
Faster Algorithms for the Longest Common
Increasing Subsequence Problem

Szybsze algorytmy dla problemu
Najdłuższego Wspólnego Podciągu Rosnącego

Anadi Agrawal

Praca licencjacka

Promotor: dr Paweł Gawrychowski

Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

17 czerwca 2021

Abstract

The Longest Common Increasing Subsequence (LCIS) is a natural variant of the
classical Longest Common Subsequence (LCS), in which we additionally require the
common subsequence to be strictly increasing. For both problems, we know that
there is no strongly subquadratic algorithm unless SETH fails (which is considered
unlikely). However, for the latter problem, we have known since 1980 that a slightly
subquadratic O(n2/ log2 n) algorithm exists. For the former problem, the same
approach does not seem to work, though, and only in 2020, Duraj was able to break
the O(n2) barrier by designing an O(n2(log log n)2/ log1/6 n) time algorithm, which
was later improved to O(n2 log logn/

√
log n) by Agrawal and Gawrychowski [ISAAC

2020]. In this thesis, we describe the latter algorithm, and further improve it to work
in O(n2(log log n)2/ log2/3 n) time by combining the ideas from both solutions. We
also survey the existing work and include some experimental results.

Problem najdłuższego wspólnego podciągu rosnącego (NWPR) jest jednym z
wariantów klasycznego problemu najdłuższego wspólnego podciągu (NWP). W tym
wariancie dodatkowo wymagamy, aby szukany wspólny podciąg był ściśle rosnący.
Dla obu problemów wiadomo, że nie istnieje silnie podkwadratowy algorytm, chyba
że SETH nie jest prawdą (co jest uważane za mało prawdopodobne). Jednakże, dla
problemu NWP wiadomo, że istnieje nieco podkwadratowy algorytm o złożoności
O(n2/ log2 n). Dla NWPR, podobne podejście wydawało się nie działać i dopiero w
2020, Duraj był w stanie uzyskać algorytm w złożoności O(n2(log log n)2/ log1/6 n),
które zostało poprawione do O(n2 log logn/

√
log n) przez Agrawala i Gawrychow-

skiego [ISAAC 2020]. W tej pracy, przedstawiony jest ten drugi algorytm, jak i jego
ulepszenie do złożoności O(n2(log log n)2/ log2/3 n) poprzez połączenie pomysłów z
obu rozwiązań wspomnianych wyżej. Dodatkowo, przedstawiany jest obecny stan
wiedzy dla problemu NWPR, wraz z pewnymi eksperymentalnymi wynikami.

Contents

1 Introduction 7

2 An Overview of the Solutions 9

2.1 Preliminaries . 9

2.2 LCIS for Constant Alphabet . 9

2.3 O(n2) Time and Space Algorithm for LCIS 10

2.4 O(n2) Time and O(n) Space Algorithm for LCIS 10

2.5 The First Subquadratic Algorithm 11

3 Why is it Hard to Beat O(n2) 13

3.1 Hypothesis . 13

3.2 Reduction to OV Conjecture . 13

3.2.1 Separator Sequences . 14

3.2.2 Sequence for a Vector . 14

3.2.3 Final Construction . 14

4 Main Solution 17

4.1 Notation . 17

4.2 First Solution (Few Distinct Elements) 17

4.3 Second Solution (Rare Elements) . 20

4.4 Combining Solutions . 25

5 Improving the First Solution 27

5.1 Redefining the Blocks in Dynamic Programming 27

5.2 Cutting Blocks . 28

5

6 CONTENTS

5.3 Updating the Blocks . 29

5.4 Time Complexity . 30

6 Experiments 31

6.1 Solutions . 31

6.2 Testing . 31

6.3 Results . 32

Bibliography 35

Chapter 1

Introduction

In the classical Longest Common Subsequence (LCS) problem, we aim to find the
length of the longest subsequence, common to two strings given in the input. The
textbook algorithm for this problem works in O(n2), but we also have asymptot-
ically faster algorithms working in O

(
n2/ log2 n

)
[10] for constant alphabets and

O
(
n2 log log n/ log2 n

)
[8] for general alphabets. It is unlikely that a strongly sub-

quadratic algorithm exists [1], and even achieving O
(
n2/ log7+ε n

)
[2] would lead to

some unexpected consequences.

The problem we consider in this thesis is a variation of the LCS problem, and
we define it as follows:

Problem: Longest Common Increasing Subsequence (LCIS)

Input: integer sequences A[1..n] and B[1..n]

Output: largest ` such that there exist indices i1 < . . . < i` and j1 < . . . < j`

with the property that (i) A[ik] = B[jk], for every k = 1, . . . , `, and (ii) A[i1] <

. . . < A[i`].

The straightforward dynamic programming from LCS [12] would yield an O(n3)

solution for LCIS. However, by exploiting the properties of LCIS, this approach can
be optimised to O

(
n2
)

[13] (even in linear space [11]). Similarly, as in LCS, the
existence of a strongly subquadratic algorithm would refute SETH [7]. The SETH is
the conjecture that there is no algorithm solving k-SAT for all k ∈ N in O(2δn) for
any δ < 1.

TheO(n2) barrier was unbeaten for this problem for a long time. The usual “Four
Russians” technique does not seem to be directly applicable here, as in the dynamic
programming, it was hard to memorise information using o(n2) words. However, re-
cently this barrier was broken by Duraj [6], who presented theO

(
n2(log log n)2/ log1/6 n

)
solution exploiting the combinatorial properties of LCIS. It was later improved by

7

8 CHAPTER 1. INTRODUCTION

Agrawal and Gawrychowski to O
(
n2 log logn/

√
log n

)
[3] with an algorithm based

on tabulation.

This thesis is based on the author’s work published in ISAAC 2020, although
it improves the upper bound given in that paper to O(n2(log log n)2/ log2/3 n). In
the beginning, an overview of the progress made for LCIS is presented. Further, the
algorithm from ISAAC and its improvement is shown. In the end, a subset of these
algorithms was implemented and compared on selected tests.

Chapter 2

An Overview of the Solutions

2.1 Preliminaries

We work with sequences of integers. For sequence A, A[i] denotes the value of the
i-th element of the sequence, while A[1..i] denotes the prefix of length i. |A| is the
length of that sequence.

The sequences we are given in the input are denoted by A and B. The length of
each of these sequences is equal to n.

Definition 2.1.1 (Matching pair). A pair of indices (i, j) is called a matching pair
if A[i] = B[j]. Further, it is called a v-pair if A[i] = B[j] = v.

The LCIS(i, j) is defined as LCIS of sequencesA[1..i], B[1..j]. Further, LCIS→(i, j)

denotes the longest strictly increasing subsequence of A[1..i] and B[1..j] which in-
cludes both A[i] and B[j] (so in particular, A[i] = B[j]).

2.2 LCIS for Constant Alphabet

Restricting the alphabet to a constant size simplifies the LCIS problem. In particular,
this problem can be solved in linear time.

