introduce those that
might not be obvious.

The following macros reads and writes data to special registers using msr and
mrs instructions.

1 READ_SPECIALREG(reg);
2 WRITE_SPECIALREG(reg, val);

WITH_INTR_DISABLED disables interrupts under the next scope. They will be
enabled at the end of scope. It also takes care of nested calls – we maintain an
internal counter.

21



22 CHAPTER 3. PREPARING THE SYSTEM FOR PORTING PROCESS

1 WITH_INTR_DISABLED {
2 ...
3 }

WITH_MTX_LOCK acquires mutual exclusion lock (mutex) for everything under
the next scope. This lock will be auto-released.

1 WITH_MTX_LOCK(&lock) {
2 ...
3 }

SCOPED_MTX_LOCK acquires mutex for current scope. This lock will be auto-
released at the end of scope.

1 SCOPED_MTX_LOCK(&lock);

The same but for spin locks.

1 WITH_SPIN_LOCK(&lock) {
2 ...
3 }

Wait on given conditional variable with given lock.

1 cv_wait(&cv, &lock);

Wake a single thread waiting on a conditional variable.

1 cv_signal(&cv);

Macro for for that iterates over a list.
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1 TAILQ_FOREACH(var, head, name);

Insert an element at the end of the list.

1 TAILQ_INSERT_TAIL(head, elm, name);

Remove an element from the list.

1 TAILQ_INSERT_TAIL(head, elm, name);

For detailed API for lists see NetBSD manpages [23]. For mutexes see [26], for
spin locks see [27] and for conditional variables see [28].

3.2 CPU context

CPU context contains CPU registers. We need to know how to manipulate context
mostly for two actions.

• context switch

• exception handler

The context switch is a procedure of switching currently running thread into
another. Each thread has a given time slice when it can be run on the CPU. After
that period scheduler must decide which thread can replace the running thread and
the dispatcher performs that change. It is a very important for modern operating
systems. These days we are running hundreds of threads on our daily systems.
For example, my system was running 637 threads in time of writing and I have
only 8 available cores. But from the user point of view, every process is running
simultaneously by the operating system.

The second action is when a CPU exception occurs. Then we need to save the
context of the running thread, go to the exception handler in the kernel, handle that
exception and at the end restore the context of the interrupted thread.

At the beginning of my work there were a several different CPU context repre-
sentations:

• struct sigcontext
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• struct ucontext

• struct mcontext

• struct ctx

• struct exc frame

• jmp buf

• sigjmp buf

Each of them has a similar structure that contains all CPU registers as individual
fields or grouped by arrays, for example:

1 struct sigcontext {
2 int sc_onstack; /* sigstack state to restore */
3 sigset_t sc_mask; /* signal mask to restore */
4 int sc_pc; /* pc at time of signal */
5 int sc_regs[32]; /* processor regs 0 to 31 */
6 int sc_mullo;
7 int sc_mulhi; /* mullo and mulhi registers... */
8 int sc_fpused; /* fp has been used */
9 int sc_fpregs[33];/* fp regs 0 to 31 and csr */
10 int sc_fpc_eir; /* floating point exception instruction reg */
11 };

Listing 1: sigcontext structure

Now all of them are unified into one:
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1 typedef uint64_t __greg_t;
2 typedef __greg_t __gregset_t[_NGREG];
3

4 typedef struct {
5 union __freg {
6 uint8_t __b8[16];
7 uint16_t __h16[8];
8 uint32_t __s32[4];
9 uint64_t __d64[2];
10 } __qregs[_NFREG] __aligned(16);
11 uint32_t __fpcr; /* FPCR */
12 uint32_t __fpsr; /* FPSR */
13 } __fregset_t;
14

15 typedef struct mcontext {
16 __gregset_t __gregs; /* General Purpose Register set */
17 __fregset_t __fregs; /* FPU/SIMD Register File */
18 __greg_t __spare[8]; /* future proof */
19 } mcontext_t;
20

21 typedef struct ctx {
22 __gregset_t __gregs;
23 } ctx_t;
24

25 Êstruct __ucontext {
26 unsigned int uc_flags; /* properties */
27 ucontext_t *uc_link; /* context to resume */
28 sigset_t uc_sigmask; /* signals blocked in this context */
29 stack_t uc_stack; /* the stack used by this context */
30 mcontext_t uc_mcontext; /* machine state */
31 };

Listing 2: context representation (mix of ucontext.h [31] and mcontext.h [32])

Now we use only ucontext_t Ê for context representation. It is not the most
optimal solution but it is the simplest solution – we do not need to convert one
representation into another and code is much more clean.

This change also allows us to fix problems with nonlocal jumps which were
broken because of different representation of context between user-space and kernel-
space in setcontext system call.

3.2.1 FPU context

FPU context contains only floating point registers. We do not use any of them
inside kernel code but we want to support them in user-space so we need to take
care about them during context switching.
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On the other hand we do not want to save & restore FPU context with every
exception or context switching. We want to do that only if it is really needed. For
each thread we have special flags that express in which state is FPU for given thread:

• TDP FPUCTXSAVED – FPU context was saved by ctx switch.

• TDP FPUINUSE – FPU is in use and its context should be saved & restored on
demand.

When new user-space thread is spawned FPU is disabled. First access to float-
ing point unit triggers exception and kernel enables FPU for that thread and set
TDP FPUINUSE flag.

We do not need to save FPU context during exception handling because usually
we will go back to user-space with the same thread and we have a guarantee that
kernel doesn’t touch any FPU register. But it is possible that we do context switch to
other user thread. In that scenario we need to save FPU context for old thread during
ctx switch procedure. Finally when we go back to user-space in user exc leave
we check if TDP FPUCTXSAVED is set and restore FPU context if it is needed.

3.3 Pmap

In this section I will describe the most important changes in pmap module.

The physical-mapping module (pmap) manages machine-dependent address
translation and page tables that are used either directly or indirectly by the MMU.

When new virtual memory is allocated by kernel for kernel-space or user-space
it is need to be mapped into physical memory. Without that every access to memory
triggers memory fault exception. Pmap manages page tables and tlb if its needed.
But memory mapping is not all. Pmap gives also possibility to modify access per-
missions for given page - it is a very important feature for modern virtual memory
subsystem and it is necessary for sharing memory between different process in user-
space. The most known feature that use that is copy-on-write. When one process
calls fork system call then all pages are marked as read-only. When any of processes
(parent or child) try to write to memory then memory fault occurs. Kernel allocates
new page and copies the content of old page into new. At the end pmap changes
mapping of old virtual address into new physical page and clears caches and tlb for
that address. For more details see [11].

For information about this module see 4.3.
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3.3.1 Access emulation

On Malta board we do not have hardware tracking of accesses to pages. For that
purpose we emulate these functionality. The same situation takes place on AArch64
4.3.5. Implementation of pmap_emulate_bits is similar for both supported archi-
tectures. For this reason I will comment only implementation for AArch64. Here is
a implementation for MIPS. The reader can compare both of them.

1 int pmap_emulate_bits(pmap_t *pmap, vaddr_t va, vm_prot_t prot) {
2 paddr_t pa;
3

4 WITH_MTX_LOCK (&pmap->mtx) {
5 if (!pmap_extract_nolock(pmap, va, &pa))
6 return EFAULT;
7

8 pte_t pte = pmap_pte_read(pmap, va);
9

10 if ((prot & VM_PROT_READ) && !(pte & PTE_SW_READ))
11 return EACCES;
12

13 if ((prot & VM_PROT_WRITE) && !(pte & PTE_SW_WRITE))
14 return EACCES;
15

16 if ((prot & VM_PROT_EXEC) && (pte & PTE_SW_NOEXEC))
17 return EACCES;
18 }
19

20 vm_page_t *pg = vm_page_find(pa);
21 assert(pg != NULL);
22

23 WITH_MTX_LOCK (&pv_list_lock) {
24 /* Kernel non-pageable memory? */
25 if (TAILQ_EMPTY(&pg->pv_list))
26 return EINVAL;
27 }
28

29 pmap_set_referenced(pg);
30 if (prot & VM_PROT_WRITE)
31 pmap_set_modified(pg);
32

33 return 0;
34 }

Listing 3: Emulate access and reference bits MIPS (pmap.c [33])
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3.3.2 Growkernel

I introduced pmap growkernel function which increases virtual address space of
kernel. This change was needed to make KASAN work on AArch64 architecture but
it also works on MIPS. For more information about origin of that change see 3.4.

To increase virtual address space of kernel we need to know the old end of virtual
address space Ê (vm_kernel_end variable), new end Ì and location of kernel page
table Ë. We only need to add directory entries into kernel page table Î (if they do
not exist) and send information to KASAN about new area of memory that can be
used by kernel memory allocator Ï. L1_SPACE_SIZE Í is a number of bytes that are
covered by single page directory entry. Note that the difference between MIPS and
AArch64 4.3.6 version of that function is related to size of pointers (4 vs 8 bytes).

1 void pmap_growkernel(vaddr_t maxkvaddr) {
2 assert(mtx_owned(&vm_kernel_end_lock));
3 Êassert(maxkvaddr > vm_kernel_end);
4

5 Ëpmap_t *pmap = pmap_kernel();
6 vaddr_t va;
7

8 Ìmaxkvaddr = roundup2(maxkvaddr, L1_SPACE_SIZE);
9

10 WITH_MTX_LOCK (&pmap->mtx) {
11 Ífor (va = vm_kernel_end; va < maxkvaddr; va += L1_SPACE_SIZE) {
12 if (!is_valid_pde(PDE_OF(pmap, va)))
13 Îpmap_add_pde(pmap, va);
14 }
15 }
16

17 /*
18 * kasan_grow calls pmap_kenter which acquires pmap->mtx.
19 * But we are under vm_kernel_end_lock from kmem so it is safe to call
20 * kasan_grow.
21 */
22 Ïkasan_grow(maxkvaddr);
23

24 vm_kernel_end = maxkvaddr;
25 }

Listing 4: pmap growkernel MIPS (pmap.c [33])

3.4 KASAN

KASAN is a kernel address sanitizer. It is a tool that allow us to detect different
types of memory error in runtime. Julian Pszczołowski is an author of original
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KASAN implementation for Mimiker which detects stack overflow, buffer overflow
and use-after-free errors [13].

Main idea of address sanitizer is creating special contiguous memory area for
describing whole used memory. That area is called shadow map. For each byte of
memory available for program we have one bit of memory in shadow map that de-
scribes if it is safe to use. For each instruction that access memory we add additional
call to special function which checks in shadow map if we are doing valid access. For
more information about please refer to Julian’s thesis.

This implementation had very important assumption that we can allocate shadow
map for whole memory at the begin of kernel life. It was justified for MIPS where
we have 32 bit pointers so maximal memory that is available for CPU is 4GB of
RAM so we need 512MB of RAM for shadow map. In fact we do not need so much
memory and we used only 16MB for shadow map which is reasonable value for Malta
board.

This assumption doesn’t work for AArch64 architecture where pointers have 64
bits so we do not have any possibility to describe whole memory (32TiB for shadow
map). So we need to split initialization of shadow map into two phases but it still is
a contiguous area in memory – in our case it is located at the end of kernel virtual
address space.

3.4.1 Kernel bootstrap

First we need to create shadow map for initial memory mapping. This mapping
contains kernel code and static variables.

