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Abstract

We settle complexity questions of two problems about the free monoid L∗ generated
by a finite set L of words over an alphabet Σ. The first one is the Frobenius monoid
problem, which is whether for a given finite set of words L, the language L∗ is cofinite.
The open question concerning its computational complexity was originally posed by
Shallit and Xu in 2009. The second problem is whether L∗ is factor universal,
which means that every word over Σ is a factor of some word from L∗. It is related
to the longstanding Restivo’s open question from 1981 about the maximal length
of the shortest words which are not factors of any word from L∗. We show that
both problems are PSPACE-complete, which holds even if the alphabet is binary.
Additionally, we exhibit families of sets L that show exponential (in the sum of the
lengths of words in L or in the length of the longest words in L) worst-case lower
bounds on the lengths related to both problems: the length of the longest words not
in L∗ when L∗ is cofinite, and the length of the shortest words that are not a factor
of any word in L∗ when L∗ is not factor universal. The second family essentially
settles in the negative the Restivo’s conjecture and its weaker variations. As an
auxiliary tool, we introduce the concept of set rewriting systems. Finally, we note
upper bounds on the computation time and the length for both problems, which are
exponential only in the length of the longest words in L.



Streszczenie

Odpowiadamy na pytania o złożoność dwóch problemów związanych z wolnym
monoidem L∗, stworzonym nad skończonym zbiorem L słów nad alfabetem Σ. Pierw-
szy z nich to problem Frobeniusa w monoidzie, polegający na stwierdzeniu czy dla
danego skończonego zbioru słów L, język L∗ jest dopełnieniem języka skończonego.
Otwarte pytanie dotyczące jego złożoności obliczeniowej zostało postawione przez
Shallita i Xu w 2009 roku. Drugi problem to sprawdzenie czy L∗ jest faktorowo uni-
wersalny, co oznacza, że każde słowo nad alfabetem Σ jest podsłowem jakiegoś słowa
z L∗. Problem ten związany jest z długo otwartym problemem postawionym przez
Restivo w roku 1981, dotyczącym maksymalnej długości najkrótszych słów, które
nie są podsłowami żadnego słowa z L∗. Pokazujemy, że oba problemy są PSPACE-
zupełne, co ma miejsce nawet w przypadku alfabetu binarnego. Dodatkowo defi-
niujemy rodziny zbiorów L, które pokazują wykładniczą (w sensie sumy długości
słów w L lub długości najdłuższego słowa w L), najgorszą, dolną granicę na długo-
ści związane z oboma problemami: długość najdłuższego słowa nienależącego do L∗,
gdy L∗ jest dopełnieniem języka skończonego, oraz długość najkrótszego słowa, które
nie jest podsłowem żadnego ze słów w L∗, gdy L∗ nie jest faktorowo uniwersalny.
Druga rodzina obala hipotezę Restivo i jego słabsze warianty o wielomianowej dłu-
gości. Jako narzędzie pomocnicze dla naszych konstrukcji wprowadzamy koncepcję
systemu przepisywania zbiorów. Na zakończonie pokazujemy górne ograniczenia na
złożoność czasową jak i długość dla obu problemów, które są wykładnicze jedynie
zależnie od długości najdłuższego słowa w L.
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Chapter 1

Introduction

Given a set of words L over an alphabet Σ, the language L∗ (Kleene star or free
monoid) contains all finite strings built by concatenating any number of words from
L. In general, we can think about L as a dictionary and L∗ as the language of all
available phrases. One of the most basic question that one could ask is whether L
generates all words over the alphabet Σ of L. The answer is, however, trivial, because
this is the case if and only if L contains all single letters a ∈ Σ. Thus, more interesting
relaxed universality properties are considered. In this paper, we consider two famous
problems of this kind and settle their complexity.

1.1 Frobenius monoid problem

The classical Frobenius problem is, for given positive integers x1, . . . , xk, to determine
the largest integer x that is not expressible as a non-negative linear combination of
them. An integer x is expressible as a non-negative linear combination if there are
integers c1, . . . , ck ≥ 0 such that x = c1x1 + · · · + ckxk. In a decision version of
the problem, we ask whether the largest integer exists, i.e., whether the set of non-
expressible positive integers is finite. It is well known that the answer is “yes” if and
only if gcd(x1, · · · , xk) = 1.

The Frobenius problem was extensively studied and found applications across
many fields, e.g., to primitive sets of matrices [9], to the Shellsort algorithm [11],
and to counting points in polytopes [2]. The problem of computing the largest non-
expressible integer is NP-hard [16] when the integers are given in binary, and it can
be solved polynomially if the number k of given integers is fixed [12].