Define last[i][c] as the largest index j < i such that A[i] = c. If such j does not
exist then last[i][c] = 0. Similarly next[i][c] is defined as the smallest index j > i such
that B[j] = c. If such j does not exist then next[i][c] =∞.

Consider dp[i][r] defined as the smallest j, such that LCIS→(i, j) = r. If such
j does not exist, then dp[i][r] =∞. Additionally, we set dp[0][0] = 0. Such dp can
be easily calculated in O(1) using the following transition:

dp[i][r] = min
c<A[i]

{ next[dp[last[i][c]][r − 1]][A[i]] }

9

10 CHAPTER 2. AN OVERVIEW OF THE SOLUTIONS

The result is the largest r such that there exist i fulfilling dp[i][r] <∞. Because
the size of the alphabet bounds r, the above solution works in O(n+m). Details of
how to calculate dp can be found in the following pseudocode:

Algorithm 1 Calculate dp for constant alphabet
1: procedure CalculateDP
2: . S denotes the size of the alphabet
3: for c = 1..S do
4: next[n][c] =∞
5: last[1][c] = 0

6: for i = 2..n do
7: for c = 1..S do
8: last[i][c]← last[i− 1][c]

9: last[i][A[i− 1]]← i− 1

10: for i = n− 1..1 do
11: for c = 1..S do
12: next[i][c]← next[i− 1][c]

13: next[i][A[i+ 1]]← i+ 1

14:

15: dp[0][0]← 0

16: for i = 1..n do
17: for r = 1..n do
18: dp[i][r]←∞
19: for c = 1..A[i]− 1 do
20: dp[i][r]← min{ dp[i][r], next[dp[last[i][c]][r − 1]][A[i]] }

2.3 O(n2) Time and Space Algorithm for LCIS

The solution proposed by Yang, Huang and Chao [13] is based on dynamic program-
ming. In particular, the algorithm keeps dpij [k] equal to the smallest possible ending
number of the increasing subsequence common to A[1..i] and B[1..j] whose length is
equal to k.

The key observation is that dpij−1 and dpi−1j differs from dpij on at most one
entry. Exploiting this property, the authors were able to obtain O(n2) solution. As
the following solution achieves better bounds, we skip the details of this one.

2.4 O(n2) Time and O(n) Space Algorithm for LCIS

The solution for LCIS achieving these bounds was first proposed by Sakai [11].
However, the solution presented there can be simplified. Therefore, the presented

2.5. THE FIRST SUBQUADRATIC ALGORITHM 11

solution is a simpler version of the algorithm presented in that work.

Let dp[i][j] denote the maximal length of the increasing subsequence com-
mon to A[1..i] and B[1..j] ending with number B[j]. Then, the result is equal to
maxi{ dp[n][i] }.

An entry in dp can be calculated as follows:

dp[i][j] =

dp[i− 1][j], if A[i] 6= B[j],

max
k<j∧B[k]<B[j]

{ dp[i− 1][k] + 1 }, otherwise.

By inspecting the above transition, we see that if we calculate dp in row-major
order, then it suffices to keep only its last row. Thus, the remaining part is how to
calculate dp quickly. The idea is to synchronise all calculations for a single row.

For fixed row i, calculate the entries in increasing order of j. Keep an additional
variable called best, initialised with 0. Then for fixed j we encounter three cases:

1. Set dp[i][j] := dp[i−1][j] and best := max{ best, dp[i−1][j]+1 } for B[j] < A[i]

2. Set dp[i][j] = best for B[j] = A[i]

3. Set dp[i][j] = dp[i− 1][j] for B[j] > A[i]

Because we analyze entries in order of increasing values j, in the second case
the value of the variable best is equal to maxk<j∧B[k]<B[j]{ dp[i− 1][k] + 1 }. Details
on the exact implementation using a single array of length n can be found beneath.

Algorithm 2 Calculate linear space dp in O(n2)

1: procedure CalculateDP
2: for j = 1..n do
3: dp[j]← 0

4: for i = 1..n do
5: best← 0

6: for j = 1..n do
7: if A[i] = B[j] then
8: dp[j]← best

9: if A[i] < B[j] then
10: best← max{ best, dp[i][j] + 1}

2.5 The First Subquadratic Algorithm

The first one to break the O(n2) was Duraj [6]. Here, we outline the main Lemma
(without proof) from Duraj’s work rather than the algorithm itself. Later, we exploit
it in the O(n2/ log2/3−ε) algorithm.

12 CHAPTER 2. AN OVERVIEW OF THE SOLUTIONS

Definition 2.5.1 (Significant pairs). Let (x, y) be a v-pair. We call (x′, y′) a valid
pair if it is a v-pair and (x′, y′) 6= (x, y), x′ ≤ x, y′ ≤ y. We call (x, y) a significant
pair if LCIS→(x, y) > LCIS→(x′, y′) for any valid pair (x′, y′).

Lemma 2.5.2. For any two sequences A, B, such that |A|, |B| ≤ n, the number of
significant pairs can be bounded by O(n2/ log1/3 n).

Chapter 3

Why is it Hard to Beat O(n2)

As the upper bounds for the LCIS in the worst case were nowhere close to the linear
time, the natural question raised if it is possible to get closer to it. Duraj, Künnemann
and Polak proved that a strongly subquadratic algorithm, i.e. an O(n2−ε) algorithm,
would refute SETH [7]. In this thesis, the main ideas from their publication are
outlined. Details, including proofs, can be found in the original work.

3.1 Hypothesis

Hypothesis 3.1.1 (Strong Exponential Time Hypothesis (SETH)). Consider any
δ ∈ (0, 1). There is no algorithm solving k-SAT for all k ∈ N in O(2δn).

SETH implies the following conjecture:

Hypothesis 3.1.2 (Orthogonal Vectors (OV) conjecture). Let A,B ⊆ {0, 1}d where
d = ω(log n), |A| = |B| = n. Two vectors a, b are called orthogonal if

∑d
i=1 a[i] ·b[i] =

0. There is no O(n2−ε) algorithm for any ε > 0 determining if there exist a ∈ A and
b ∈ B such that a, b are orthogonal.

3.2 Reduction to OV Conjecture

Definition 3.2.1 (Inflation). For a sequence A = 〈a1, a1, . . . , an〉 its inflation is
defined as follows:

inflate(A) = 〈2a0 − 1, 2a0, 2a1 − 1, 2a1, . . . , 2an − 1, 2an〉

Lemma 3.2.2. For any two sequences A, B, LCIS(inflate(A), inflate(B)) = 2 ·
LCIS(A,B).