We need to create valid entries in page table for shadow map Ë which is located
at KASAN_MD_SHADOW_START. Shadow map is filled with proper values later during
initialization of KASAN, but need to be done here since general memory allocator
will be available after KASAN initialization. Here we use primitive physical memory
allocator Ê.
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1 size_t kasan_sanitized_size =
2 roundup2(va - KASAN_MD_SANITIZED_START,
3 SUPERPAGESIZE * KASAN_SHADOW_SCALE_SIZE);
4 size_t kasan_shadow_size = kasan_sanitized_size / KASAN_SHADOW_SCALE_SIZE;
5 va = KASAN_MD_SHADOW_START;
6 /* Allocate physical memory for shadow area */
7 Êpaddr_t pa = (paddr_t)bootmem_alloc(kasan_shadow_size);
8 /* How many PDEs should we use? */
9 int num_pde = kasan_shadow_size / SUPERPAGESIZE;
10 for (int i = 0; i < num_pde; i++) {
11 /* Allocate a new PT */
12 pte = bootmem_alloc(PAGESIZE);
13 pde[PDE_INDEX(va)] = PTE_PFN((paddr_t)pte) | PTE_KERNEL;
14 for (int j = 0; j < PT_ENTRIES; j++) {
15 Ëpte[PTE_INDEX(va)] = PTE_PFN(pa) | PTE_KERNEL;
16 va += PAGESIZE;
17 pa += PAGESIZE;
18 }
19 }

Listing 5: Shadow map bootstrap MIPS (boot.c [34])

3.4.2 Grow kernel

We know how to create initial shadow map but in that way we can’t use more
sanitized memory and we do not want to use unsanitized memory in kernel when
KASAN is running. From previous section 3.3 we know how to increase kernel
virtual address space.

At the end of pmap_growkernel kasan_grow is called by pmap subsystem. It
is responsible for increasing shadow map. For each missing page in shadow map Ê

we allocate new page using abstractions from machine-independent subsystems Ë.
That page is mapped by pmap into kernel page table Ì. Finally the memory area
that was added into virtual address space of kernel is marked as invalid Í. It will be
marked as valid latter by kernel memory allocator. This function implements key
feature for KASAN on AArch64.
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1 void kasan_grow(vaddr_t maxkvaddr) {
2 assert(mtx_owned(&vm_kernel_end_lock));
3 maxkvaddr = roundup2(maxkvaddr, PAGESIZE * KASAN_SHADOW_SCALE_SIZE);
4 assert(maxkvaddr < KASAN_MD_MAX_SANITIZED_END);
5 vaddr_t va = kasan_va_to_shadow(_kasan_sanitized_end);
6 vaddr_t end = kasan_va_to_shadow(maxkvaddr);
7

8 /* Allocate and map shadow pages to cover the new KVA space. */
9 Êfor (; va < end; va += PAGESIZE) {
10 Ëvm_page_t *pg = vm_page_alloc(1);
11 Ìpmap_kenter(va, pg->paddr, VM_PROT_READ | VM_PROT_WRITE, 0);
12 }
13

14 if (maxkvaddr > _kasan_sanitized_end) {
15 Íkasan_mark_invalid((const void *)(_kasan_sanitized_end),
16 maxkvaddr - _kasan_sanitized_end,
17 KASAN_CODE_FRESH_KVA);
18 _kasan_sanitized_end = maxkvaddr;
19 }
20 }

Listing 6: Increase shadow map (kasan.c [35])

3.5 Infrastructure for testing

The important part of development is testing. Without tests it is impossible to track
progress of project like operating system. Unfortunately it is not easy to run tests
for kernel. Usually we can run program and collect it is output or exit code and
generate report based on that values but we have an assumption that this program is
running on some system. Here we run program directly on hardware or on emulator.

Previously we used fact that we have multiple UARTs on Malta board and one
of them was generating diagnostic output for testing purpose. We were using socat
to grab output of that UART and decide if test passed or not. But on Raspberry Pi
3 we do not have enough UARTs for that so we decided to redesign our approach.

We introduced special function ktest success, which is a dead end in kernel.
We use gdb to set breakpoint on this function. If we stop inside that function we
kill emulator and quit from gdb with exit code 0, otherwise we quit with different
exit code. Of course we do something more in case of failure e.g. we print kernel
log, stack trace of every thread and much more.

These changes reduced our complicated logic and eliminated race condition on
one of UART which was a source of errors in our continuous integration.
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3.6 Generic UART interface

A general terminal interface that we support in Mimiker is tty. In this section I
will describe generic UART interface created as a glue between UART drivers and
tty machine-independent layer. The terminal subsystem is responsible for process-
ing incoming characters for processes. That processing requires managing multiple
queues of characters on different layers. Here we will only discuss UART layer. For
more information about tty see [12].

At the beginning of my work big part of the tty layer have lived inside UART
driver. It was understandable - we had only one terminal exposed to user-space.
With new platform we gain a new UART driver 2.2 and we want to share as much
code as we can between drivers.

I proposed an abstraction over UART. The abstraction is a set of functions
for interaction with hardware and generic structure for describing current state of
UART.

3.6.1 Low level interface

1 typedef uint8_t (*uart_getc_t)(void *state);
2 typedef bool (*uart_rx_ready_t)(void *state);
3 typedef void (*uart_putc_t)(void *state, uint8_t byte);
4 typedef bool (*uart_tx_ready_t)(void *state);
5 typedef void (*uart_tx_enable_t)(void *state);
6 typedef void (*uart_tx_disable_t)(void *state);
7

8 typedef struct uart_state {
9 spin_t u_lock;
10 ringbuf_t u_rx_buf; /* Software receiver queue. */
11 ringbuf_t u_tx_buf; /* Software transmitter queue. */
12 tty_thread_t u_ttd;
13 void *u_state; /* Private state - mostly memory and irq resources. */
14 } uart_state_t;

Listing 7: Generic low level UART interface (uart.h [36])

• uart_getc_t returns single byte from UART.

• uart_rx_ready_t returns true if receiver hardware queue is ready.

• uart_putc_t puts byte into UART.

• uart_tx_ready_t returns true if transmitter hardware queue is ready.

• uart_tx_enable_t enables transmitter interrupt.
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• uart_tx_disable_t disables transmitter interrupt.

This low level interface can be used to implement generic interrupt handler for
UART and generic worker for TTY subsystem. If you are interested in how the
implementation of these methods looks, see 4.8.3.

3.6.2 Generic interrupt handler

Generic interrupt handler is responsible for responding to two kinds of events:

• a new character has been put into hardware queue (TTY_THREAD_RXRDY);

• a new character can be sent by device (TTY_THREAD_TXRDY);

If a new character has been put into hardware queue Ê, we put it into the software
receive queue and notify tty subsystem Ì. If a new character can be sent by device
Í we send as many characters from queue as we can Î. Finally, if software queue is
empty Ï we send notification to tty layer about that.
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1 intr_filter_t uart_intr(void *data /* device_t* */ ) {
2 device_t *dev = data;
3 uart_state_t *uart = dev->state;
4 tty_thread_t *ttd = &uart->u_ttd;
5 intr_filter_t res = IF_STRAY;
6

7 WITH_SPIN_LOCK (&uart->u_lock) {
8 /* data ready to be received? */
9 Êif (uart_rx_ready(dev)) {
10 Ë(void)ringbuf_putb(&uart->u_rx_buf, uart_getc(dev));
11 Ìttd->ttd_flags |= TTY_THREAD_RXRDY;
12 cv_signal(&ttd->ttd_cv);
13 res = IF_FILTERED;
14 }
15

16 /* transmit register empty? */
17 if (uart_tx_ready(dev)) {
18 uint8_t byte;
19 Íwhile (uart_tx_ready(dev) && ringbuf_getb(&uart->u_tx_buf, &byte))
20 Îuart_putc(dev, byte);
21 if (ringbuf_empty(&uart->u_tx_buf)) {
22 /* If we're out of characters and there are characters
23 * in the tty's output queue, signal the tty thread to refill. */
24 if (ttd->ttd_flags & TTY_THREAD_OUTQ_NONEMPTY) {
25 Ïttd->ttd_flags |= TTY_THREAD_TXRDY;
26 cv_signal(&ttd->ttd_cv);
27 }
28 /* Disable TXRDY interrupts - the tty thread will re-enable them
29 * after filling tx_buf. */
30 uart_tx_disable(dev);
31 }
32 res = IF_FILTERED;
33 }
34 }
35

36 return res;
37 }

Listing 8: UART interrupt handler (uart.c [37])

3.6.3 UART-TTY thread

The role of UART-TTY thread is very similar to role of UART interrupt handler
but on the upper layer. Once we are signalled Ê by UART interrupt, we check what
we need to do. If the receive queue is not empty Ë we move Ì characters from that
queue into upper layer of terminal subsystem. If the output queue is not empty Í

we move characters from terminal’s queue to the outgoing buffer Î.
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1 static void uart_tty_thread(void *arg) {
2 device_t *dev = arg;
3 uart_state_t *uart = dev->state;
4 tty_thread_t *ttd = &uart->u_ttd;
5 tty_t *tty = ttd->ttd_tty;
6 uint8_t work, byte;
7

8 while (true) {
9 WITH_SPIN_LOCK (&uart->u_lock) {
10 /* Sleep until there's work for us to do. */
11 while ((work = ttd->ttd_flags & TTY_THREAD_WORK_MASK) == 0)
12 Êcv_wait(&ttd->ttd_cv, &uart->u_lock);
13 ttd->ttd_flags &= ~TTY_THREAD_WORK_MASK;
14 }
15 WITH_MTX_LOCK (&tty->t_lock) {
16 Ëif (work & TTY_THREAD_RXRDY) {
17 /* Move characters from rx_buf into the tty's input queue. */
18 while (uart_getb_lock(uart, &byte))
19 Ìif (!tty_input(tty, byte))
20 klog("dropped character %hhx", byte);
21 }
22 Íif (work & TTY_THREAD_TXRDY)
23 Îuart_tty_fill_txbuf(dev);
24 }
25 }
26 }

Listing 9: UART TTY thread (uart tty.c [38])





Chapter 4

Mimiker on AArch64

In this chapter we will focus on changes in Mimiker related to AArch64 and Rasp-
berry Pi 3.

It includes most of work related to AArch64 and Raspberry Pi 3 specific code for
Mimiker. I will go through interaction between kernel-space and user-space, memory
mapping module, kernel address sanitizer machine-dependent part, first instructions
of kernel, exception handling and finally basic set of drivers.

It is recommended that the reader uses the source code viewer when reading
this chapter which is available at [16].

These changes were first developed for QEMU emulator and then adjusted to
physical hardware.

All assembly code presented in this chapter belongs to ARMv8 Instruction Set
[2] with the following calling convention:

• x31 – stack pointer;

• x30 – link register;

• x19 – x28 – callee-saved registers;

• x9 – x18 – caller-saved registers;

• x8 – indirect return value address;

• x0 – x7 – function arguments and their results;

4.1 How to run emulator?

A special toolchain is required to build Mimiker. The most significant part is GCC –
GNU Compiler Collection – in version 11 in time of writing. Building of toolchain is

37
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fully automated by make scripts in Mimiker repository [17]. For full list of required
packages see Dockerfile in root directory of project. It contains description of
image used by CI system for automatic tests. More detailed instructions are available
at 5.1. There exists development environment with ssh connection. For access
please contact with administrators of Mimiker website [16]. If you have account on
development machine you can skip installation of toolchain.

The simplest command for build is:
make BOARD=rpi3

It produces ramdisk with user-space programs – initrd.cpio, sysroot direc-
tory with debugging symbols for each user-space binary, sys/mimiker.elf – ELF
with kernel and sys/mimiker.img – final kernel image.