A generalization of the Frobenius problem to the setting of free monoids was
introduced by Kao, Shallit, and Xu [13]. Instead of a finite set of integers, we are
given a finite set of words over some finite alphabet Σ, and instead of multiplication,
we have the usual word concatenation. The original question becomes that whether
all except a finite number of words can be expressed as a concatenation of the words
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from the given set. If L is our given finite language, then the problem is equivalent
to deciding whether L∗ is cofinite, i.e., the complement of L∗ is finite.

Problem 1.1 (Frobenius Monoid Problem for a Finite Set of Words). Given a finite
set of words L over an alphabet Σ, is L∗ cofinite?

It is a simple observation that, if Σ is a unary alphabet, then Problem 1.1 is
equivalent to the original Frobenius problem on integers. There are also efficient
algorithms for checking whether a given word is in L∗ [8].

Example 1.1. The language L = {000, 00000} over Σ = {0} generates the cofinite
language L∗; since gcd(3, 5) = 1, the language L∗ includes all words longer than
3 · 5− 3− 5 = 7.

Example 1.2. For the language L = {0, 01, 10, 11} over Σ = {0, 1}, the words in L∗

are:
0, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, . . . .

We can see that 111 /∈ L∗ and actually every word of the form 111(11)∗ does not
belong to L∗. However, if we add 111 to L, the answer becomes that L∗ is cofinite;
since we can build all words of length 2 and 3 over the alphabet {0, 1}, and gcd(2, 3) =

1, we know that L∗ must contain all sufficiently long words.

The problem can be seen as almost universality of the language L∗. It models
a situation where we consider whether a given dictionary is sufficient to generate
all sufficiently long sequences. For example, consider sound synthesis. A common
method there is unit selection, which is generating the sound by concatenating various
recorded sequences [21]. In a simple setting, if we do not care about short sequences
(as for them we require all single-sound samples anyway), testing whether a given
sound bank is strong enough to generate everything is equivalent to the Frobenius
monoid problem.

Kao, Shallit, and Xu [13, 22] showed that, in particular, if L∗ is cofinite, then the
longest non-expressible words can be exponentially long in the length of the longest
words from L. This is in contrast with the classical Frobenius problem, where the
largest non-expressible integer is bounded quadratically in the largest given integer
[6]. In 2009, Shallit and Xu posed the open question about the computational com-
plexity of determining whether L∗ is cofinite [22]. They also proved that it is NP-hard
and in PSPACE when L is given as a regular expression [23]. The question about
the computational complexity appears on the Shallit’s list of open problems [20].

1.2 Factor universality problem

A word u ∈ Σ∗ is a factor (also called substring) of a word w ∈ Σ∗ if vuv′ = w for
some words v, v′ ∈ Σ∗.
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Problem 1.2 (Factor Universality for a Finite Set of Words). Given a finite set of
words L over an alphabet Σ, is every word over Σ a factor of a word from L∗?

Sets L such that the language of all factors of the words in L∗ is universal are
one of the basic concepts in the theory of codes [4, Section 1.5]. They are called
complete sets of words, and words that are factors of some word in L∗ are called
completable.

Example 1.3. The set L = {01, 10, 11, 000} over Σ = {0, 1} is not complete, since
word 100010001 is not completable. If we want to create 1 in the middle, we have
to use either 10 or 01. In each case, one of the adjacent 0s is also consumed, so we
cannot use word 000.

Example 1.4. The set L = {00, 01, 10, 11} over Σ = {0, 1} is complete, because every
binary sequence of even length is in L∗. We can construct every odd length binary
sequence by removing the first letter of a suitable even length sequence.

The question about the length of the shortest incompletable words was posed
in 1981 by Restivo [18], who conjectured that if a set L is not complete, then the
shortest incompletable words have length at most 2||L||2max, where ||L||max is the
length of the longest words in L. The conjecture in this form turned out to be false
[10] (5||L||2max − O(||L||max) is a lower bound), but the relaxed question whether
there is a quadratic upper bound remained open and became one of the longstanding
unsolved problems in automata theory.

There is a trivial exponential upper bound in the sum of the lengths of words in
L. A sophisticated experimental research [19] suggested that the tight upper bound
is unlikely quadratic and may be exponential. On the other hand, a polynomial
upper bound O(||L||5sum), where ||L||sum is the sum of the lengths of all words in
L, was derived for the subclass of sets L called codes, which guarantees a unique
(unambiguous) factorization of any word to words from L [14]. Note that ||L||sum can
be exponentially larger than ||L||max, and so the general question about polynomial
bound in ||L||max for this subclass remains open.