13

14 CHAPTER 3. WHY IS IT HARD TO BEAT O(N2)

3.2.1 Separator Sequences

Definition 3.2.3 (Separator sequences). Sequences A = α0α1 . . . αn−1 and B =

β0β1 . . . βn−1 are called separator sequences if for each i, j ∈ {0, 1, . . . , n − 1}
LCIS(α0α1 . . . αi, β0β1 . . . βj) = i+j+C for a fixed constant C. Here, α0, α1, . . . , αn−1,
β0, β1, . . . , βn−1 might denote a block of letters.

We construct such sequences for n = 2k such that |Ak| = |Bk| = O(k2k), and
C = 2k. Denote Ak = α0

kα
1
k . . . α

2k−1
k , Bk = β0kβ

1
k . . . β

2k−1
k . Additionally, by sk

denote the largest value in sequences Ak, Bk. The construction is as follows:

1. A0 = B0 = 〈1〉

2. α2i
k = inflate(αik−1) ◦ 〈2sk−1 + 2〉, α2i+1

k = 〈2sk−1 + 1, 2sk−1 + 3〉 for k > 0

3. β2ik = inflate(βik−1) ◦ 〈2sk−1 + 1〉, β2i+1
k = 〈2sk−1 + 2, 2sk−1 + 3〉 for k > 0

It can be proven that Ak, Bk are separator sequences. We also define Âk, B̂k as
reversed and multiplied by −1 version of respectively Ak, Bk. It is straightforward to
observe, that we can decompose Âk = α̂0

kα̂
1
k . . . α̂

2k−1
k , B̂k = β̂0kβ̂

1
k . . . β̂

2k−1
k such that

for any i, j ∈ {0, 1, . . . , 2k − 1}, LCIS(α̂ik . . . α̂
2k−1
k , β̂jk . . . β̂

2k−1
k) = 2 · (2k − 1)− i−

j + 2k.

3.2.2 Sequence for a Vector

Let A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bn} denote two sets defined as in OV
conjecture. We define sequences ui, vi in a following way:

〈ui[2p− 1], ui[2p]〉 =

{
〈2p− 1, 2p〉 , if ai[p] = 0,

〈2p− 1, 2p− 1〉 , otherwise

〈vi[2p− 1], vi[2p]〉 =

{
〈2p, 2p− 1〉 , if bi[p] = 0,

〈2p, 2p〉 , otherwise

Lemma 3.2.4. LCIS(ui, vj) = d−
∑d

k=1 ai[k] · bj [k]

3.2.3 Final Construction

Lemma 3.2.5. Let u0, u1, . . . , un−1, v0, v1, . . . , vn−1 be integer sequences of length
at most δ. Then, there exist sequences X, Y of length O(δ · n log n+

∑
i(|ui|+ |vi|)),

constructible in linear time, such that LCIS(X,Y) = maxi,j{LCIS(ui, vj)}+ C for
a constant C depending only on n and l.

The idea behind this construction is to use separator sequences defined in
Definition 3.2.3. We interlace slightly modified sequences Ak, Âk with sequences

3.2. REDUCTION TO OV CONJECTURE 15

u0, . . . , un−1, and Bk, B̂k with sequences v0, . . . , vn−1. For k ∼ log n, we achieve
desired bounds.

Assume there is a O(n2−ε) time algorithm for the LCIS problem. Take two
sets of vectors, A and B, as defined in OV conjecture. From Lemma 3.2.4 for these
vectors, we can construct sequences u1, . . . , un, v1, . . . , vn of the length bounded by
2d, such that for every a ∈ A, b ∈ B, the LCIS of respective sequences is equal to d if
and only if a and b are orthogonal.

From Lemma 3.2.5 we construct two sequences X, Y such that their LCIS is
equal to C + maxi,j{LCIS(ui, vj)}. We can find the LCIS in O(n2−ε) what gives us
O((nd log n)2−ε) = O(n2−εpoly(d)polylog(n)) time algorithm to solve OV problem.
This algorithm refutes Hypothesis 3.1.2 and consequently Hypothesis 3.1.1.

Chapter 4

Main Solution

The idea of this algorithm is to combine two solutions which are fast only in some
special scenarios. We start with presenting each of these solutions, and in the final
section we show how to combine them to obtain a fast algorithm in general case.

4.1 Notation

Let σ be the sequence consisting of all distinct integers present in A and B, arranged
in the increasing order, and cnt(v) be the total number of occurrences of σ[v] in A

and B. Without loss of the generality we can assume that σ[v] = v, and write v
instead of σ[v].

Throughout the paper, log x denotes log2 x.

4.2 First Solution (Few Distinct Elements)

In this section we describe an algorithm for finding LCIS in O(|σ| · n2/ log n) time.

Let dpv[i][j] denote the largest possible length of a sequence C such that:

1. C is an increasing common subsequence of A[1..i] and B[1..j],

2. C consists of elements not larger than v.

Then, our goal is to compute dp|σ|[n][n].

All |σ| · n2 entries in dp can be calculated in O(1) time each using the following
recurrence:

dpv+1[i][j] =

{
dpv[i− 1][j − 1] + 1, if A[i] = B[j] = v + 1,

max{dpv[i][j], dpv+1[i− 1][j], dpv+1[i][j − 1]}, otherwise.

17

18 CHAPTER 4. MAIN SOLUTION

In order to decrease the time we will speed up calculating dpv+1 from dpv. Because
calculating dpv+1 only requires the knowledge of dpv, we will only keep the current
dpv and update all of its entries to obtain dpv+1.

Lemma 4.2.1. 0 ≤ dpv[i][j]− dpv[i][j − 1] ≤ 1 and 0 ≤ dpv[i][j]− dpv[i− 1][j] ≤ 1.

Proof. A subsequence of B[1..(j−1)] is still a subsequence of B[1..j], so dpv[i][j−1] ≤
dpv[i][j]. Consider a sequence C corresponding to dpv[i][j], and let C ′ be C without
the last element. Because C is a subsequence of B[1..j], C ′ is a subsequence of
B[1..(j − 1)]. So, C ′ is an increasing subsequence of A[1..i] and B[1..(j − 1)], hence
|C ′| ≤ dpv[i][j − 1]. As |C| = |C ′|+ 1, we conclude that dpv[i][j] ≤ dpv[i][j − 1] + 1.
The second part of the Lemma follows by a symmetrical reasoning.

Instead of maintaining dpv, we keep another table dp′v[i][j] = dpv[i][j]−dpv[i][j−
1] (where dpv[i][j] = 0 for j < 1). Due to Lemma 4.2.1, each entry of dp′v is either 0
or 1. This allows us to store each row of dp′v by partitioning it into O(n/b) blocks
of length b, with every block represented by a bitmask of size b saved in a single
machine word, where b = α log n for some constant α to be fixed later. By definition,

dpv[i][j] =
j∑

k=1

dp′v[i][k]. In addition to dp′v, we store the value of dpv[i][j] for every

block boundary, so O(n2/b) values overall. This will allow us later to recover any
dpv[i][j] in constant time by retrieving the value at the appropriate block boundary
and adding the number of 1s in a prefix of some bitmask. We preprocess such prefix
sums for every possible bitmask in O(2b · b) time and space. To implement updates
efficiently we also need the following lemma.