For running interactive session use:

. / launch −−board=rp i3 −d i n i t =/bin /ksh

This command runs tmux terminal multiplexer with three windows:

1. QEMU logs;

2. Mimiker console – our equivalent of TTY – with running ksh;

3. gdb session;

By default execution stops on first instruction of machine-independent part of kernel
initialization and manual continue command is required by gdb.

4.2 Interaction with user-space

In modern general purpose operating systems kernel without user programs is use-
less. In this chapter we will focus on machine-dependent communication between
kernel and user programs.

4.2.1 Copy

The copy functions are designed to copy contiguous data from one address to another
like memcpy but they are safe to use for copying data between kernel-space and user-
space. It means that write or read from unmapped address will not cause the kernel
panic. The copy functions return 0 on success and error otherwise.

copyin copies len bytes of data from the user-space address uaddr to the
kernel-space address kaddr.
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1 int copyin(const void *uaddr, void *kaddr, size_t len);

copyout copies len bytes of data from the kernel-space address kaddr to the
user-space address uaddr.

1 int copyout(const void *kaddr, void *uaddr, size_t len);

copyinstr copies a NULL-terminated string, at most len bytes long, from user-
space address uaddr to kernel-space address kaddr. The number of bytes actually
copies, including the terminating NULL, is returned in done (if done is not NULL).

1 int copyinstr(const void *uaddr, void *kaddr, size_t len, size_t *done);

copystr copies a NULL-terminated string, at most len bytes long, from kernel-
space address kfaddr to kernel-space address kdaddr. The number of bytes actually
copied, including the terminating NULL, is returned in done (if done is not NULL).

1 int copystr(const void *kfaddr, void *kdaddr, size_t len, size_t *done);

The copy functions return 0 on success. If a bad address is encountered they
return EFAULT.

All of the copy functions need to do following things:

• validate arguments;

• set a flag what to do in case of fault;

• copy data;

First one is simple – kernel need to validate if uaddr is placed in user space
which is a contiguous space between USER SPACE START and USER SPACE END.

For second one we have a special flag in thread structure. In case of fault we
check if td::td onfault flag is set. If it is we jump into special copyerr routine
that returns EFAULT from copy context. It is needed because kernel doesn’t have
control over arguments from user-space. Let’s think about read
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1 ssize_t read(int fd, void *buf, size_t count);

It is a common mistake to pass wrong pointer as argument to syscall e.g.

1 char *read_data(FILE *fp, size_t count) {
2 Êchar *buf = malloc(count);
3 read(fileno(stdin), buf, count);
4 return buf;
5 }

Listing 10: heap buffer overflow

It is possible that malloc returns NULL Ê. As a result we trigger memory fault
in kernel during copy data to user-space but kernel cannot fail. So we set special
flag to handle memory errors from functions which copy data between kernel-space
and user-space.

For third one we use generic bcopy implementation.

Let’s see the final implementation of copyin. We check if user-space pointers
point to user-space Ê. Then we set flag in thread structure Ë – this is an information
that the thread is inside copy function. Finally bcopy [24] is called Ì. On success
we return directly from copyin Í with 0.
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1 ENTRY(copyin)
2 sub sp, sp, #16
3 str lr, [sp]
4

5 # len > 0
6 cbz x2, 1f
7 Ê

8 # (uintptr_t)us < (uintptr_t)(us + len)
9 add x3, x0, x2
10 cmp x0, x3
11 b.hi copyerr
12

13 # (uintptr_t)(us + len) <= USER_SPACE_END

14 ldr x4, =USER_SPACE_END

15 cmp x3, x4
16 b.hi copyerr
17

18 Ëset_onfault x3, x4, copyerr
19 Ìbl bcopy
20 clr_onfault x3
21 Í

22 1: mov x0, xzr

23

24 ldr lr, [sp]
25 add sp, sp, #16
26 ret
27 END(copyin)

Listing 11: copyin (copy.S [39])

4.2.2 Syscall handler

System call (syscall) is a way in which a user program communicates with kernel.
From user-space programmer view most of syscalls are normal functions provided
by libc. That functions generate exceptions in order to changing context from user-
space to kernel-space but they also must pass their arguments. We know that we
have calling convention for normal function but that convention can be different for
system calls.

user-space In Mimiker (on AArch64 ) we have the following convention:

• each syscall can have at most six arguments;

• arguments are passed via registers from x0 to x5;

• syscall number is encoded in exception;
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so from user-space side it is very simple – we only call assembly which generates
exception Ê. At the end of syscall wrapper we also need to update errno variable
Ë according to C standard – it is a responsibility of __sc_error.

1 #define SYSCALL(name, num)
2 ENTRY(name);
3 Êsvc num;
4 Ëcbnz x1, _C_LABEL(__sc_error);
5 ret;
6 END(name)

Listing 12: syscall entry from user-space (syscall.h [40])

kernel-space In kernel-space we need a trampoline from machine-dependent ex-
ception code to machine-independent specific syscall implementation. We have fol-
lowing generic syscall definition:

1 typedef int syscall_t(proc_t *p, void *args, register_t *result);
2

3 typedef struct sysent {
4 int nargs; /* number of args passed to syscall */
5 syscall_t *call; /* syscall implementation */
6 } sysent_t;

Listing 13: system call entry (sysent.h [41])

And for each system call we are casting args into specific argument type e.g.:



4.2. INTERACTION WITH USER-SPACE 43

1 Ê# define SCARG(p, x) ((p)->x.arg)
2 Ë# define SYSCALLARG(x) union { register_t _pad; x arg; }
3

4 typedef struct {
5 SYSCALLARG(int) fd;
6 SYSCALLARG(void *) buf;
7 SYSCALLARG(size_t) nbyte;
8 } read_args_t;
9

10 static int sys_read(proc_t *p, read_args_t *args, register_t *res) {
11 int fd = SCARG(args, fd);
12 void *u_buf = SCARG(args, buf);
13 size_t nbyte = SCARG(args, nbyte);
14 int error;
15

16 uio_t uio = UIO_SINGLE_USER(UIO_READ, 0, u_buf, nbyte);
17 if ((error = do_read(p, fd, &uio)))
18 return error;
19 *res = nbyte - uio.uio_resid;
20 return 0;
21 }

Listing 14: read system call (syscalls.c [42])

It is very important for us that each argument has size of the register. For
that purpose we use combination of SCARG Ê and SYSCALLARG Ë. We need that for
simplicity in trampoline code.

trampoline We can divide syscall trampoline into following steps:

• copy arguments from user context into args structure Ê;

• find sysent t of called syscall Ë;

• call syscall function Ì;

• jump to exception return code;

For arguments copying we use buffer where we are storing subsequent arguments for
args structure Ê. This is the reason why arguments have size of the register.
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1 static void syscall_handler(register_t code, ctx_t *ctx,
2 syscall_result_t *result) {
3 register_t args[SYS_MAXSYSARGS];
4 const int nregs = 6;
5

6 Êmemcpy(args, &_REG(ctx, X0), nregs * sizeof(register_t));
7

8 if (code > SYS_MAXSYSCALL) {
9 args[0] = code;
10 code = 0;
11 }
12

13 Ësysent_t *se = &sysent[code];
14 size_t nargs = se->nargs;
15

16 thread_t *td = thread_self();
17 register_t retval = 0;
18

19 Ìint error = se->call(td->td_proc, (void *)args, &retval);
20

21 result->retval = error ? -1 : retval;
22 result->error = error;
23 }

Listing 15: system call trampoline (trap.c [43])

4.2.3 crt0

C standard [1] says that:

• The function called at program startup is named main. The implementation
declares no prototype for this function. It shall be defined with a return
type of int and with no parameters or with two parameters or in some other
implementation-defined manner.

• If they are declared, the parameters to the main function shall obey the fol-
lowing constraints:

– The value of argc (first argument) shall be nonnegative.

– argv[argc] (second argument) shall be a null pointer.

– If the value of argc is greater than zero, the array embers argv[0] through
argv[argc-1] inclusive shall contain pointers to strings, which are given
implementation-defined values by the host environment prior to program
startup.

– If the value of argc is greater than zero, the string pointed to by argv[0]
represents the program name. If the value of argc is greater than one,
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the strings pointer to by argv[1] through argv[argc - 1] represent the
program parameters.

– The parameters argc and argv and the strings pointer to by the argv
array shall be modifiable by the program, and retain ther last-stored
values between program startup and program termination.

But there is a lot of things to do before main e.g. calling functions marked as
attribute ((constructor)) or libc init. So the real startup for program is
start from (in our case) crt0.S.

To understand implementation of start we need to know how the initial stack
layout of process looks. Mimiker puts program arguments and environment variables
onto initial process stack. Let’s use previous names for variables and additionally
let’s call envp as a table of environment variables, m as a number of environment
variables and n as a number of program arguments.

stack segment high address
envp[m - 1]

... each of envp[i] is a NULL-terminated string
envp[1]

envp[0]

argv[n - 1]
... each of argv[i] is a NULL-terminated string

argv[1]

argv[0]

envp NULL-terminated environment vector storing pointers to envp[0..m]

argv NULL-terminated argument vector storing pointers to argv[0..n]

argc a single uint32 declaring the number of arguments (n)

program stack
...

stack segment low address

Table 4.1: user stack layout
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1 ENTRY(_start)
2 # Grab argc from stack.
3 ldr w0, [sp, #0]
4

5 # Prepare argv.
6 add x1, sp, #8
7

8 # Prepare envp, it starts at argv + argc + 1
9 lsl x2, x0, #3
10 add x2, x1, x2
11 add x2, x2, #8
12

13 # Jump to start in crt0-common.c
14 # void ___start(int argc, char **argv, char **envp)
15 b ___start
16 END(_start)

Listing 16: crt0 (crt0.S [44])

The rest of the program initialization is in machine-independent start pro-
vided by libc.

4.2.4 Signals

Signals [8] are a form of inter process communication used in Unix-like operating
systems. Signal is an asynchronous notification sent to a process or to a thread.
When a signal is sent kernel interrupts execution of process and signal handler (if
it is set) is being executed. Signal can be sent directly by kernel e.g. as a result of
memory fault or by other process using kill system call [9]. User-space program
can be interrupted by signal at almost any time.

1 static void sighandler(int sig, ksiginfo_t *info, ucontext_t *ctx);

Machine-dependent part of signals is calling signal handler. In Mimiker we copy
following data into user thread stack

• sigcode procedure; it is a special code that calls sigreturn system call for
going back from signal to a context of interrupted thread;

• struct ksiginfo a bunch of information about signal for user;

• struct ucontext a context of interrupted thread
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sigcode procedure is needed because signal handler can destroy any register
so we can’t just return from function. We need to go back to kernel to fix context
of thread. Our solution is to copy simply procedure that calls special syscall Ê into
stack and changing return address of syscall handler to that procedure Ì. In this
way we can go back to kernel and fix context.

1 ENTRY(sigcode)

2 mov x0, sp /* address of ucontext_t to restore */

3 Êsvc #SYS_sigreturn
4 brk #0
5 EXPORT(esigcode)
6 END(sigcode)

Listing 17: sigcode.S (sigcode.S [45])

We also need to allocate memory for that data on user stack Ê and copy their
addresses into registers according to ABI Ë.