The computational complexity of Problem 1.2 was also an open question. In
a more general setting, where instead of checking the factor universality of L∗ we
check it for an arbitrary language specified by an NFA, the problem was shown to
be PSPACE-complete. In contrast, it is solvable in linear time when the language is
specified by a DFA [17].

Both computational complexity question and finding the tight upper bound on
the length also appear as one of the Berstel and Perrin’s research problems [4, Resarch
problems] and on the Shallit’s list [20]. The problem itself has been connected with a
number of different problems, e.g., testing if all bi-infinite words can be generated by
the given list of words [17], the famous Černý conjecture [7], and the matrix mortality
problem [14] in a restricted setting.
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1.3 Contribution

We show that both Problem 1.1 and Problem 1.2 are PSPACE-complete, and we
show exponential lower bounds on their related length problems. The complexity
and bounds remain when the alphabet is binary. The solutions for both problems use
similar constructions. Therefore, the ideas may be applicable to some other problems
concerning the free monoid on a finite set of words.

The answer for the Frobenius monoid problem can be quite surprising because
the problem is equally hard when L is represented by a popular more succinct repre-
sentation, i.e., a DFA, a regular expression, or an NFA. Kao et al. [13] gave examples
of finite languages L such that the longest words not present in the generated cofinite
language L∗ are of exponential length in the length of the longest words in L. How-
ever, the number of words in L is also exponential in these examples, thus they do
not provide an exponential lower bound in terms of the size of the input L. Here, we
additionally show stronger examples, where the longest words not present in cofinite
L∗ are of exponential length in the sum of the lengths of the words.

To make the reduction feasible, we construct it in several steps. We introduce a
rewriting system called set rewriting, which is a basis for intermediate problems that
we reduce from. In particular, we consider the immortality problem, which is whether
there exists any configuration such that starting from it, we can apply rules infinitely
long. This is in contrast with the usual settings where the initial configuration is
given. It turns out that the existence of an arbitrary cycle is an essential property
for Problem 1.1.

The solution for the factor universality problem uses similar construction to
that of the previous problem with some technical differences. As a corollary, we
exhibit a family of sets L of binary words whose minimal incompletable words are of
exponential length in the length of the longest words in L or in the sum of the lengths
of the words in L. This settles in the negative all weak variations of the Restivo’s
conjecture and essentially closes the problem.

We conclude that for a finite list L of words over a fixed alphabet, 2O(||L||max),
where ||L||max is the length of the longest words in L, is a tight upper bound on
both the length of the longest word not in L∗ when L∗ is cofinite and the length
of the shortest incompletable words when L∗ is not factor universal. Furthermore,
the length 2Θ( 5

√
||L||sum), where ||L||sum is the sum of the lengths of words in L, is

attainable.

Finally, we note that both problems can be solved in exponential time in the
length of the longest word in L while polynomial in the sum of the lengths of words
in L. This means that they can be effectively solved when the given set is dense, that
is, the maximal length of words is much smaller than the sum of the lengths, e.g.,
the maximum length is logarithmic in the number of words.
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Chapter 2

Set rewriting system

We introduce set rewriting systems, which are an auxiliary intermediate formalism
that will be crucial for our further reductions.

Definition 2.1. A set rewriting system is a pair (P,R), where P is a finite non-
empty set of elements and R is a finite non-empty set of rules. A rule is a function
r : P → 2P ∪ {⊥}.

Given a set rewriting system and a subset S ⊆ P , a rule r is legal if ⊥ /∈ r(S)

(i.e., there is no s ∈ S such that r(s) = ⊥). The resulting subset from applying a
legal rule r to S is S · r =

⋃
s∈S r(s). Analogously, a sequence of rules r1, . . . , rk is

legal if r1, . . . , rk−1 is legal for S and rk is legal for S · r1 · · · · · rk−1. The resulting
subset from applying a legal sequence of rules is S · r1 · · · · · rk.

2.1 Immortality

In general, mortality is the problem of whether there exists any configuration such
that there exist an infinite sequence of legally applied rules. In the case of systems
with bounded configuration space, this is equivalent to the existence of a cycle in
the configuration space. This is in contrast to the usual setting, where the initial
configuration is given and we ask about reachability. For instance, mortality problems
have been considered for Turing machines [5], where the problem is undecidable,
and for linearly bounded Turing machines with a counter [3], where the problem is
PSPACE-complete.