Lemma 4.2.2. 0 ≤ dpv+1[i][j]− dpv[i][j] ≤ 1

Proof. Because allowing using more elements cannot decrease the length, dpv[i][j] ≤
dpv+1[i][j]. Let C be a sequence corresponding to dpv+1[i][j], and let C ′ be C

without the last element. Because C is strictly increasing, the elements of C ′ are
not larger than v, so |C ′| ≤ dpv[i][j]. Then, using |C ′| + 1 = |C| we obtain that
dpv+1[i][j]− 1 ≤ dpv[i][j].

We now describe how to obtain the table storing the values of dp′v+1 by modifying
the table storing the values of dp′v. To this end, we use the recursion for dpv+1[i][j]

and process the rows one-by-one. We start by copying the corresponding i-th row of
dp′v, and then update the entries going from left to right. In the j-th step, we would
like to have correctly determined the values of dp′v+1[i][1], dp′v+1[i][2], . . . , dp′v+1[i][j]

that together encode the values of dpv+1[i][1], dpv+1[i][2], . . . , dpv+1[i][j]. However,
during this process we are no longer guaranteed that dpv+1[i][j] ≤ dpv+1[i][j + 1], To
overcome this issue, we immediately propagate each value to the right: after increasing
dpv+1[i][j] (by one due to Lemma 4.2.2) we also increase every dpv+1[i][k] equal to the
original value of dpv+1[i][j], for all k > j. This translates into setting dp′v+1[i][j] to 1

4.2. FIRST SOLUTION (FEW DISTINCT ELEMENTS) 19

and setting dp′v+1[i][k] to 0, for the smallest k > j such that dp′v+1[i][k] = 1, if such
exists. To implement this efficiently, we maintain k while considering j = 1, 2, . . . , n

in O(n) overall time. The details of this procedure are shown in Algorithm 3.

Algorithm 3 Calculate the i-th row of dp′v+1

1: procedure CalculateRow(v, i)
2: ptr ← 1

3: cur value← 0

4: prv value← 0

5: prv phase← 0

6: for j = 1..n do
7: dp′v+1[i][j] = dp′v[i][j]

8: for j = 1..n do
9: if ptr ≤ j then ptr ← j + 1

10: while ptr ≤ n and dp′v+1[i][ptr] = 0 do
11: ptr ← ptr + 1

12: cur value← cur value+ dp′v+1[i][j]

13: . cur value =
∑j

j′=1 dp′v+1[i][j
′] = max{dpv[i][j], dpv+1[i][j − 1]}

14: . prv phase = dpv[i− 1][j − 1]

15: if A[i] = B[j] = v + 1 and cur value = prv phase then
16: dp′v+1[i][j]← 1

17: cur value← cur value+ 1

18: if ptr ≤ n then dp′v+1[i][ptr]← 0

19: prv phase← prv phase+ dp′v[i− 1][j]

20: prv value← prv value+ dp′v+1[i− 1][j]

21: . prv value = dpv+1[i− 1][j]

22: if cur value < prv value then
23: cur value← prv value

24: dp′v+1[i][j]← 1

25: if ptr ≤ n then dp′v+1[i][ptr]← 0

We speed up Algorithm 3 by a factor of b by considering whole blocks of dp′v+1

instead of single entries. Consider a single block of dp′v+1 consisting of the values of
dp′v+1[i][j], dp′v+1[i][j + 1], . . . , dp′v+1[i][j + b − 1], and assume that they have been
already partially updated by propagating the maximum. To calculate their correct
values we need the following information:

1. dp′v[i− 1][j], dp′v[i− 1][j + 1], . . . , dp′v[i− 1][j + b− 1],

2. dp′v+1[i− 1][j], dp′v+1[i− 1][j + 1], . . . , dp′v+1[i− 1][j + b− 1],

3. dp′v+1[i][j], dp′v+1[i][j + 1], . . . , dp′v+1[i][j + b− 1],

4. dpv[i− 1][j − 1],

20 CHAPTER 4. MAIN SOLUTION

5. dpv+1[i− 1][j − 1],

6. dpv+1[i][j − 1],

7. for which indices j, j + 1, . . . , j + b− 1 we have A[i] = B[j] = v + 1.

In fact, we can rewrite the procedure so that instead of the values dpv[i− 1][j − 1],
dpv+1[i−1][j−1], dpv+1[i][j−1] only the differences dpv+1[i−1][j−1]−dpv[i−1][j−1]

and dpv+1[i][j−1]−dpv+1[i−1][j−1] are needed. By Lemma 4.2.1 and Lemma 4.2.2,
both differences belong to {0, 1}, so the whole information required for calculating
the correct values consists of 4b+ 2 bits. Blocks dp′ are already stored in separate
machine words, and we can prepare, for every v, an array with the j-th entry set
to 1 when B[j] = v, partitioned into n/b blocks of length b, where each block is
saved in a single machine word, in O(|σ| · n) time. This allows us to gather all the
required information in constant time and use a precomputed table of size O(24b+2)

that stores a single machine word encoding the correct values in a block for every
possible combination. Additionally, the table stores the number of 1s to the right of
the block that should be changed to 0. The table can be prepared in O(24b+2 · b)
time by a straightforward modification of Algorithm 3. Now we can update a whole
block in constant time by retrieving the precomputed answer, but then we still might
need to remove some 1s on its right. Instead of removing them one-by-one we work
block-by-block. In more detail, we maintain a pointer to the nearest block that might
contain a 1. Let the number of 1s there be ` and the number of 1s that still need
to be removed be s. As long as s > 0, we remove min{`, s} leftmost 1s from the
current block in constant time using a precomputed table of size O(2b · b), decrease s
by min{`, s}, and move to the next block. This amortises to constant time per block
over the row.

We set b = logn
5 as to make the required preprocessing o(n). Then, the overall

complexity of the algorithm becomes O(|σ| · n2/ log n).

4.3 Second Solution (Rare Elements)

In this section we describe an algorithm for solving LCIS inO(
|σ|∑
v=1

(cnt(v))2(1 + log2(n/cnt(v))))

time.

For every matching pair (x, y), we will compute LCIS→(x, y), called the result
for (x, y). The algorithm proceeds in phases corresponding to the elements of σ,
and in the v-th step computes the results for all v-pairs. During this computation
we maintain, for every r = 1, 2, . . . , n, a structure D(r) that allows us to quickly
determine, given any (x, y), if there exists an already processed matching pair (x′, y′)

with result r such that x′ < x and y′ < y. Each D(r) is implemented using the
following lemma.