1 int sig_send(signo_t sig, sigset_t *mask, sigaction_t *sa,
2 ksiginfo_t *ksi) {
3 thread_t *td = thread_self();
4 mcontext_t *uctx = td->td_uctx;
5

6 ucontext_t uc;
7 mcontext_copy(&uc.uc_mcontext, uctx);
8 uc.uc_sigmask = *mask;
9

10 Êregister_t sc_code = sig_stack_push(uctx, sigcode, esigcode - sigcode);
11 register_t sc_info = sig_stack_push(uctx, ksi, sizeof(ksiginfo_t));
12 register_t sc_uctx = sig_stack_push(uctx, &uc, sizeof(ucontext_t));
13

14 Ë_REG(uctx, ELR) = (register_t)sa->sa_handler;
15 _REG(uctx, X0) = sig;
16 _REG(uctx, X1) = sc_info;
17 _REG(uctx, X2) = sc_uctx;
18 Ì_REG(uctx, LR) = sc_code;
19

20 return 0;
21 }

Listing 18: signal.c (signal.c [46])

4.2.5 Nonlocal goto

Here I want to describe AArch64 implementation of non local jumps.



48 CHAPTER 4. MIMIKER ON AARCH64

Like on MIPS we have six different functions related to non local jumps.

setjmp - which saves context of running thread into jump buffer. We need to
save callee saved registers. They are x19, x20, x21, x22, x23, x24, x25, x26,
x27, x28, x29 Ê. Link register lr Ë. Stack pointer sp Ì. We also need to save all
floating point registers Î and flags Í for the kernel that this context contains valid
CPU and FPU registers.
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1 ENTRY(_setjmp)

2 /* Copy saved registers */

3 Êstr x19, [x0, UC_REGS_X19]
4 stp x20, x21, [x0, UC_REGS_X20]
5 stp x22, x23, [x0, UC_REGS_X22]
6 stp x24, x24, [x0, UC_REGS_X24]
7 stp x26, x27, [x0, UC_REGS_X26]
8 stp x28, x29, [x0, UC_REGS_X28]
9 Ëstr lr, [x0, UC_REGS_LR]
10

11 /* sp register is special */

12 mov x1, sp
13 Ìstr x1, [x0, UC_REGS_SP]
14

15 /* save flags */

16 ldr x1, [x0, UC_FLAGS]

17 orr x1, x1, (_UC_FPU | _UC_CPU)

18 Ístr x1, [x0, UC_FLAGS]
19

20 /* FPU status */

21 mrs x1, fpcr
22 str w1, [x0, UC_FPREGS_FPCR]
23 mrs x1, fpsr
24 str w1, [x0, UC_FPREGS_FPSR]
25

26 Îstp q0, q1, [x0, UC_FPREGS_Q0]
27 stp q2, q3, [x0, UC_FPREGS_Q2]
28 stp q4, q5, [x0, UC_FPREGS_Q4]
29 stp q6, q7, [x0, UC_FPREGS_Q6]
30 stp q8, q9, [x0, UC_FPREGS_Q8]
31 stp q10, q11, [x0, UC_FPREGS_Q10]
32 stp q12, q13, [x0, UC_FPREGS_Q12]
33 stp q14, q15, [x0, UC_FPREGS_Q14]
34 stp q16, q17, [x0, UC_FPREGS_Q16]
35 stp q18, q19, [x0, UC_FPREGS_Q18]
36 stp q20, q21, [x0, UC_FPREGS_Q20]
37 stp q22, q23, [x0, UC_FPREGS_Q22]
38 stp q24, q25, [x0, UC_FPREGS_Q24]
39 stp q26, q27, [x0, UC_FPREGS_Q26]
40 stp q28, q29, [x0, UC_FPREGS_Q28]
41 stp q30, q31, [x0, UC_FPREGS_Q30]
42

43 mov x0, xzr
44 ret
45 END(_setjmp)

Listing 19: setjmp ( setjmp.S [47])

longjmp - which is an opposite to setjmp. It reads every registers written by
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setjmp.

1 ENTRY(_longjmp)
2 ldr x19, [x0, UC_REGS_SP]
3 mov sp, x19
4 ldr x19, [x0, UC_REGS_X19]
5 ldp x20, x21, [x0, UC_REGS_X20]
6 ldp x22, x23, [x0, UC_REGS_X22]
7 ldp x24, x25, [x0, UC_REGS_X24]
8 ldp x26, x27, [x0, UC_REGS_X26]
9 ldp x28, x29, [x0, UC_REGS_X28]
10 ldr lr, [x0, UC_REGS_LR]
11

12 /* FPU status */

13 ldr w2, [x0, UC_FPREGS_FPCR]

14 /* msr ignores upper 32 bits for fpcr & fpsr */

15 msr fpcr, x2
16 ldr w2, [x0, UC_FPREGS_FPSR]
17 msr fpsr, x2
18

19 ldp q0, q1, [x0, UC_FPREGS_Q0]
20 ldp q2, q3, [x0, UC_FPREGS_Q2]
21 ldp q4, q5, [x0, UC_FPREGS_Q4]
22 ldp q6, q7, [x0, UC_FPREGS_Q6]
23 ldp q8, q9, [x0, UC_FPREGS_Q8]
24 ldp q10, q11, [x0, UC_FPREGS_Q10]
25 ldp q12, q13, [x0, UC_FPREGS_Q12]
26 ldp q14, q15, [x0, UC_FPREGS_Q14]
27 ldp q16, q17, [x0, UC_FPREGS_Q16]
28 ldp q18, q19, [x0, UC_FPREGS_Q18]
29 ldp q20, q21, [x0, UC_FPREGS_Q20]
30 ldp q22, q23, [x0, UC_FPREGS_Q22]
31 ldp q24, q25, [x0, UC_FPREGS_Q24]
32 ldp q26, q27, [x0, UC_FPREGS_Q26]
33 ldp q28, q29, [x0, UC_FPREGS_Q28]
34 ldp q30, q31, [x0, UC_FPREGS_Q30]
35

36 mov x0, x1
37 ret
38 END(_longjmp)

Listing 20: longjmp ( setjmp.S [47])

longjmp - in addition to longjmp it sets signal mask Ê.
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1 void longjmp(jmp_buf env, int val) {
2 ucontext_t *sc_uc = (void *)env;
3 ucontext_t uc;
4 memset(&uc, 0, sizeof(ucontext_t));
5

6 if (_REG(sc_uc, SP) == 0)
7 goto err;
8

9 if (val == 0)
10 val = 1;
11

12 uc.uc_flags =
13 _UC_CPU | ((sc_uc->uc_flags & _UC_STACK) ? _UC_SETSTACK : _UC_CLRSTACK);
14

15 Êsigprocmask(SIG_SETMASK, &sc_uc->uc_sigmask, NULL);
16

17 uc.uc_link = 0;
18

19 _REG(&uc, X0) = val;
20

21 _REG(&uc, X19) = _REG(sc_uc, X19);
22 _REG(&uc, X20) = _REG(sc_uc, X20);
23 _REG(&uc, X21) = _REG(sc_uc, X21);
24 _REG(&uc, X22) = _REG(sc_uc, X22);
25 _REG(&uc, X23) = _REG(sc_uc, X23);
26 _REG(&uc, X24) = _REG(sc_uc, X24);
27 _REG(&uc, X25) = _REG(sc_uc, X25);
28 _REG(&uc, X26) = _REG(sc_uc, X26);
29 _REG(&uc, X27) = _REG(sc_uc, X27);
30 _REG(&uc, X28) = _REG(sc_uc, X28);
31 _REG(&uc, X29) = _REG(sc_uc, X29);
32

33 _REG(&uc, SP) = _REG(sc_uc, SP);
34 _REG(&uc, LR) = _REG(sc_uc, LR);
35 _REG(&uc, PC) = _REG(sc_uc, PC);
36 _REG(&uc, SPSR) = _REG(sc_uc, SPSR);
37 _REG(&uc, TPIDR) = _REG(sc_uc, TPIDR);
38

39 if (sc_uc->uc_flags & _UC_FPU) {
40 memcpy(&uc.uc_mcontext.__fregs, &sc_uc->uc_mcontext.__fregs,
41 sizeof(__fregset_t));
42 uc.uc_flags |= _UC_FPU;
43 }
44

45 setcontext(&uc);
46 err:
47 longjmperror();
48 abort();
49 }

Listing 21: longjmp (longjmp.c [48])
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setjmp - in addition to setjmp it saves current signal mask.
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1 ENTRY(setjmp)
2 sub sp, sp, CALLFRAME_SIZ
3 stp lr, x19, [sp]

4 /* Save env in safe register. */

5 mov x19, x0
6

7 /* Save current signalmask at ucontext::uc_sigmask.

8 * If set is NULL, then the signal mask is unchanged (i.e., how is

9 * ignored), but the current value of the signal mask is

10 * nevertheless returned in oldset (if it is not NULL). */

11 add x2, x19, UC_MASK /* &env->uc_sigmask */

12 mov x1, xzr
13 bl sigprocmask
14 cmp x0, xzr
15 bne botch
16

17 /* Save stack_t at ucontext::uc_stack

18 * By specifying ss as NULL, and old_ss as a non-NULL value, one

19 * can obtain the current settings for the alternate signal stack

20 * without changing them. */

21 add x1, x19, UC_STACK /* &env->uc_stack */

22 /* We know that x0 is equal to 0 here. */

23 bl sigaltstack
24 cmp x0, xzr
25 bne botch
26

27 /* stack_t::ss_flags is a int */

28 ldr w0, [x19, UC_STACK+SS_FLAGS]

29 and w0, w0, SS_ONSTACK
30 cmp w0, wzr
31 beq 1f
32

33 /* ucontext_t::uc_flags is a int */

34 ldr w0, [x19, UC_FLAGS]
35 orr w0, w0, _UC_STACK
36 str w0, [x19, UC_FLAGS]
37

38 1:

39 /* restore jpmbuf */

40 mov x0, x19
41 ldp lr, x19, [sp]
42

43 add sp, sp, CALLFRAME_SIZ
44

45 b _setjmp
46 botch:
47 bl abort
48 END(setjmp)

Listing 22: setjmp (setjmp.S [49])
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And finally sigsetjmp and siglongjmp. They are setjmp and longjmp that
can be used inside signal handlers. They are only dispatchers which call the rest
functions based on arguments.

1 /* int sigsetjmp(jmp_buf buf, int savesigs) */

2 ENTRY(sigsetjmp)
3 cmp x1, xzr
4 bne 1f
5 str x1, [x0, UC_FLAGS]
6 b _setjmp
7

8 1: mov x1, _UC_SIGMASK

9 str x1, [x0, UC_FLAGS]
10 b setjmp
11 END(sigsetjmp)
12

13 /* void siglongjmp(sigjmp_buf env, int val) */

14 ENTRY(siglongjmp)
15 ldr x2, [x0, UC_FLAGS]
16 and x2, x2, _UC_SIGMASK
17 cmp x2, _UC_SIGMASK
18 beq longjmp
19 b _longjmp
20 END(siglongjmp)

Listing 23: sigsetjmp and siglongjmp (sigsetjmp.S [50])

4.3 pmap

The physical-mapping module (pmap) manages machine-dependent address trans-
lation and access tables that are used either directly or indirectly by the MMU.

When new virtual memory is allocated by the kernel for kernel-space or user-
space it needs to be mapped into physical memory. Without that every access to
memory triggers memory fault exception. Pmap manages page tables and tlb if
its needed. But memory mapping is not all. Pmap also gives possibility to modify
access permissions for given virtual memory address - it is very important feature for
modern virtual memory subsystem and it is necessary for sharing memory between
different process in user-space. The most known feature, which uses that is copy-
on-write. When one process calls fork system call then all pages are marked as
read-only. When any of processes (parent or child) try to write to memory then
memory fault occurs. Kernel allocate new page and copies the content of old page
into the new. At the end pmap change mapping of old virtual address into new
physical page and clear caches and tlb for that address. For more details about
copy-on-write see [11].
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4.3.1 Interface

pmap_t is a structure that manages actual virtual address space of process.