Considering our setting, every set rewriting system contains a trivial cycle which
is the loop on the empty set. Therefore, we are interested only in non-trivial cycles,
which do not contain the empty set, hence we add the additional restriction that the
empty set is not reachable from any non-empty subset.

A set rewriting system is non-emptiable if for every element p ∈ P and every
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rule r ∈ R, we have r(p) 6= ∅. It implies that for every non-empty subset S and a
rule r, either S · r 6= ∅ or r is illegal for S.

Problem 2.2 (Immortality of Set Rewriting). Given a non-emptiable set rewriting
system (P,R), is there a non-empty subset S ⊆ P and a non-empty sequence of rules
r1, . . . , rk that is legal and yield S, i.e., S · r1 · · · · · rk = S?

First, we show that a mortal set rewriting system can admit exponentially long
sequences of legal rules.

Theorem 2.1. For a mortal non-emptiable set rewriting system (P,R), for every
non-empty subset of P , the length of any legal sequence of rules is at most 2|P | − 2.
Furthermore, for every n ≥ 1, there exist a set rewriting system (P,R) with |P | =

|R| = n and a non-empty subset of P that meets the bound.

Proof. The upper bound follows since there are 2|P | − 1 distinct non-empty subsets
and a legal sequence of 2|P | − 2 rules involves all of them.

To show tightness, we construct a set rewriting system (P,R) with n = |P | rules.
The elements will encode a specific binary counter. Let P = {b0, . . . , bn−1}. For a
subset S ⊆ P , we define val(S, i) = 2i if bi ∈ S and val(S, i) = 0 otherwise, and we
set the counter value val(S) =

∑
0≤i≤n−1 val(S, i). For every j ∈ {0, . . . , n− 1}, we

introduce a rule rj that, if it is legal, will increase the value of the counter by at least
1. The rules rj are defined as follows:

• rj(bj) = ⊥;

• rj(bi) = {bj} for i ∈ {0, 1, . . . , j − 1};

• rj(bi) = {bj , bi} for i ∈ {j + 1, j + 2, . . . , n− 1}.

First, we observe that each legal rule rj applied to a non-empty set S ⊆ P

increases the counter value by at least 1, i.e., val(S) < val(S · rj). It is because we
know that val(S, i) = 0 and

val(S · rj) =
∑
j<i<n

val(S · rj , i) + 2j =
∑
j<i<n

val(S, i) + 2j >

>
∑
j<i<n

val(S, i) +
∑

0≤i<j
2i ≥

∑
0≤i<n

val(S, i) = val(S).

Second, we observe that for every non-empty S ( P , there exists a rule rj
that increases the counter value exactly by 1. We choose the rule rj for j being the
smallest index such that bj /∈ S, and we have val(S · rj) = val(S) + 1. Furthermore,
for S = P there is no legal rule.

It follows that the set rewriting system is mortal and for S = {b0}, the longest
possible legal sequence of rules has length 2n − 2.
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Now, we show the PSPACE-completeness of the immortality problem. The idea
is a reduction from the non-universality of an NFA. The NFA is combined with the
counter developed above. The counter can be reset only if there exists a non-accepted
word, which allows repeating a subset in the set rewriting system.

Theorem 2.2. Problem 2.2 (Immortality of Set Rewriting) is PSPACE-complete.

Proof. To solve the problem in PSPACE, it is enough to guess a subset S and a
length k, and then guess at most k rules (without storing them), verifying whether
the resulted subset is the same as S.

For PSPACE-hardness, we reduce from the non-universality problem for an NFA.
Given an NFA N = (QN ,ΣN , δN , q0, FN ), the question whether there is a word
w ∈ Σ∗N such that δN (q0, w) ∩ FN = ∅ is PSPACE-complete [1, Section 10.6].

Let n = |QN |. We construct a set rewriting system (P,R). As an ingredient,
we use the counter from the proof of Theorem 2.1. Let P be the disjoint union of
QN and C = {bi | i ∈ {0, 1, . . . , n − 1}}. The elements of C will encode the binary
counter and for a subset S ⊆ P , we define val(S, i) = 2i if bi ∈ S and val(S, i) = 0

otherwise, and we set val(S) =
∑

0≤i≤n−1 val(S, i).

For every letter a ∈ Σ and every j ∈ {0, 1, . . . , n − 1}, we introduce a rule ra,j
that acts as a in the NFA on QN and, on the counter part, sets the j-th position of
the counter. The rules ra,j are defined as follows:

• ra,j(bj) = ⊥;

• ra,j(bi) = {bj} for i ∈ {0, 1, 2, . . . , j − 1};

• ra,j(bi) = {bj , bi} for i ∈ {j + 1, j + 2, . . . , n− 1};

• ra,j(q) = δN (q) ∪ {bj} for q ∈ QN .