4.3. SECOND SOLUTION (RARE ELEMENTS) 21

Lemma 4.3.1. We can maintain a set of points S ⊆ [n] × [n] under inserting a
batch of u ≤ n points in amortisied O(u(1 + log n

u)) time and answering a batch of
q ≤ n queries of the form “given (x, y), is there (x′, y′) ∈ S such that x′ < x and
y′ < y” in O(q(1 + log n

q)) time.

Proof. We first describe a slower solution that achieves the claimed bounds only
for q = 1, and then extend it to larger values of q. For the latter, we could have
also used balanced search trees with dynamic finger property, such as the level
linked (2,4)-trees [9]. However, this results in a somewhat complicated solution, and
we opt for a self-contained description. We also note that the related question of
implementing basic operations on two sets of size n and m, where m ≤ n, in time
O(m log(n/m)) goes back to the work of Brown and Tarjan [5].

We observe that if the current S contains two distinct points (xi, yi) and (xj , yj)

with xi ≤ xj and yi ≤ yj then there is no need to keep (xj , yj). Thus, we keep
in S only points that are not dominated. Let (x1, y1), . . . , (xk, yk) be these points
arranged in the increasing order of x coordinates (observe that we cannot have two
non-dominated points with the same x coordinate). So, x1 < x2 < . . . < xk, where
k ≤ n, and because the points are not dominated also y1 > y2 > . . . yk. We store
the x coordinates in a BST. This clearly allows us to answer a single query (x, y)

in O(log n) time by locating the predecessor of x. To insert a point (x, y), we first
check that it is not dominated by locating the predecessor of x. Then, we might
need to remove some of the subsequent x coordinates that correspond to points
that are dominated by (x, y). This can be efficiently implemented by maintaining a
doubly-linked list of all points, and linking each x coordinate with its corresponding
point. Insertion takes O(log n) time plus another O(log n) for every removed point,
so O(log n) amortised time, and a query concerning (x, y) reduces to finding the
predecessor of x among the xis in O(log n) time.

We first explain how to process a batch of q queries. We first sort them in
O(q(1 + log(n/q))) time using radix sort with base b. We use a BST that allows split
and merge in O(log s) time, where s is the number of stored elements, for example
AVL trees. Additionally, we store the size of the subtree in every node. Then we
have the following easy proposition.

Proposition 4.3.2. We can split BST into at most b smaller BSTs containing
Θ(s/b) elements each in O(b(1 + log s

b)) time.

Proof. As long as there is a BST of size at least 2s/b we split it into two BSTs of
(roughly) equal sizes. Assuming for simplicity that both s and b are powers of 2,
this takes O(

∑log b−1
i=0 2i log(s/2i)) overall time, which can be bounded by calculating∫ b

1 log(s/x)dx = O(b(1 + log(s/b))).

Then, we split the BST into at most q smaller BSTs containing Θ(s/q) elements
each, where s is the number of stored elements, using Proposition 4.3.2. Because

22 CHAPTER 4. MAIN SOLUTION

queries are sorted, we can determine for each of them the relevant BST by a linear
scan, and then query the relevant BST in O(1 + log(s/q)) time, so O(q(1 + log n

q))

overall.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

7

8

Figure 4.1: Processing a batch of 3 insertions, with the already existing and new
points denoted by circles and squares, respectively.

We now explain how to process a batch of u insertions. We start with determining
which of the new points are dominated by the already stored points in O(u(1 +

log(s/u)) time using the above method. This also allows us to determine, for each
new point (x, y), the range of already stored points (xi, yi), (xi+1, yi+1), . . . , (xj , yj)

that should be removed from the structure because of inserting (x, y). See Figure 4.1.
This takes additional O(`) time by traversing the doubly-linked list, where ` is the
number of points to be removed. As in a query, we split the BST into at most
u smaller BSTs containing Θ(s/u) elements each, and merge a sorted list of new
points with the list of smaller BSTs in O(u(1 + log(s/u))) time. Then, each range
of the points that should be removed is either fully contained in a single smaller
BSTs, or consists of a prefix of a smaller BST, then a range of full smaller BSTs,
and finally a suffix of a smaller BSTs. By splitting a smaller BST in O(log(s/q))

time and assigning a single credit to every stored element, we can hence implement
all deletions in O(u(1 + log(s/u))) time. Finally, we insert each new point into the
appropriate smaller BST. This might take more than O(log(s/u)) time per element
if there are more than s/u insertions to the same smaller BST. In such case, we
build an AVL tree containing all these ` ≥ s/u new points in O(`) time, and then
insert the Θ(s/q) already existing points there in O(s/q log `) = O(` log(s/q)) time,
and discard the smaller BST. Finally, we merge the BSTs into pairs, quadruples,
and so on. By the calculation from the proof of Proposition 4.3.2 this also takes
O(u(1 + log(u/b))) time.

Lemma 4.3.1 is already enough to binary search for the result of (x, y) in
O(log2 n) time due to the following property.

4.3. SECOND SOLUTION (RARE ELEMENTS) 23

Lemma 4.3.3. Consider any r and an already processed matching pair (x′, y′) with
result r. Then either r = 1 or there exists an already processed matching pair (x′′, y′′)

with result r − 1 such that x′′ < x′ and y′′ < y′.

Proof. Assume that r ≥ 2 and consider a sequence C which realises the result for
(x′, y′). Then C[1..|C| − 1] is an increasing subsequence of both A[1..(x′ − 1)] and
B[1..(y′ − 1)]. Let A[x′′] and B[y′′] be its last elements in A and B, respectively.
Then x′′ < x′, y′′ < y′, and A[x′′] = B[y′′], so (x′′, y′′) is a matching pair, and because
C is strictly increasing this matching pair must have been already processed.

However, our goal is to spend O(1 + log2(n/cnt(v))) time per every (x, y). We
exploit the following property.

Lemma 4.3.4. Consider two v-pairs (x, y1) and (x, y2), where y1 < y2. The result
for (x, y2) is at least as large as for (x, y1).

Proof. Consider a sequence C which realises LCIS→(x, y1). Then, replacing y1 with
y2 we obtain a valid candidate for the value of LCIS→(x, y2).

Consider all v-pairs with the same x coordinate (x, y1), (x, y2), . . . , (x, ycnt(v)).
We binary search for the result of (x, yi) for i = cnt(v), . . . , 2, 1. By Lemma 4.3.4,
in the i-th step we can start with the result found in the (i + 1)-th step. Using
exponential search [4], by convexity of the log function the overall complexity becomes
O(cnt(v)(1 + log(n/cnt(v)))). This is still too slow, as every step involves a separate
invocation of Lemma 4.3.1 and takes O(log n) time. To obtain the final speed up,
we process all x coordinates x1, x2, . . . , xcnt(v) together. The high level idea is to
synchronise all exponential searches and exploit the possibility of asking a batch of
queries.