1 typedef struct pmap {
2 mtx_t mtx; /*protects all fields in this structure*/
3 asid_t asid; /*address space identifier*/
4 paddr_t pde; /*directory page table physical address*/
5 vm_pagelist_t pte_pages; /*pages we allocate in page table*/
6 TAILQ_HEAD(, pv_entry) pv_list; /*all pages mapped by this physical map*/
7 } pmap_t;

Listing 24: Physical map definition (pmap.c [51])

Return true if va belongs to given pmap. It is used mostly for sanity-checks in our
codebase.

1 bool pmap_address_p(pmap_t *pmap, vaddr_t va);

Return true if the range start to end belongs to given pmap. It is also used for
sanity-checks.

1 bool pmap_contains_p(pmap_t *pmap, vaddr_t start, vaddr_t end);

Return first address that belongs to given pamp.

1 vaddr_t pmap_start(pmap_t *pmap);

Return last address that belongs to given pamp.

1 vaddr_t pmap_end(pmap_t *pmap);

Bootstrap kernel pmap. It sets address space id for page table allocated during early
bootstrapping, initializes mutexes for pmap module and initializes lists of used pages
used by kernel page table.
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1 void init_pmap(void);

Allocate new page table, address space id and bootstrap new pmap with that page
table. We call this function every time a new process is created directly by kernel
or by system call.

1 pmap_t *pmap_new(void);

Delete pmap structure, free pages which belong to given pmap and free address space
id.

1 void pmap_delete(pmap_t *pmap);

Map page to given virtual address in pmap with given protection and cache flags. It
is used mostly for mapping pages into address spaces of user threads. Kernel should
use pmap_kenter for that purpose.

1 void pmap_enter(pmap_t *pmap, vaddr_t va, vm_page_t *pg,
2 vm_prot_t prot, unsigned flags);

Find where a given virtual address is mapped in pmap.

1 bool pmap_extract(pmap_t *pmap, vaddr_t va, paddr_t *pap);

Remove mapping from given pmap.

1 void pmap_remove(pmap_t *pmap, vaddr_t start, vaddr_t end);

Map page to given virtual address in kernel pmap with given protection and cache
flags.
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1 void pmap_kenter(vaddr_t va, paddr_t pa, vm_prot_t prot,
2 unsigned flags);

Find where a given virtual address is mapped in kernel pmap.

1 bool pmap_kextract(addr_t va, paddr_t *pap);

Remove mapping from kernel pmap.

1 void pmap_kremove(vaddr_t start, vaddr_t end);

Change protection of mapping. It can be called as a result of mprotect system call
or by copy-on-write mechanism in kernel [11].

1 void pmap_protect(pmap_t *pmap, vaddr_t start, vaddr_t end,
2 vm_prot_t prot);

Remove page from every pmap.

1 void pmap_page_remove(vm_page_t *pg);

Clear given page.

1 void pmap_zero_page(vm_page_t *pg);

Copy given page.

1 void pmap_copy_page(vm_page_t *src, vm_page_t *dst);

Software tracking of referenced and modified bits. For more information see 4.3.5.
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1 bool pmap_clear_referenced(vm_page_t *pg);
2 bool pmap_clear_modified(vm_page_t *pg);
3 bool pmap_is_referenced(vm_page_t *pg);
4 bool pmap_is_modified(vm_page_t *pg);
5 void pmap_set_referenced(vm_page_t *pg);
6 void pmap_set_modified(vm_page_t *pg);
7 int pmap_emulate_bits(pmap_t *pmap, vaddr_t va, vm_prot_t prot);

Activate mapping from given pmap. It is called when we want to change active
address space.

1 void pmap_activate(pmap_t *pmap);

Return pmap for given virtual address.

1 pmap_t *pmap_lookup(vaddr_t addr);

Return kernel pmap.

1 pmap_t *pmap_kernel(void);

Return active user pmap.

1 pmap_t *pmap_user(void);

Increase usable kernel virtual address space to at least maxkvaddr. More details are
available at 3.3.2.

1 void pmap_growkernel(vaddr_t maxkvaddr);

Here I describe the most important internals of that module. For high level
overview please see FreeBSD manpages [5].
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4.3.2 Protection map

vm prot map is a representation of access bits from 2.3.

1 static const pte_t pte_common = L3_PAGE | ATTR_SH_IS;
2 static const pte_t pte_noexec = ATTR_XN | ATTR_SW_NOEXEC;
3

4 static const pte_t vm_prot_map[] = {
5 [VM_PROT_NONE] = pte_noexec | pte_common,
6 [VM_PROT_READ] =
7 ATTR_AP_RO | ATTR_SW_READ | ATTR_AF | pte_noexec | pte_common,
8 [VM_PROT_WRITE] =
9 ATTR_AP_RW | ATTR_SW_WRITE | ATTR_AF | pte_noexec | pte_common,
10 [VM_PROT_READ | VM_PROT_WRITE] = ATTR_AP_RW | ATTR_SW_READ |
11 ATTR_SW_WRITE | ATTR_AF | pte_noexec | pte_common,
12 [VM_PROT_EXEC] = ATTR_AF | pte_common,
13 [VM_PROT_READ | VM_PROT_EXEC] =
14 ATTR_AP_RO | ATTR_SW_READ | ATTR_AF | pte_common,
15 [VM_PROT_WRITE | VM_PROT_EXEC] =
16 ATTR_AP_RW | ATTR_SW_WRITE | ATTR_AF | pte_common,
17 [VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXEC] =
18 ATTR_AP_RW | ATTR_SW_READ | ATTR_SW_WRITE | ATTR_AF | pte_common,
19 };

Listing 25: protection map (pmap.c [51])

4.3.3 Walk

These functions are responsible for walking through page table. They use direct
map Ê which maps all physical memory into a contiguous area of virtual memory.
The difference is that pmap ensure pte always returns a valid pointer to page table
entry – new entries are allocated as needed Ë.
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1 static pte_t *pmap_lookup_pte(pmap_t *pmap, vaddr_t va) {
2 pde_t *pdep;
3 paddr_t pa = pmap->pde;
4

5 /* Level 0 */
6 Êpdep = (pde_t *)PHYS_TO_DMAP(pa) + L0_INDEX(va);
7 if (!(pa = PTE_FRAME_ADDR(*pdep)))
8 return NULL;
9

10 /* Level 1 */
11 pdep = (pde_t *)PHYS_TO_DMAP(pa) + L1_INDEX(va);
12 if (!(pa = PTE_FRAME_ADDR(*pdep)))
13 return NULL;
14

15 /* Level 2 */
16 pdep = (pde_t *)PHYS_TO_DMAP(pa) + L2_INDEX(va);
17 if (!(pa = PTE_FRAME_ADDR(*pdep)))
18 return NULL;
19

20 /* Level 3 */
21 return (pde_t *)PHYS_TO_DMAP(pa) + L3_INDEX(va);
22 }
23

24 static pte_t *pmap_ensure_pte(pmap_t *pmap, vaddr_t va) {
25 pde_t *pdep;
26 paddr_t pa = pmap->pde;
27

28 /* Level 0 */
29 pdep = (pde_t *)PHYS_TO_DMAP(pa) + L0_INDEX(va);
30 if (!(pa = PTE_FRAME_ADDR(*pdep))) {
31 Ëpa = pmap_alloc_pde(pmap, va);
32 *pdep = pa | L0_TABLE;
33 }
34

35 /* Level 1 */
36 pdep = (pde_t *)PHYS_TO_DMAP(pa) + L1_INDEX(va);
37 if (!(pa = PTE_FRAME_ADDR(*pdep))) {
38 pa = pmap_alloc_pde(pmap, va);
39 *pdep = pa | L1_TABLE;
40 }
41

42 /* Level 2 */
43 pdep = (pde_t *)PHYS_TO_DMAP(pa) + L2_INDEX(va);
44 if (!(pa = PTE_FRAME_ADDR(*pdep))) {
45 pa = pmap_alloc_pde(pmap, va);
46 *pdep = pa | L2_TABLE;
47 }
48

49 /* Level 3 */
50 return (pde_t *)PHYS_TO_DMAP(pa) + L3_INDEX(va);
51 }

Listing 26: page table walk (pmap.c [51])
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4.3.4 Activation

This function activates given page table for user access. Pointer to level 0 of page
table must be stored in ttbr0 register with address space identifier (ASID) Ê. EPD0
bit must be cleared in tcr register Ë.

1 void pmap_activate(pmap_t *umap) {
2 SCOPED_NO_PREEMPTION();
3

4 PCPU_SET(curpmap, umap);
5

6 uint64_t tcr = READ_SPECIALREG(TCR_EL1);
7

8 if (umap == NULL) {
9 WRITE_SPECIALREG(TCR_EL1, tcr | TCR_EPD0);
10 } else {
11 uint64_t ttbr0 = ((uint64_t)umap->asid << ASID_SHIFT) | umap->pde;
12 ÊWRITE_SPECIALREG(TTBR0_EL1, ttbr0);
13 ËWRITE_SPECIALREG(TCR_EL1, tcr & ~TCR_EPD0);
14 }
15 }

Listing 27: activate virtual address space (pmap.c [51])

4.3.5 Access emulation

Since we do not use hardware tracking of AF (access permission) and DBM (dirty
page) we need to manage them from software. We do not do that because not every
CPU supports that and we want to be compatible with solutions from MIPS version.
After mapping page table entry doesn’t contain AF bit so first access to that page
triggers page fault. When we handle that exception we use pmap emulate bits
for checking permissions for that access Ê. If they are sufficient we set needed bits
in page table entry (AF and some permission bits) in pmap set referenced and
pmap set modified Ë. In other case error is returned.
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1 int pmap_emulate_bits(pmap_t *pmap, vaddr_t va, vm_prot_t prot) {
2 paddr_t pa;
3

4 WITH_MTX_LOCK (&pmap->mtx) {
5 if (!pmap_extract_nolock(pmap, va, &pa))
6 return EFAULT;
7

8 pte_t pte = *pmap_lookup_pte(pmap, va);
9

10 Êif ((prot & VM_PROT_READ) && !(pte & ATTR_SW_READ))
11 return EACCES;
12

13 if ((prot & VM_PROT_WRITE) && !(pte & ATTR_SW_WRITE))
14 return EACCES;
15

16 if ((prot & VM_PROT_EXEC) && (pte & ATTR_SW_NOEXEC))
17 return EACCES;
18 }
19

20 vm_page_t *pg = vm_page_find(pa);
21 assert(pg != NULL);
22

23 WITH_MTX_LOCK (pv_list_lock) {
24 /* Kernel non-pageable memory? */
25 if (TAILQ_EMPTY(&pg->pv_list))
26 return EINVAL;
27 }
28

29 Ëpmap_set_referenced(pg);
30 if (prot & VM_PROT_WRITE)
31 pmap_set_modified(pg);
32

33 return 0;
34 }

Listing 28: Emulate access and reference bits (pmap.c [51])

4.3.6 Growkernel

Because address space on AArch64 is much bigger than on mips we can’t describe
whole virtual memory in various subsystems. It is the reason why pmap growkernel
exists. When kmem (kernel memory allocator) fails with out of memory error it calls
pmap growkernel to extend memory available for kernel space. Then new memory
range is put to vmem (virtual memory allocator) and kmem call is restarted. That
function is similar to MIPS 3.3.2 version so code comments are omitted.
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1 void pmap_growkernel(vaddr_t maxkvaddr) {
2 assert(mtx_owned(&vm_kernel_end_lock));
3 assert(maxkvaddr > vm_kernel_end);
4

5 pmap_t *pmap = pmap_kernel();
6 vaddr_t va;
7

8 maxkvaddr = roundup2(maxkvaddr, L2_SIZE);
9

10 WITH_MTX_LOCK (&pmap->mtx) {
11 for (va = vm_kernel_end; va < maxkvaddr; va += L2_SIZE)
12 pmap_ensure_pte(pmap, va);
13 }
14

15 kasan_grow(maxkvaddr);
16

17 vm_kernel_end = maxkvaddr;
18 }

Listing 29: pmap growkernel (pmap.c [51])

4.4 KASAN

Thanks to changes described in 3.4 we only need to chose where the shadow map is
located and build initial shadow map.