We also introduce the reset rule that is defined as:

• rreset(q) =

⊥, if q ∈ F ;

{q0, b0} otherwise.

Assume that there is a word that is not accepted by N . Note that if w is a
shortest non-accepted word, then q0 /∈ δ(q0, u) for all non-empty prefixes u of w.
Hence, there exists a non-accepted word w = a1a2 · · · am of length at most 2n−1.

As observed in the proof of Theorem 2.1, we know that for each value x of the
counter, there exists a rule that increments the counter value exactly by 1. Let f(x)

be the smallest index of a zero in the binary representation of x, where the zero index
if the least significant position; hence a rule rai,f(x), if it is legal for S, increments
the counter value of S by 1. Then the set S = {b0, q0} · ra1,f(1) · ra2,f(2) · · · ram,f(m)
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has the property that val(S) = m < 2n and S ∩F = ∅, because w is not accepted by
N . Thus, rule rreset is legal, so {b0, q0} · ra1,f(1) · ra2,f(2) · · · ram,f(m) · rreset = {b0, q0}.
Hence the set rewriting system is immortal.

For the converse, assume that there exists a subset S ⊆ P and a non-empty
sequence of rules rj1 , rj2 , . . . , rjm such that S · rj1 · rj2 · · · , rjm = S. As observed in
the proof of Theorem 2.1, we know that every rule different from rreset increments the
counter by at least 1. Hence, there must be some index 1 ≤ k ≤ m such that rjk =

rreset. Consider the sequence of rules rj1 , rj2 , . . . , rjm , rj1 , rj2 . . . , rjm . In this sequence,
rreset appears at least twice. Taking a shortest sequence of rules between any two rreset

rules (not including the reset rules), we get a sequence ra1,i1 , ra2,i2 , . . . , rad,id without
any rreset rule. Thus we know that {q0, b0}·ra1,i1 ·ra2,i2 · · · rad,idrreset = {q0, b0}. Since
rreset is legal when applied, the word a1a2 · · · ad is such that δ(q0, a1a2 · · · ad)∩F = ∅
thus is not accepted by N .

By the following observation, for immortality, it is enough to consider only
singleton subsets S, from which we start applying rules to find a cycle. Although a
singleton does not necessarily occur in a cycle, a non-emptiable set rewriting system
is immortal if and only if for some singleton there exists an arbitrary long legal
sequence of rules.

Lemma 2.3. If a rule r is legal for a subset S ⊆ P , then it is also legal for every
subset S′ ⊆ S and S′ · r ⊆ S · r.

A similar property is essential for Problem 1.1, because if a word wu /∈ L∗ for a
word w ∈ L∗, then also suffix u /∈ L∗.

2.2 Emptying

The second problem under our consideration is the reachability of the empty set,
which is related to factor universality.

For a subset S ⊆ P , a sequence of rules r1, . . . , rk such that S · r1 · · · · · rk = ∅
is called S-emptying.

We call a set rewriting system permissive if there are no forbidden rules by ⊥.
In other words, all rules are legal for P . A permissive set rewriting system (P,R) is
equivalent to a semi-NFA whose set of states is P and the alphabet is R; the initial
and final states are irrelevant.

Problem 2.3 (Emptying Set Rewriting). For a given permissive set rewriting system
(P,R), does there exist a P -emptying sequence of rules?

Let N = (QN ,Σ, δN , q0, FN ) be an NFA. For a subset S ⊆ QN , a word w ∈ Σ∗

is called S-emptying if δN (S,w) = ∅. If every state in N is reachable from the initial
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state q0 and from every state a final state can be reached, then the following criterion
holds: the language of N is factor universal if and only if there does not exist a QN -
emptying word [17]. It is also known that the problem of whether a given language
specified by an NFA is factor universal is PSPACE-complete. Since it is also easy to
solve Problem 2.3 in PSPACE, it follows that it has the same complexity.

Theorem 2.4 ([17]). Problem 2.3 (Emptying Set Rewriting) is PSPACE-complete.

Additionally, we will need an exponential lower bound on the length of the
shortest P -emptying sequences of rules. For this, we also develop a specific counter,
but now counting downwards and allowing to decrease the value by at most 1; instead
of rules being illegal, the counter is reset to the maximal value.