We start with modifying the proof of Lemma 4.3.1 to allow for more general
queries: given x, we want to find the smallest y such that there exists (x′, y′) ∈ S with
x′ < x and y′ < y (or detect that there is none). The modification is straightforward
and does not increase the time complexity. Now we can restate processing all pairs
with the same x coordinates. We start with a counter c initially set to n and i set to
cnt(v). As long as i ≥ 1, we use exponential search starting at c to find the result for
(x, yi). Let c′ be the found result. We use the modified Lemma 4.3.1 to determine
the smallest y such that c′ is the result for (x, y) and then keep decreasing i as long
as i ≥ 1 and yi > y. Then, we decrease c′ by 1 and repeat.

We further reformulate processing all pairs with the same x coordinate. Consider
a conceptual complete binary tree on n leaves (without losing generality, n is a power
of 2). Every node corresponds to an interval [a, b], and by querying such a node we
will understand querying structure D(a) with the current (x, yi). Consider the leaf
corresponding to c. Calculating c′ with exponential search can be phrased as starting
at the leaf corresponding to c and going up as long as the query at the current node

24 CHAPTER 4. MAIN SOLUTION

fails (we only need to ask a query if the previous node was the right child of the
current node; otherwise, we can immediately jump to the nearest ancestor with such
property). After having reached the first ancestor for which the query succeeds, we
descend from its left child to the leaf corresponding to c′ by repeating the following
step: if querying the right child of the current node succeeds we descend to the right
child, and otherwise we descend to the left child. See Figure 4.2.

Figure 4.2: Exponential search for the next node phrased as traversing the binary
tree.

Now we are able to synchronize the exponential searches as follows. We traverse
the conceptual complete binary tree recursively: to traverse the subtree rooted at
node u with children u` and ur we (i) visit u, (ii) recursively traverse the subtree
rooted at ur, (iii) visit u again, (iv) recursively traverse the subtree rooted at u`.
Thus, every node is visited twice. We claim that when visiting the nodes of the
conceptual complete binary tree using this strategy, for any x coordinate we are
always able to wait till we encounter the node that should be queried next. This is
formalised in the following lemma.

Lemma 4.3.5. Let the result for (x, yi+1) be c and the result for (x, yi) be c′ < c.
All queries necessary to calculate c′ can be answered during the traversal after the
second visit to c and before the second visit to c′.

Proof. The calculation consists of two phases. First, we need to ascend from the leaf
corresponding to c, reaching its first ancestor u at which the query fails. Recall we
only need to ask queries if the previous node is the right child of the current node.
For each such node v we will be able to use second visit to v in the traversal. Thus,
we will process all such queries after the second visit to u. Then, we need to descend
from the left child of u. In every step, we query the right child vr of the current node
v, and continue either in the left or in the right subtree of v. To this end, we use the
first visit to vr in the traversal.

We start calculating time complexity, by noting that we have to traverse the
whole tree, which can be done in O(n). For each x coordinate, by convexity of the
log function, we need to query at most O(cnt(v)(1 + log(n/cnt(v)))) nodes of the

4.4. COMBINING SOLUTIONS 25

conceptual binary tree. Denoting by qu the number of queries to a node u, we thus
have

∑
u qu = s = O(cnt(v)2(1 + log(n/cnt(v)))). Invoking Lemma 4.3.1, the total

time to answer all these queries is
∑

u qu(1+ log(n/qu)). By convexity of the function
f(x) = x log(n/x), this is maximised when all qus are equal, but there are only n of
them, making the total time :

n+
∑
u

qu(1 + log(n/qu)) ≤ n+ s(1 + log(n2/s)) ≤ s(1 + log(n2/cnt(v)2))

= O(n+ cnt(v)2(1 + log(n/cnt(v)))2).

For cnt(v) <
√
n, we invoke the O(cnt(v)2 log2 n) solution. As such sum over all

elements is at most O(n
√
n log2 n), which is strongly subquadratic, we can further

ignore it. Thus, we obtain for a single element the O(cnt(v)2(1 + log(n/cnt(v)))2)

complexity.

4.4 Combining Solutions

Let c be a parameter to be fixed later. We call v frequent if n
c < cnt(v), and rare

otherwise.

We partition the sequence σ into fragments. Each fragment is either a single
frequent element or a maximal range of rare elements. By definition of a frequent
element and maximality of fragments consisting of rare elements, we have O(c)

fragments. We maintain the dpv table as in the first solution, but we only update it
after having processed a whole fragment. So, when considering a fragment starting
at v we only assume that the values of dpv−1 can be accessed in constant time. For
a fragment consisting of a single frequent element, we proceed exactly as in the first
solution. In the remaining part of the description we describe how to process a
fragment consisting of rare elements v, v + 1,

We consider all v′-pairs, for v′ = v, v + 1, We will compute LCIS→(x, y)

for each such matching pair (x, y), and store it in the appropriate structure D(r)

implemented as described in Lemma 4.3.1. To compute the values of LCIS→(x, y)

for all v′-pairs, we use parallel exponential search as in the second solution with
the following modification. To check if LCIS→(x, yi) > r, we need to consider two
possibilities for the corresponding sequence C ending at A[x] = B[yi] = v′:

1. If C[|C| − 1] belongs to the same fragment then it is enough to check if D(r)

contains a pair (x′, y′) with x′ < x and y′ < yi.

2. Otherwise, it is enough to check if dpv−1[x][yi] ≥ r.

Additionally, after having found c′ we need to keep decreasing i as long as i ≥ 1 and
the answer for (x, yi) is c′, and this needs to be tested in constant time per each such

26 CHAPTER 4. MAIN SOLUTION

i. We again need to consider two possibilities, and either compare yi with the value
of y′ found by querying D(c′ − 1) with x, or test if dpv−1[x][yi] ≥ r in constant time.
Overall, this incurs only additional constant time per every step of the exponential
search for every considered matching pair.

After having considered all v′-pairs for the last element v′ in the current fragment,
we need to compute dpv′ from dpv−1 and the calculated values of LCIS→. Of course,
we want to operate on dp′v′ and dp′v−1 instead of dpv′ and dpv−1. This is done
row-by-row. The i-th row is computed in two steps.

First, we need to set dpv′ [i][j] = max{dpv′ [i − 1][j], dpv−1[i][j]} for every j =

1, 2, . . . , n. This is done by processing whole blocks in constant time and precomputing
the result for every possible combination of the following information:

1. dp′v′ [i− 1][j], dp′v′ [i− 1][j + 1], . . . , dp′v′ [i− 1][j + b− 1],

2. dp′v−1[i][j], dp′v−1[i][j + 1], . . . , dp′v−1[i][j + b− 1],

3. dpv′ [i− 1][j − 1],

4. dpv−1[i][j − 1].

This can be preprocessed in O(4b ·b2) time after observing that, as in the first solution,
only the difference dpv′ [i− 1][j − 1]− dpv−1[i][j − 1] is relevant and, additionally, it
can be capped at b (if it is bigger than b then we can set it to b). The time is O(n/b).