For shadow map I have chosen 0xffffff0000000000 Í. It is located at the
end of kernel space and only direct mapping is in higher addresses. Note that BSD
systems follow the reverse order.

That address needs to be passed to C compiler directly because accesses to
stack are sanitized directly by gcc code which doesn’t use our functions. As a
result we need to do one additional change in boot code – all functions in virtual
addresses need to use virtually mapped stack. It is a reason why aarch64 init
returns boot stack.

Here is a code that build initial shadow map:
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1 Êsize_t kasan_sanitized_size =
2 Ë2 * SUPERPAGESIZE + roundup2(va - KASAN_MD_SANITIZED_START,
3 SUPERPAGESIZE * KASAN_SHADOW_SCALE_SIZE);
4 size_t kasan_shadow_size =
5 kasan_sanitized_size / KASAN_SHADOW_SCALE_SIZE;
6 Ìvaddr_t kasan_shadow_end = KASAN_MD_SHADOW_START + kasan_shadow_size;
7 Íva = KASAN_MD_SHADOW_START;
8 *(vaddr_t *)AARCH64_PHYSADDR(&_kasan_sanitized_end) =
9 KASAN_MD_SANITIZED_START + kasan_sanitized_size;
10 Îpa = (paddr_t)bootmem_alloc(kasan_shadow_size);
11

12 Ïwhile (va < kasan_shadow_end) {
13 if (l0[L0_INDEX(va)] == 0)
14 l0[L0_INDEX(va)] = (pde_t)bootmem_alloc(PAGESIZE) | L0_TABLE;
15

16 pde_t *l1k = (pde_t *)PTE_FRAME_ADDR(l0[L0_INDEX(va)]);
17 if (l1k[L1_INDEX(va)] == 0)
18 l1k[L1_INDEX(va)] = (pde_t)bootmem_alloc(PAGESIZE) | L1_TABLE;
19

20 pde_t *l2k = (pde_t *)PTE_FRAME_ADDR(l1k[L1_INDEX(va)]);
21 if (l2k[L2_INDEX(va)] == 0)
22 l2k[L2_INDEX(va)] = (pde_t)bootmem_alloc(PAGESIZE) | L2_TABLE;
23

24 pde_t *l3k = (pde_t *)PTE_FRAME_ADDR(l2k[L2_INDEX(va)]);
25

26 Ðfor (int j = 0; va < kasan_shadow_end && j < PT_ENTRIES; j++) {
27 Ñl3k[L3_INDEX(va)] = pa | ATTR_AP_RW | ATTR_XN | pte_default;
28 va += PAGESIZE;
29 pa += PAGESIZE;
30 }
31 }

Listing 30: Build initial shadow map (boot.c [52])

First we need to calculate size of the current kernel space Ê. With that knowl-
edge we calculate end of shadow area Ì and physical memory is allocated Î. Then
the mapping between virtual and physical memory is created Ñ in page table for
shadow map. The outer loop Ï does page table walk in each iteration and the inner
loop Ð fills page table entries.

Additional superpages Ë are workaround for bug in machine-independent par
of memory management subsystem which is not a part of that port.
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4.5 Boot

In this section we will discuss what is going on from first instruction to jumping to
machine-independent part of code.

First thing we need to know is that first instruction is located at 0x200000 – it
is kernel entry point.

4.5.1 start.S

As we can see the start is not complicated. First we have magic header needed
by bootloader Ê. Next we check current CPU number Ë – nowadays Mimiker is
not ready to run on multiprocessor machine – if we are CPU0 we can execute code
otherwise we are in the loop forever. We need to save a pointer to device tree blob
Ì. That binary blob stores serialized information about devices present in machine
and kernel’s command line. The specification of device tree is available at [30].
Then initial stack is prepared Í and we jump to C code – aarch64 init. That code
configures CPU and returns temporary stack Î. Next we jump to board stack which
configures final stack for kernel and finally to board init which is a trampoline for
machine-independent code.
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1 _ENTRY(_start)

2 /* Based on locore.S from FreeBSD. */

3 b 1f
4 Ê.long 0
5 .quad IMAGE_OFFSET
6 .quad IMAGE_SIZE
7 .quad IMAGE_FLAGS
8 .quad 0
9 .quad 0
10 .quad 0

11 .long 0x644d5241 /* Magic "ARM\x64" */

12 .long 0

13 1:

14 /* Get CPU number. */

15 ËMRS x3, MPIDR_EL1
16 AND x3, x3, #3
17 CMP x3, #0
18 BNE .
19

20 /* Save pointer to dtb. */

21 Ìmov x19, x0

22 /* Setup initial stack. */

23 ADR x3, __boot_stack_end
24 ÍMOV sp, x3
25

26 BL aarch64_init
27

28 Îmov sp, x0

29 /* Restore dtb pointer. */

30 mov x0, x19
31

32 BL board_stack
33 MOV sp, x0
34

35 B board_init
36 _END(_start)

Listing 31: First kernel instructions (start.S [53])

4.5.2 boot.c

aarch64 init is a dispatcher which calls functions that configure CPU.

AArch64 has four different exception levels 2.1.2. In our case exception level
0 is where user-space lives and exception level 1 is where kernel lives. But at the
beginning we are not in exception level 1 so we need to drop ourselves to level 1 and
it is exactly what drop to el1 does Ê.
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Next we need to clear .bss section of our binary Ë.

Finally we can build initial page table for kernel and configure MMU to use
that page table Ì. For more details see 2.1.1, 4.3 and source code.

1 __boot_text void *aarch64_init(void) {
2 Êdrop_to_el1();
3 configure_cpu();
4 Ëclear_bss();
5

6 /* Set end address of kernel for boot allocation purposes. */
7 _bootmem_end = (void *)align(AARCH64_PHYSADDR(__ebss), PAGESIZE);
8

9 Ìenable_mmu(build_page_table());
10 return &_boot_stack[PAGESIZE];
11 }

Listing 32: Early machine-dependent initialization (boot.c [52])

4.5.3 board stack

The responsibility of board stack function is preparing final stack for the first kernel
thread. This stack is preallocated in thread0 structure Ê. We process device tree
blob Ë and extract important data: memory size, kernel’s command line, location
of initrd. These information are stored on kernel stack.

1 void *board_stack(paddr_t dtb) {
2 dtb_early_init(dtb, fdt_totalsize(PHYS_TO_DMAP(dtb)));
3

4 Êkstack_t *stk = &thread0.td_kstack;
5

6 thread0.td_uctx = kstack_alloc_s(stk, mcontext_t);
7

8 /*
9 * NOTE: memsize, rd_start, rd_size, cmdline + 2 = 6
10 */
11 char **kenvp = kstack_alloc(stk, 6 * sizeof(char *));
12 Ëprocess_dtb(kenvp, stk, (void *)PHYS_TO_DMAP(dtb));
13 kstack_fix_bottom(stk);
14 init_kenv(kenvp);
15

16 return stk->stk_ptr;
17 }

Listing 33: Build kernel stack (board.c [54])

The last thing is board init which configures machine-independent part of
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kernel using data from dtb and jumps to kernel machine-independent entry.

1 __noreturn void board_init(void) {
2 init_kasan();
3 init_klog();
4 rpi3_physmem();
5 intr_enable();
6 kernel_init();
7 }

Listing 34: Jump to machine-independent code (board.c [54])

4.6 Exception handler

Exceptions are a form of exceptional control flow, implemented partly by the hard-
ware and partly by the operating system. An exception is an abrupt change in the
control flow in response to some change in the processor’s state.

We have four classes of exceptions.

class cause async/sync return behaviour

interrupt signal from I/O device async always returns to next instruction

trap intentional exception sync always returns to next instruction

fault potentially recoverable error sync might return to current instruction

abort nonrecoverable error sync never returns

Table 4.2: classes of exceptions

For more high level information about exceptions see [10].

In Mimiker we only handle four types of exceptions.

• Synchronous EL1h

• IRQ EL1h

• Snchronous 64-bit EL0

• IRQ 64-bit EL0

There are more types of exceptions but we are running only on 0 & 1 exception
modes so we do not care about others. For more information about exception modes
see [7] and 2.1.

IRQ handlers are simple. We need to save context of running thread Ê and
jump to main interrupt handler in C code. save ctx and load ctx are macros that
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save and restore context of thread. Additional parameter (1 or 0) is a information
if context belongs to user-space of kernel-space. The same code is used for kernel
exception handler.

1 Êsave_ctx 1
2 mov x0, sp
3 bl intr_root_handler
4 load_ctx 1
5 eret

Listing 35: irq exception handler (evec.S [55])

Things are more complicated for user exception handler. Again we need to save
CPU context Ê. Here we also need to take care about FPU context when we return
to user-space. We need to check if FPU is in use Ë. Based on that information we
enable FPU Ì for CPU and if given thread already has saved FPU context Í it is
restored Î. It is exactly the same as in mips 3.2.1.
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1 .cfi_signal_frame
2 Êsave_ctx 0
3 mov x0, sp
4 bl user_trap_handler
5 user_exc_leave:

6 /* disable interrupts */

7 msr daifset, #DAIF_I
8

9 /* load thread_t::tdp_flags */

10 /* thread_t::tdp_flags is a volatile unsigned - use 32-bit */

11 load_pcpu x1
12 ldr x1, [x1, #PCPU_CURTHREAD]
13 ldr w3, [x1, #TD_PFLAGS]
14

15 Ëand w2, w3, #TDP_FPUINUSE
16 cmp w2, wzr
17 beq .skip_fpu_restore
18

19 /* enable FPU */

20 mrs x2, cpacr_el1

21 and x2, x2, ~CPACR_FPEN_MASK

22 orr x2, x2, CPACR_FPEN_TRAP_NONE
23 Ìmsr cpacr_el1, x2
24

25 Íand w2, w3, #TDP_FPUCTXSAVED
26 cmp w2, wzr
27 beq .skip_fpu_restore
28

29 /* clear TDP_FPUCTXSAVED flag */

30 and w2, w3, ~TDP_FPUCTXSAVED

31 str w2, [x1, #TD_PFLAGS]
32

33 /* restore FPU context */

34 ldr x1, [x1, #TD_UCTX]
35 Îload_fpu_ctx x1, 2
36

37 .skip_fpu_restore:
38 load_ctx 0
39 eret

Listing 36: user exception handler (evec.S [55])

4.7 Context switching

Context switching is one of the most important parts of operating system. Without
them we can’t run multiple programs in parallel.
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1 long ctx_switch(thread_t *from, thread_t *to);

This procedure changes running thread on current CPU from from to to. Con-
text switching is a very sensitive function so interrupts need to be disabled before
that procedure Ê. Then we need to check if FPU must be saved by us Ë. It is true
when we switch from thread that was in user-space with activated FPU. After that
CPU context of current thread is saved Ì. In the next step active virtual memory
space is changed to the used by to thread Í, and finally CPU context of that thread
is loaded Î.