Theorem 2.5. For a permissive set rewriting system (P,R), if there exists a P -
emptying sequence of rules, then the shortest such sequences have length at most
2|P |−1. Furthermore, for every n ≥ 1, there exists a set rewriting system (P,R) with
|P | = |R| = n that meets the bound.

Proof. The upper bound 2|P | − 1 is trivial.

For every n ≥ 2, we construct a permissive set rewriting system (P,R), which
represents a binary counter of length n. Let P = {bi | i ∈ {0, 1, . . . , n − 1}}. For
a subset S ⊆ P , we define val(S, i) = 2i if bi ∈ S and val(S, i) = 0 otherwise, and
val(S) =

∑
0≤i≤n−1 val(S, i).

We define the rules that allow the value of the counter to decrease by 1. If a
wrong rule is used, the counter is reset to its maximal value. The set of rules R
consists of rules rj for j ∈ {0, 1, . . . , n− 1}, where each rj is defined as follows:

1. rj(bj) = {bi | i ∈ {0, 1, . . . , j − 1}};

2. rj(bi) = P for i ∈ {0, 1, . . . , j − 1};

3. rj(bi) = {bi} for i ∈ {j + 1, j + 2, . . . , n− 1}.

We observe that emptying this set rewriting system corresponds to setting the
counter to 0. For a subset S, let i be the smallest index such that bi ∈ S. Then
for all the smaller positions j < i, bj /∈ S. Notice that for all rules rk for k ∈
{1, 2, . . . , n − 1} \ {i}, we have val(S · rk) ≥ val(S). This is because if k < i, then
S · rk = S and if k > i, then S · rk = P . Thus, the only rule that decreases the
counter is ri, and then val(S · ri) = val(S)− 1. Hence, the shortest sequence of rules
that is P -emptying has length 2n − 1.
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Chapter 3

The Frobenius monoid problem

Before we go for PSPACE-hardness, we note the known result about PSPACE-
membership.

Proposition 3.1 ([22]). Problem 1.1 is in PSPACE.

Proof. If L∗ is cofinite, then the longest words not in L have at most exponential
length [13]. Otherwise, the length of such words is unbounded. Thus, we can construct
an NFA recognizing L∗ and verify in NPSPACE whether there exists a longer word
that is not accepted [22].

For PSPACE-hardness, we reduce from Problem 2.2 (Immortality of Set Rewrit-
ing) to Problem 1.1 (Frobenius Monoid Problem for a Finite Set of Words). In the
first step, we reduce to the case when L is specified as a DFA instead of a list of
words. Then we binarize the DFA, and finally we count the number of words in the
language to bound the size of the list of words.

3.1 The DFA construction

We get a non-emptiable set rewriting system (P,R). Without loss of generality, we
assume the set of elements P = {p1, p2, . . . , p`} and the rules R = {r1, r2, . . . , rm}.

We construct a DFA A = (QA,Σ, δ, q0, F ) such that L∗ is not cofinite, where
L is the language recognized by A, if and only if there exists a non-empty subset
S ⊆ P and a non-empty sequence of rules ri1 , . . . , rik such that S · ri1 · · · · rik = S.
Our reduction will be polynomial in |P |+ |R|. The number and the lengths of words
in L will be also polynomial, which will allow further polynomial reduction to the
case of a list of words.

The alphabet of A is Σ = R ∪ {α}. The letters from R are the rule letters. The
set of states QA is the disjoint sum of the following sets:
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• {q0}; the initial state.

• QP = P ; the set rewriting elements.

• QF = {fx | x ∈ {0, 1, . . . , `}}; the forcing states.

• {si,jx | i ∈ {1, 2, . . . , `} ∧ j ∈ {1, 2, . . . ,m} ∧ x ∈ {`, `− 1, . . . , 1} ∧ rj(pi) 6= ⊥};
the setting states.

• {qg}; the guard state.

• {qs}; the sink state.

The transition function and the final states will be defined later, after explaining the
overall idea of the construction.

We use a standard NFA construction recognizing the Kleene star of a language
specified by a DFA. Let A∗ = (QA∗ ,Σ, δA∗ , q0, FA∗) be the NFA obtained from A
as follows. The set of states QA∗ is QA \ {qs}; we remove the sink state since it is
represented by the empty subset of states in the NFA. We construct the extended
transition function δA∗ : 2QA∗ × Σ∗ → 2QA∗ from δ by adding ε-transitions from
every final state to the initial state q0 and removing transitions to the sink state.
We assume that δA∗ is closed under ε-transitions, i.e., for C ⊆ QA∗ and w ∈ Σ∗,
δA∗(C,w) is the set of all states reachable from a state in C through a path labeled
by w interleaved with any number of ε-transitions, which also can be used at the
beginning and at the end. We say that δA∗(C,w) is the set of active states after
applying w to C. The set of final states FA∗ is F ∪ {q0}; we can make q0 final in our
NFA construction, since the DFA is non-returning, i.e., there is no non-empty word
w such that δ(q0, w) = q0 in the DFA. It is well known that the constructed NFA
recognizes the language L∗ (see, e.g., [24]).