Second, we need to consider the values of LCIS→(i, j) computed for the current
fragment. If the result computed for a matching pair (i, j) is r then we need to update
dpv[i][j

′] = max{dpv[i][j
′], r}, for every j′ ≥ j. This can be done by simultaneously

scanning all such js and the blocks. By maintaining the maximum r, we can update
the value of dpv[i][j] at the beginning of the block. Then, we consider all other j′s
belonging to the same block, and consider its corresponding result r′. If dpv[i][j

′] ≥ r′

then this result is irrelevant, and otherwise we must increase some of the values in
the block by 1 (as dpv[i][j

′ − 1] is assumed to have been already updated and due to
Lemma 4.2.1). As in the first solution, this is implemented by setting dp′v[i][j

′] = 1

and changing the nearest 1 into 0. Overall, the time is bounded by the number of
considered matching pairs plus additional O(n/b) time.

We set b = logn
5 so that the preprocessing time is o(n). For each frequent

element we spend O(n2/b) time, so O(n2/b · c) overall. For each fragment consisting
of rare elements, the time is O(cnt(v)2 log2(n/cnt(v))) for every v to compute the
results, and then O(n2/b) plus the number of results. Using cnt(v) ≤ n/c, where c
is sufficiently large, and calculating the derivative of f(x) = x log2(n/x) we upper
bound cnt(v) log2(n/cnt(v)) ≤ n/c · log2 c for every rare v, so the overall time is
O(n2/b · c+ n/c · log2 c

∑
v cnt(v)) = O(n2/b · c+ n2/c · log2 c).

Choosing c =
√

log n log log n we obtain an algorithm working inO(n2 log logn/
√

log n)

time.

Chapter 5

Improving the First Solution

5.1 Redefining the Blocks in Dynamic Programming

Definition 5.1.1 (Special entry). We call an entry (x, y) special for dpv if dpv[x][y] >

max{dpv[x− 1][y], dpv[x][y − 1]}.

Lemma 5.1.2 (Significant pairs). If there exist v such that (x, y) is special for dpv,
then (x, y) is a significant pair.

Proof. The value of an entry dpv[x][y] is equal to the maximum of previous states or
LCIS→(x, y) if A[x] = B[y] ≤ v. Since dpv[x][y] is larger than previous states, the
(x, y) is a v′-pair for v′ ≤ v. Additionally, LCIS→(x, y) = dpv[x][y].

Fix any other v′-pair (x′, y′) which fulfills x′ ≤ x, y′ ≤ y. Since v′ ≤ v, we know
that LCIS→(x′, y′) ≤ dpv[x

′][y′] < dpv[x][y] = LCIS→(x, y). From Definition 2.5.1
we conclude that (x, y) is a significant pair.

Fix b = log2/3 n/ log log n. Divide the dp table into blocks of size b× b as shown
in Figure 5.1 (here b = 2).

2 1 2 3

3

2

3

1 0

0

1

1

1

1

1

1

1

1

2

2

1

2

2

3

2 1 2 3

3

2

3

1 0

0

1

1

1

1

1

1

1

1

2

2

1

2

2

3

Figure 5.1: The division of dp into blocks

27

28 CHAPTER 5. IMPROVING THE FIRST SOLUTION

Fix a block with the left upper corner in entry (i, j). The information we want
to keep in each block is enumerated below:

1. dpv[i− 1][j − 1]

2. dp′v[i− 1][k] for k ∈ {j, j + 1, . . . , j + b− 1}

3. dp′v[k][j − 1] for k ∈ {i, i+ 1, . . . , i+ b− 1}

4. For each special entry (k, l), memorize this entry. Notice that we need just
2 log b ≤ 2 log log n bits to do so, as it is enough to keep k − i and l − j.

Here, the references to dp′ are to its value. We do not keep dp′ in the optimised
solution.

Notice, that these information are enough to restore the value of each entry
inside the block. Additionally, the information from points 2, 3, 4 can be kept in
O(b+ s log b) bits, where s denotes the number of special entries inside this block.
Thus, we can keep the dpv table using just O(n

2

b + S log b) bits, where S denotes
the number of special entries in the whole table. From Lemma 2.5.2 we bound S by
O(n2/ log1/3 n), thus number of required bits is O(n2 log logn/ log1/3 n).

5.2 Cutting Blocks

As in the previous solution, we want at some point to show how to update such blocks
quickly. Unfortunately, in the previous solution those blocks had fixed size as the
amount of information kept there was constant, and that does not hold on anymore.
Here, the size of the block depends on s which can be up to b2 = log4/3 n/(log log n)2.

In this section we show how to ensure that size of these blocks is smaller than
log n. In particular, we keep the number of special entries s strictly less than
M = 1

5 log n/ log log n.

The idea is to cut blocks which contain too many ones. All blocks are greedily
cut only in the second dimension, thus their first dimension remains b. Figure 5.2
presents how to cut blocks (special entries are marked with s).

Thus, we distinguish two types of blocks. The initial blocks, are the blocks in
the first partition of dp (the ones of size b× b). The actual blocks, are the blocks into
which initial blocks are cut. Each actual block is contained by some initial block.

We start with calculating how many actual blocks we can have. For two
neighbouring actual blocks we notice, that either one of them is an initial block,
or they contain at least M special entries. Thus, the number of actual blocks is
bounded by n2/b2 + 2 · n2/(M · log1/3 n) = O(n2(log log n)2/ log4/3 n).

5.3. UPDATING THE BLOCKS 29

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

Figure 5.2: How to cut blocks for M = 6.

This construction keeps dp in the, up to constant multiplication, same number
of blocks, such that information describing each block can be stored in at most
2
5 log n+ o(log n) bits. The remaining part is querying dp in constant time. For each
initial block, we additionally keep the bitmask which memorises in which column,
the new actual block start. With such a bitmask it is easy to restore, which block we
want to query. Additionally, since the information describing each block is smaller
than log n, we can preprocess for each entry within a block its value, thus we obtain
constant query time.

5.3 Updating the Blocks

There are two types of updates we make. The first one is when we encounter a
frequent element, and we need to update dp with all its matching pairs. The second
one is when we update dp with all results from rare elements.

We start with describing the first type of updates. The solution is roughly the
same as previously. We gather the following information (the block has the left,
upper corner in (i, j)):

1. The current block mask

2. A mask from the block to the left

3. dp′ values from the previous row in the corresponding column

4. dpv+1[i− 1][j − 1]− dpv[i− 1][j − 1]

5. For which elements A[k] = v, where k ∈ {i, i+ 1, . . . , i+ b− 1}

6. For which elements B[k] = v, where k iterates over columns which have a
common part with current block (at most b such)

30 CHAPTER 5. IMPROVING THE FIRST SOLUTION

Such information can be encoded using 4
5 log n + o(log n) bits, so we can run

preprocessing in o(n), and then in constant time update this block. The problem
raises when after such update the number of special entries exceeds M . The solution
is that, the preprocessing returns the list of newly created blocks, so the update
can be bounded by O(1 + #new blocks). Since the number of blocks is bounded
separetely, the first type of update can be done in O(n2(log log n)2/ log4/3 n).