For the reason why FPU context is only saved here see 3.2.1.
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1 # ctx_switch must be called with interrupts disabled
2 mrs x2, daif
3 Êand x2, x2, #PSR_I
4 cmp x2, xzr
5 bne .ctx_save
6 hlt #0
7 # save context of @from thread
8 .ctx_save:
9 ldr w3, [x0, #TD_PFLAGS]
10 and w2, w3, #TDP_FPUINUSE|TDP_FPUCTXSAVED
11 mov w4, #TDP_FPUINUSE
12 Ëcmp w2, w4
13 bne .skip_fpu_save
14

15 orr w3, w3, #TDP_FPUCTXSAVED
16 str w3, [x0, #TD_PFLAGS]

17 /* enable FPU and save context */

18 /* thread_t::tdp_flags is a volatile unsigned - use 32-bit */

19 mrs x2, cpacr_el1

20 and x2, x2, ~CPACR_FPEN_MASK

21 orr x2, x2, CPACR_FPEN_TRAP_NONE
22 msr cpacr_el1, x2
23

24 ldr x2, [x0, #TD_UCTX]
25 save_fpu_ctx x2, 3

26 /* disable FPU */

27 mrs x2, cpacr_el1

28 and x2, x2, ~CPACR_FPEN_MASK

29 msr cpacr_el1, x2
30 .skip_fpu_save:
31 sub sp, sp, #CTX_SIZE
32 ÌSAVE_CTX
33 mov x2, sp
34 str x2, [x0, #TD_KCTX]
35 .ctx_resume:
36 # switch stack pointer to @to thread
37 ldr x2, [x1, #TD_KCTX]
38 mov sp, x2
39 # update curthread pointer to reference @to thread
40 load_pcpu x2
41 str x1, [x2, #PCPU_CURTHREAD]
42 # switch user space if necessary
43 mov x0, x1
44 Íbl vm_map_switch
45 # restore @to thread context
46 LOAD_CTX
47 Îadd sp, sp, #CTX_SIZE
48 ret

Listing 37: context switch (switch.S [56])
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4.8 Device tree

In this section I will describe minimal subset of drivers needed to boot Mimiker on
RPi3.

We can think about devices as a tree. There is a one root which is an ancestor
of all devices. Nodes are responsible for resources, like management of interrupts,
for other devices e.g. USB controller. Leaves are final devices in our infrastructure
e.g. keyboard.

4.8.1 Rootdev

Rootdev is a fake device. Purpose of rootdev is being an ancestor of all other devices.
But for simplicity interrupt controller is integrated with rootdev device.

It provides methods for dispatching interrupts, enabling interrupts and disabling
interrupts.

It is an interrupt dispatcher. Firstly CPU local interrupts are handled Ê. Next
it handles interrupts from peripherals Ë.

1 static void rootdev_intr_handler(ctx_t *ctx, device_t *dev, void *arg) {
2 assert(dev != NULL);
3 rootdev_t *rd = dev->state;
4

5 /* Handle local interrupts. */
6 Êbcm2835_intr_handle(rootdev_local_handle,
7 BCM2836_LOCAL_INTC_IRQPENDINGN(0),
8 &rd->intr_event[BCM2836_INT_BASECPUN(0)]);
9

10 /* Handle GPU0 interrupts. */
11 Ëbcm2835_intr_handle(rootdev_arm_base,
12 (BCM2835_ARMICU_OFFSET + BCM2835_INTC_IRQ1PENDING),
13 &rd->intr_event[BCM2835_INT_GPU0BASE]);
14

15 /* Handle GPU1 interrupts. */
16 bcm2835_intr_handle(rootdev_arm_base,
17 (BCM2835_ARMICU_OFFSET + BCM2835_INTC_IRQ2PENDING),
18 &rd->intr_event[BCM2835_INT_GPU1BASE]);
19

20 /* Handle base interrupts. */
21 bcm2835_intr_handle(rootdev_arm_base,
22 (BCM2835_ARMICU_OFFSET + BCM2835_INTC_IRQBPENDING),
23 &rd->intr_event[BCM2835_INT_BASICBASE]);
24 }

Listing 38: rootdev interrupt handler (bcm2835 rootdev.c [57])
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This is a handler for given set of interrupts. Each interrupt is represented by
single bit where 1 means that interrupt is present and 0 means that it is absent.
Single set is represented by 32-bit register located in physical memory Ê. These
registers are mapped to virtual memory during rootdev initialization. We iterate
over pending interrupts Ë and handle them one by one Ì.

1 static void bcm2835_intr_handle(bus_space_handle_t irq_base,
2 bus_size_t offset,
3 intr_event_t **events) {
4 Êuint32_t pending = bus_space_read_4(rootdev_bus_space, irq_base, offset);
5

6 while (pending) {
7 Ëint irq = ffs(pending) - 1;
8 /* XXX: some pending bits are shared between BASIC and GPU0/1. */
9 if (events[irq])
10 Ìintr_event_run_handlers(events[irq]);
11 pending &= ~(1 << irq);
12 }
13 }

Listing 39: bcm2835 interrupt handler (bcm2835 rootdev.c [57])

Again, to enable interrupt we need dispatcher very similar to interrupt handler.

1 static void rootdev_enable_irq(intr_event_t *ie) {
2 int irq = ie->ie_irq;
3 assert(irq < NIRQ);
4

5 if (irq < BCM2836_NIRQ) {
6 /* Enable local IRQ. */
7 enable_local_irq(irq);
8 } else if (irq < BCM2835_INT_GPU1BASE) {
9 /* Enable GPU0 IRQ. */
10 enable_gpu_irq(irq - BCM2835_INT_GPU0BASE, BCM2835_INTC_IRQ1ENABLE);
11 } else if (irq < BCM2835_INT_BASICBASE) {
12 /* Enable GPU1 IRQ. */
13 enable_gpu_irq(irq - BCM2835_INT_GPU1BASE, BCM2835_INTC_IRQ2ENABLE);
14 } else {
15 /* Enable base IRQ. */
16 enable_gpu_irq(irq - BCM2835_INT_BASICBASE, BCM2835_INTC_IRQBENABLE);
17 }
18 }

Listing 40: (bcm2835 rootdev.c [57])

To enable single interrupt we need to set suitable bit in register Ê.
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1 static void enable_local_irq(int irq) {
2 assert(irq < BCM2836_INT_NLOCAL);
3 uint32_t reg = bus_space_read_4(rootdev_bus_space, rootdev_local_handle,
4 BCM2836_LOCAL_TIMER_IRQ_CONTROLN(0));
5 Êbus_space_write_4(rootdev_bus_space, rootdev_local_handle,
6 BCM2836_LOCAL_TIMER_IRQ_CONTROLN(0), reg | (1 << irq));
7 }

Listing 41: (bcm2835 rootdev.c [57])

Disabling interrupts looks analogous.

For more information about interrupts see 2.1.3.

4.8.2 Timer

Timer is necessary if we want to run periodic tasks e.g. scheduler. Here I want to
show simple implementation of driver for timer described at 2.1.4.

For start it is need to get current value of timer Ê. Then it is possible to set
next tick time Ë and at the end, timer can be enabled Ì.

1 static int arm_timer_start(timer_t *tm, unsigned flags __unused,
2 const bintime_t start __unused,
3 const bintime_t period) {
4 arm_timer_state_t *state = ((device_t *)tm->tm_priv)->state;
5 state->step = bintime_mul(period, tm->tm_frequency).sec;
6

7 WITH_INTR_DISABLED {
8 Êuint64_t count = READ_SPECIALREG(cntpct_el0);
9 ËWRITE_SPECIALREG(cntp_cval_el0, count + state->step);
10 ÌWRITE_SPECIALREG(cntp_ctl_el0, CNTCTL_ENABLE);
11 }
12

13 return 0;
14 }

Listing 42: (timer.c [58])

To stop timer it is only needed to set value of cntp_ctl_el0 register.
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1 static int arm_timer_stop(timer_t *tm) {
2 WRITE_SPECIALREG(cntp_ctl_el0, CNTCTL_DISABLE);
3 return 0;
4 }

Listing 43: (timer.c [58])

To get current time we need to read current value of timer Ê and convert them
to the form used by machine-independent part of Mimiker.

1 static bintime_t arm_timer_gettime(timer_t *tm) {
2 Êuint64_t count = READ_SPECIALREG(cntpct_el0);
3 bintime_t res = bintime_mul(tm->tm_min_period, (uint32_t) count);
4 bintime_t high_bits = bintime_mul(tm->tm_min_period,
5 (uint32_t) (count >> 32));
6 bintime_add_frac(&res, (high_bits.frac << 32));
7 res.sec += (high_bits.sec << 32) + (high_bits.frac >> 32);
8 return res;
9 }

Listing 44: (timer.c [58])

The most important part is interrupt handler. Here we triggers machine-
dependent actions Ê based on current time and at the end time of next tick is
updated Ë.

1 static intr_filter_t arm_timer_intr(void *data /* device_t* */ ) {
2 arm_timer_state_t *state = ((device_t *)data)->state;
3

4 Êtm_trigger(&state->timer);
5

6 uint64_t prev = READ_SPECIALREG(cntp_cval_el0);
7 ËWRITE_SPECIALREG(cntp_cval_el0, prev + state->step);
8

9 return IF_FILTERED;
10 }

Listing 45: timer interrupt handler (timer.c [58])

4.8.3 PL011

For PL011 device described at 2.2 we only need to implement the following functions:

It checks if receiver hardware queue is ready.
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1 static bool pl011_rx_ready(void *state) {
2 pl011_state_t *pl011 = state;
3 return (bus_read_4(pl011->regs, PL01XCOM_FR) & PL01X_FR_RXFE) == 0;
4 }

Listing 46: (pl011.c [59])

Puts character in uart. Transmitter hardware queue must be ready.

1 static uint8_t pl011_getc(void *state) {
2 pl011_state_t *pl011 = state;
3 return bus_read_4(pl011->regs, PL01XCOM_DR);
4 }

Listing 47: (pl011.c [59])

It checks if transmitter hardware queue is ready.

1 static bool pl011_tx_ready(void *state) {
2 pl011_state_t *pl011 = state;
3 return (bus_read_4(pl011->regs, PL01XCOM_FR) & PL01X_FR_TXFF) == 0;
4 }

Listing 48: (pl011.c [59])

It enables transmitter interrupt.

1 static void pl011_tx_enable(void *state) {
2 pl011_state_t *pl011 = state;
3 set4(pl011->regs, PL011COM_CR, PL011_CR_TXE);
4 }

Listing 49: (pl011.c [59])

It disables transmitter interrupt.

1 static void pl011_tx_disable(void *state) {
2 pl011_state_t *pl011 = state;
3 clr4(pl011->regs, PL011COM_CR, PL011_CR_TXE);
4 }

Listing 50: (pl011.c [59])
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So all functions are simple wrappers for reading, setting, clearing bits.

4.9 Summary

In this chapter we have seen the most important pieces of code used for AArch64
port and Raspberry Pi 3 drivers. We have started with glue between user-space and
kernel-space which is used by every single program. Next we have gone through
MMU related code. It allows us to use virtual memory as a abstraction over re-
sources. After that we have seen kernel bootstrapping and kernel address sanitizer
initialization. At the end of core kernel code we became more familiar with excep-
tion handlers and context switching. Finally we have seen drivers for Raspberry Pi
3 that implement our hardware abstraction layer.



Chapter 5

Mimiker on Raspberry Pi 3

In this chapter I will show how to run Mimiker on Raspberry Pi 3 board with ARM-8
Cortex-A53 CPU.

Everything was tested with Debian 10 as a build machine [18], Raspberry Pi 3
Model 3B, MicroSD card and Segger J-Link EDU as hardware debugger [20].