A word w ∈ Σ∗ is irrevocably accepted if for every u ∈ Σ∗, the word wu belongs
to L∗.

A word w is simulating for a subset S ⊆ QP if it is of the form ri1α
`ri2α

` · · · rikα`

and the sequence of the rules ri1 , ri2 , . . . , rik in w is legal for S.

A word w ∈ Σ∗ is f0-omitting for a subset C if there is no prefix u of w such
that f0 ∈ δA∗(C, u). It is simply f0-omitting if it is f0-omitting for subset {q0}.

Now, we explain the idea of the construction. We have the property that when-
ever the word does not follow the simulating pattern, it is not f0-omitting. When this
happens, some forcing state is always active and the word is irrevocably accepted,
which means that all its extensions are in L∗. The forcing states are responsible for
this property of f0. On the other hand, words following the simulating pattern are
f0-omitting and not irrevocably accepted. Thus, if there are infinitely many such
simulating words, which is equivalent to the immortality of the set rewriting system,
then infinitely many words are outside the language.
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Figure 3.1: The scheme of the DFA A for a set rewriting system. All omitted tran-
sitions go to f0.

The construction is presented in Fig. 3.1. States QP, together with the initial
state q0, form a chain on the transition of letter α, which is ended by f0, i.e., q0

α−→
p1

α−→ · · · α−→ p`
α−→ f0. A subset of active states S ⊆ QP corresponds to the current

subset of elements in our set rewriting system. By applying a rule letter rj to S, which
corresponds to applying the rule rj in the set rewriting system, the states from QP

are mapped into the setting states. If the rule is not legal for some element, that state
in S is mapped directly to f0 instead. The setting states form chains si,j` , . . . , s

i,j
1 on

letter α, for every rule rj and every element pi ∈ QP. Each such chain has its final
states defined according to the action of the rule rj for the element pi. When si,j`
becomes active, one must apply the word α` in order to avoid f0. The setting states
that are final in the chain activate q0 at some point, which is then mapped to the
right state of QP by the action of the remaining α letters. One cannot apply more
than ` letters α in such a simulation step because of the guard state qg, which is
at the end of every setting chain. The guard state becomes active after α` applied
for any non-empty S ⊆ QP; it allows performing only the transitions of rule letters,
which map the guard state to the empty subset (to the sink state in the DFA).

Therefore, if in the set rewriting system one has S ⊆ QP and applies a sequence

21



of rules that results in S′ = S · ri1 · · · · · rik , then this corresponds to applying the
word ri1α` . . . rikα

`, which is a simulating word for S.

A special case occurs at the beginning, when the subset of active states is {q0}.
Since no other states (in particular, the guard state) are active, we can use an arbi-
trary sequence αi, for 1 ≤ i ≤ `, before the first rule letter. This determines the first
singleton subset from which we start applying rules.

The transition function δ is formally defined as follows:

• δ(q0, α) = p1.

• δ(pi, α) = pi+1 for all i ∈ {0, 1, . . . , `− 1}.

• δ(p`, α) = f0; this is required for the irrevocably accepting property of f0.

• δ(pi, rj) =

s
i,j
` , if rj(pi) 6= ⊥

f0, otherwise
for all i ∈ {1, 2, . . . , `} and j ∈ {1, 2, . . . ,m}; when a rule is used, these transi-
tions map a state from QP to the beginning of the corresponding setting chain
or to f0 if the rule is not legal when pi is in the subset.

• δ(q0, rj) = f0 for all j ∈ {1, 2, . . . ,m}; this forbids applying rule letters when
q0 is active.

• δ(si,jx , α) = si,jx−1 for all i ∈ {1, 2, . . . , `}, j ∈ {1, 2, . . . ,m}, and x ∈ {`, ` −
1, . . . , 2}; these are the setting chains on α.

• δ(si,j1 , α) = qg for all i ∈ {1, 2, . . . , `} and j ∈ {1, 2, . . . ,m}; the setting chains
end with the guard state.

• δ(si,jx , ry) = f0 for all i, x ∈ {1, 2, . . . , `} and j, y ∈ {1, 2, . . . ,m}; when the
simulation pattern is not yet complete (less than ` letters α were applied, so
there are some active states in the setting chains), this forbids using rule letters.