Similarly, we deal with the second kind of update. For each block, we produce
a list of matching pairs to update within it, sorted by coordinates (in order by the
second one, and the first one). This can be done in O(#number of matching pairs+

#number of blocks) using bucket sort. Then, we iterate over blocks, and for each
block we start with updating it with values from the previous block to the left,
and the values from dp′ from the row just above the current block. All of these
information can be gathered in constant time, and has sum of at most o(log n). Then,
we iterate over matching pairs, and update dp with its result using preprocessing. If
at some point, the number of special entries exceeds M , we deal with them in the
same way, as in the first type of updates. Because the matching pairs are sorted by
the column first, it is easy to allocate these to respective block in constant time. This
update also works in O(n2(log log n)2/ log4/3 n+ #number of matching pairs).

5.4 Time Complexity

We repeat the same analysis of time complexity, as in the previous algorithm, but
this time we pick c = log2/3 n. For rare elements we have the same complexity as
previously O(n2/c log2 c). For frequent elements, we obtain a faster update time
O(c · n2(log logn)2/ log4/3 n). Summing these up, and inserting the value of c, we
obtain the O(n2(log log n)2/ log2/3 n) complexity.

Chapter 6

Experiments

In this chapter, we compare the implemented solutions on the chosen tests. All
of these experiments were conducted on a laptop with a processor Intel Core
i7-10750H CPU @ 2.60GHz.

6.1 Solutions

Three solutions for LCIS problem were implemented and compared:

1. The O(n2) time and O(n) space solution, described in Section 2.4, implemented
in file sol1.cpp

2. The O(n2) time and space solution, described in Section 2.3, implemented in
file sol3.cpp

3. The O(n2 log logn/
√

log n) time solution, described in Chapter 4, implemented
in file sol4.cpp

Additionally, to check correctness, the O(n4) time solution was implemented in
file sol2.cpp, along with generator stress-gen.cpp, and testing script stress-test.sh.

6.2 Testing

There are two types of tests:

1. Randomly generated tests, two sequences of the same length n with elements
from [1, C], for given n, C.

2. Sequences described in [6], which have a lot of significant pairs.

31

32 CHAPTER 6. EXPERIMENTS

There are 9 tests in total. The exact parameters of these tests are given beneath:

1. random1a.in – Random test with n = 20 000, C = 2

2. random1b.in – Random test with n = 20 000, C = 3

3. random1c.in – Random test with n = 20 000, C = 5

4. random1d.in – Random test with n = 20 000, C = 10

5. random1e.in – Random test with n = 20 000, C = 25

6. random1f.in – Random test with n = 20 000, C = 100

7. random1g.in – Random test with n = 20 000, C = 2 500

8. special1.in – The second type of test, n = 7 424

9. special2.in – The second type of test, n = 16 384

The exact implementation is given in gen.cpp, and uses pseudorandom number
generator from testlib.h, implemented by Codeforces.

For testing purposes, two scripts were implemented avgtime.sh, check.sh. The
first one computes an average time of n runs of a given solution on a given test, and
the second one produces a log file with these times. Eash test was run n = 10 times.
To produce all log files, one has to type command make test && make run.

6.3 Results

The following chart presents the comparison of these solution on the given set. The
blue, red, and green colors represent sol1.cpp, sol3.cpp, and sol4.cpp respectively.

Without a doubt, the best solution is the sol1.cpp. Not much worse is the
sol3.cpp. Except for the special2.in and random1a.in, its performance is almost
the same. The slowest solution is sol4.cpp, even though it achieves theoretically
the best bounds. The gap between this solution and the previous is pretty large,
especially on the test random1c.in (10 seconds to 2 seconds).

6.3. RESULTS 33

Bibliography

[1] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. Tight hard-
ness results for LCS and other sequence similarity measures. In 56th FOCS,
pages 59–78, 2015.

[2] Amir Abboud and Karl Bringmann. Tighter connections between formula-SAT
and shaving logs. In 45th ICALP, pages 8:1–8:18, 2018.

[3] Anadi Agrawal and Pawel Gawrychowski. A faster subquadratic algorithm for
the longest common increasing subsequence problem. In 31st ISAAC, LIPIcs,
pages 4:1–4:12, 2020.

[4] Jon Louis Bentley and Andrew Chi-Chih Yao. An almost optimal algorithm for
unbounded searching. Inf. Process. Lett., 5(3):82–87, 1976.

[5] Mark R. Brown and Robert Endre Tarjan. A fast merging algorithm. J. ACM,
26(2):211–226, 1979.

[6] Lech Duraj. A sub-quadratic algorithm for the longest common increasing
subsequence problem. In 37th STACS, pages 41:1–41:18, 2020.

[7] Lech Duraj, Marvin Künnemann, and Adam Polak. Tight conditional lower
bounds for longest common increasing subsequence. Algorithmica, 81(10):3968–
3992, 2019.

[8] Szymon Grabowski. New tabulation and sparse dynamic programming based
techniques for sequence similarity problems. Discret. Appl. Math., 212:96–103,
2016.

[9] Scott Huddleston and Kurt Mehlhorn. A new data structure for representing
sorted lists. Acta Informatica, 17:157–184, 1982.

[10] William J. Masek and Mike Paterson. A faster algorithm computing string edit
distances. J. Comput. Syst. Sci., 20(1):18–31, 1980.

[11] Yoshifumi Sakai. A linear space algorithm for computing a longest common
increasing subsequence. Inf. Process. Lett., 99(5):203–207, 2006.

[12] Robert A. Wagner and Michael J. Fischer. The string-to-string correction
problem. J. ACM, 21(1):168–173, 1974.

35

36 BIBLIOGRAPHY

[13] I-Hsuan Yang, Chien-Pin Huang, and Kun-Mao Chao. A fast algorithm for com-
puting a longest common increasing subsequence. Inf. Process. Lett., 93(5):249–
253, 2005.

	Introduction
	An Overview of the Solutions
	Preliminaries
	LCIS for Constant Alphabet
	O(n2) Time and Space Algorithm for LCIS
	O(n2) Time and O(n) Space Algorithm for LCIS
	The First Subquadratic Algorithm

	Why is it Hard to Beat O(n2)
	Hypothesis
	Reduction to OV Conjecture
	Separator Sequences
	Sequence for a Vector
	Final Construction

	Main Solution
	Notation
	First Solution (Few Distinct Elements)
	Second Solution (Rare Elements)
	Combining Solutions

	Improving the First Solution
	Redefining the Blocks in Dynamic Programming
	Cutting Blocks
	Updating the Blocks
	Time Complexity

	Experiments
	Solutions
	Testing
	Results

	Bibliography