5.1 Installation

5.1.1 Toolchain

There is a toolchain directory in a repository. There is a Makefile for each di-
rectory so you only need to run make from console. After that deb packages with
toolchain will be built. Please be patient – compilation of toolchain is a long process.

These packages need to be installed by dpkg [19] command and currently they
are supported only on Debian [18].

5.1.2 Configuration

Mimiker has a few build options that need to be set before compilation. These are:

• BOARD – build image for given board

• CLANG – use clang instead of gcc as a C compiler

• LOCKDEP – build with lock dependency validator

• KASAN – build with kernel address sanitizer

• KGPROF – build with kernel profiler

BOARD need to be set to rpi3 in config.mk. For now only KASAN is well tested.

79



80 CHAPTER 5. MIMIKER ON RASPBERRY PI 3

5.1.3 Compilation

You only need to run make command.

5.1.4 Final installation

I highly recommend to use sd card image of raspbian operating system [29]. That
image already contains necessary firmware and configuration files on boot partition.

Copy kernel (mimiker.img) and initrd to memory card. Then you need to
modify kernel, arm 64bit, initramfs and set kernel address in config.txt to
0x200000 according to [6].

Memory card should be formatted in standard way – only one partition format-
ted as FAT32 is needed.

Note that due to the problems discussed at 5.2.4, 5.2.2 and active development,
without automatic tests on Rasbperry Pi 3, there is a possibility that Mimiker will
crash after launch.
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5.1.5 Debugging

Hardware debugger

For debugging I have been using Segger J-Link EDU [20].

It implements JTAG (Joint Test Action Group) standard for verifying designs
and testing printed circuit boards after manufacture.

I have been using that tool with OpenOCD software. Before we can start with
software debugging we need to connect J-Link to Raspberry Pi 3. You can use the
following diagram 5.1 from [7]:

Figure 5.1: J-Link connection diagram for Raspberry Pi 3 [7]

Here is a photo of my setup 5.2:
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Figure 5.2: Raspberry Pi 3 with J-Link and UART

It includes additional UART connected on right side and power source via micro
USB.

OpenOCD

For debugging you can use OpenOCD (it is included in our toolchain).

openocd −c ”” −f j l i n k . c f g −f r p i 3 6 4 . c f g

With the following configuration for jlink.cfg:

adapter d r i v e r j l i n k

and following configuration for rpi3 64.cfg:
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1 transport select jtag
2 reset_config trst_and_srst
3 adapter speed 1000
4 jtag_ntrst_delay 500
5 if { [info exists CHIPNAME] } {
6 set _CHIPNAME $CHIPNAME
7 } else {
8 set _CHIPNAME rpi3
9 }
10 if { [info exists DAP_TAPID] } {
11 set _DAP_TAPID $DAP_TAPID
12 } else {
13 set _DAP_TAPID 0x4ba00477
14 }
15 jtag newtap $_CHIPNAME cpu -expected-id $_DAP_TAPID -irlen 4
16 dap create $_CHIPNAME.dap -chain-position $_CHIPNAME.cpu
17 set _TARGETNAME_0 $_CHIPNAME.cpu0
18 set _TARGETNAME_1 $_CHIPNAME.cpu1
19 set _TARGETNAME_2 $_CHIPNAME.cpu2
20 set _TARGETNAME_3 $_CHIPNAME.cpu3
21 set _CTINAME_0 $_CHIPNAME.cti0
22 set _CTINAME_1 $_CHIPNAME.cti1
23 set _CTINAME_2 $_CHIPNAME.cti2
24 set _CTINAME_3 $_CHIPNAME.cti3
25 # The ARM Cross-Trigger Interface (CTI)
26 cti create $_CTINAME_0 -dap $_CHIPNAME.dap -ap-num 0 -baseaddr 0x80018000
27 target create $_TARGETNAME_0 aarch64 -dap $_CHIPNAME.dap -coreid 0 \
28 -dbgbase 0x80010000 -cti $_CTINAME_0
29 cti create $_CTINAME_1 -dap $_CHIPNAME.dap -ap-num 0 -baseaddr 0x80019000
30 target create $_TARGETNAME_1 aarch64 -dap $_CHIPNAME.dap -coreid 1 \
31 -dbgbase 0x80012000 -cti $_CTINAME_1
32 cti create $_CTINAME_2 -dap $_CHIPNAME.dap -ap-num 0 -baseaddr 0x8001A000
33 target create $_TARGETNAME_2 aarch64 -dap $_CHIPNAME.dap -coreid 2 \
34 -dbgbase 0x80014000 -cti $_CTINAME_2
35 cti create $_CTINAME_3 -dap $_CHIPNAME.dap -ap-num 0 -baseaddr 0x8001B000
36 target create $_TARGETNAME_3 aarch64 -dap $_CHIPNAME.dap -coreid 3 \
37 -dbgbase 0x80016000 -cti $_CTINAME_3
38 $_TARGETNAME_0 configure -event reset-assert-post "aarch64 dbginit"
39 $_TARGETNAME_0 configure -event gdb-attach { halt }
40 $_TARGETNAME_1 configure -event reset-assert-post "aarch64 dbginit"
41 $_TARGETNAME_1 configure -event gdb-attach { halt }
42 $_TARGETNAME_2 configure -event reset-assert-post "aarch64 dbginit"
43 $_TARGETNAME_2 configure -event gdb-attach { halt }
44 $_TARGETNAME_3 configure -event reset-assert-post "aarch64 dbginit"
45 $_TARGETNAME_3 configure -event gdb-attach { halt }

After that you can use gdb for remote debugging.
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aarch64−mimiker−e l f −gdb sys /mimiker . e l f
−ex ' s e t a r c h i t e c t u r e aarch64 '
−ex ' f i l e sys /mimiker . e l f '
−ex ' t a r g e t extended−remote l o c a l h o s t : 3333 '
−ex ' monitor r e s e t i n i t '
−ex ' monitor t a r g e t s rp i 3 . cpu0 '
−ex ” monitor load image sys /mimiker . img 0x200000 bin ”
−ex ' monitor reg pc 0x200000 '
−ex ” load sys /mimiker . e l f ”
−ex ' source . gdb in i t '

For more information about debugging without operating system support and
explanation of used commands see [7].

5.2 Challenges

Here I want to mention the most bothersome problems I encountered when running
Mimiker on Raspberry Pi 3. Most of them are caused by differences between QEMU
emulator and real hardware. QEMU doesn’t emulate every single detail of Rapsberry
Pi 3 so most of errors can’t be detected by our CI system. They require installation
and debugging on physical hardware which is a more complicated process than
development in virtualized environment.

5.2.1 Boot process

On QEMU emulator we can boot directly from ELF (Executable and Linkable For-
mat) but on physical machine it is not working. Kernel image needs to be a binary
blob. We can achieve that by objcopy command:

objcopy −O binary mimiker . e l f mimiker . img

5.2.2 Destroying x0

The most disturbing error that I have found is first instruction of kernel code:

0000000000200000 < s t a r t >:
200000: 14000010 b 200040 < s t a r t +0x40>

. . .
200010: 000 a f75c . word 0 x000af75c
200014: 00000000 . word 0x00000000
200018: 00000002 . word 0x00000002

. . .
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200038: 644 d5241 . word 0x644d5241
20003 c : 00000000 . word 0x00000000
200040: aa0003f3 mov x19 , x0
200044: d53800a3 mrs x3 , mpidr e l1
200048: 92400463 and x3 , x3 , #0x3
20004 c : f 100007 f cmp x3 , #0x0
200050: 54000001 b . ne 200050 < s t a r t +0x50>

// b . any
200054: 1000 c3e3 adr x3 , 2018d0 < bootmem end>
200058: 9100007 f mov sp , x3
20005 c : 940004 f7 b l 201438 <a a r c h 6 4 i n i t>
200060: 9100001 f mov sp , x0
200064: aa1303e0 mov x0 , x19
200068: 9400050 e b l 2014 a0 < boa rd s ta ck venee r>
20006 c : 9100001 f mov sp , x0
200070: 14000512 b 2014b8 < b o a r d i n i t v e n e e r >

Before first instruction x0 contains address of atags or dtb. But for unknown reason
first branch instruction destroys x0 and put address of pc in that register. We can
live without that by hardcoding that address in kernel but it is not the best solution.

5.2.3 Address alignment

During early initialization of MMU we set SCTLR SA0, SCTLR SA and SCTLR A bits of
sctlr el1. They are responsible for checking alignment of kernel stack, user stack
and memory access. These bits are not implemented by QEMU. As a result we
get alignment exceptions on Raspberry Pi 3 because our implementation of memcpy
doesn’t meet these requirements. That issue has been resolved.

5.2.4 Cache control

In original implementation of Mimiker for MIPS architecture we didn’t care about
cache control. QEMU doesn’t support cache and we never tried to run Mimiker on
physical Malta board.

It also wasn’t a problem for AArch64 implementation for QEMU emulator.
Everything works without any support for caches. Unfortunately on real hardware
details are different, now caches matter. It looks like running multiple threads in
different address spaces causes cache mismatch for user-space processes. It means
that one process uses caches of other process which was running before on the same
core. It is a real problem because we can’t test that in virtualized environment so
our tests are useless for that kind of bugs.





Chapter 6

Summary

Adapting operating system to new architecture is a long journey. It requires knowl-
edge of most parts of the kernel. Working with emulated environment is not the
same as working with real hardware because emulator usually doesn’t implement
all details of hardware. Hardware will not forgive mistakes which could be ignored
by emulator. First port is also a challenge because it needs to separate machine-
dependent part from kernel and requires to create abstraction over hardware which
will be machine-independent.

In my thesis I have prepared toolchain and infrastructure for developing Mimiker
on AArch64 architecture and Rapsberry Pi 3 board. I have separated machine-
dependent part of MIPS code from kernel and written the following components:

• kernel bootstrapping

• context switching

• exception handler

• pmap

• KASAN

• copy routines

• syscall handler

• timer driver

• UART driver

The results of that work are available in Mimiker repository [17]. Now we have:

• original MIPS implementation
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• fully working AArch64 port

• drivers needed for run on Raspberry Pi 3 board

• automated tests in CI for AArch64 which pass

• integrated kernel address sanitizer

• infrastructure for future work on other architectures

The nice side effect is that everybody with basic knowledge can run Mimiker
at home.

Tetris game on Raspberry Pi 3 build.

The well known Tetris 6 game is an example of program that uses complex
abstractions (for example system calls and terminal subsystem). Now we can run
that program on AArch64 build with full functionality.

6.1 Future work

There are two big achievements of my work that can be further developed in the
future.

First is a support for CPU that has many cores. It gives opportunity to add
SMP support for Mimiker. It requires changes in multiple kernel subsystems. The
most affected one will be scheduler but it is not the only one that needs to be
changed. The VFS subsystem has substantial problems with locking – running
multiple processes that use file system causes deadlocks. Locking mechanism also
needs to be adapted – e.g. spinlocks assume that there is only a single CPU core.
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Second one is bootstrapping Mimiker on a physical board. We know that QEMU
is not perfect and hides some of our bugs. We may invest time in tests infrastructure
that uses multiple Raspberry Pi 3 boards connected to development serve with setup
similar to the one used in my work. It should give an opportunity to track changes
in machine-dependent subsystems of Mimiker without QEMU’s quirks.

Now that the port on AArch64 is as mature as the MIPS version, we can start
implementing drivers for the rest of the devices available in Raspberry Pi 3. Drivers
for USB and video will make it possible to use Raspberry Pi 3 as a multimedia
device with Mimiker operating system.
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