• δ(qg, α) = f0; this forbids applying α when the guard state is active.

• δ(qg, rj) = qs; rule letters are allowed when the guard state is active and they
deactivate it.

• δ(fi, α) = fi+1 for all i ∈ {0, 1, . . . , `− 1}; this chain of forcing states provides
the property that whenever f0 becomes active, the word is irrevocably accepted.

• δ(fi, rj) = qs for all i ∈ {0, 1, . . . , `} and j ∈ {1, . . . , `}; rule letters clean the
forcing states.

• δ(f`, α) = qs; the chain of the forcing states ends with the sink state.

The set of final states F is the union of:
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• QF; all forcing states are final.

• {si,jk | i, k ∈ {1, 2, . . . , `} ∧ j ∈ {1, 2, . . . ,m} ∧ rj(i) 6= ⊥∧ pk ∈ rj(i)}; states in
a setting chain are final according to the rule of that chain.

Whenever a final state becomes active, q0 becomes active through an ε-transition.
Note that the indices in the setting chains are decreasing. This keeps the correspon-
dence that if a state si,jk is final and pi is in a subset C, then pk is be active after
applying rjα` to C.

Correctness. The correctness is observed through the following lemmas.

The first lemma states that whenever f0 becomes active, all subsequent words
will be accepted, thus it must be avoided when constructing a non-accepted word.

Lemma 3.2. If a word w ∈ Σ∗ is not f0-omitting, then it is irrevocably accepted.

Proof. There is a prefix u of w such that f0 ∈ δA∗(q0, u). It is enough to observe that
for every word v, δA∗({f0}, v) contains a forcing state. All forcing states are final, thus
uv and, in particular, all words containing w as a prefix will be accepted. Suppose
this is not the case, and let v be a shortest word such that δA∗({f0}, v) does not
contain a forcing state. Then for every non-empty proper prefix v′ of v, δA∗({f0}, v′)
does not contain f0, which would contradict that u is a shortest word. Thus the only
possibility for v is to start with α`+1; otherwise, active state q0 would be mapped to
f0 by the transition of a rule letter after αi for i ≤ `. However, the transition of α`+1

through the chain on QP also maps q0 to f0, which yields a contradiction.

The following lemma precises the meaning of that a simulating word corresponds
to applying the sequence of rules that it contains.

Lemma 3.3. Let C ⊆ QP ∪ {qg}, let S = C ∩ QP be non-empty, and let w =

ri1α
` · · · rikα` be a simulating word for S. Then C ′ = (S · ri1 · · · · · rik) ∪ {qg}.

Proof. Let C and S be as in the lemma, and let rj be a rule. The transitions of rj
map each state pi ∈ S to si,j` . Then the transitions of α` map these active states
along the setting chains, maybe activating state q0 when the setting state is final.
Eventually, they are mapped to qg. A state si,jh is final if and only if ph ∈ rj(pi).
From the construction, if si,jh is final, then q0 becomes active after α`−h, which is
then mapped to ph by the transition of the remaining αh. After the last α letter, the
setting states are mapped to guard state qg Hence, we have C ′ = (S · rj) ∪ {qg}.

Since the set rewriting system is non-emptiable, the set S′ = S ·rj is non-empty,
and we can apply the argument iteratively. Hence, the lemma follows by induction
on k.
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We show that, unless f0 is activated, a word applied to a subset C ⊆ QA∗ must
be a prefix simulating word for C ∩ QP. The required condition is that the guard
state is also in C, so one cannot shift the states on QP by using α.

Lemma 3.4. Let S ⊆ QP be non-empty, and let C = S ∪ {qg}. If w is f0-omitting
for C, then w is a prefix of a simulating word for S.

Proof. First, we observe that every word w which does not activate f0, unless it is
the empty word, must start with a rule letter rj , since using α maps qg to f0 and we
have assumed qg ∈ C. Additionally, rj must be legal for S, as otherwise f0 would be
activated. Afterwards, some of the first setting states must be active, because S 6= ∅.
Hence α` must be used, unless w ends. By Lemma 3.3 for C and rjα

`, we know
that the set of active states is C ′ = (S · rj) ∪ {qg}. By iterating this argument, we
observe that between each rule letter there must be exactly ` letters α, and at the
end, there are at most ` letters α. Furthermore, each of the rules applied must be
legal. Therefore, we know that word w has to be a prefix of some simulating word
for S.

In the beginning, before we can apply a simulating word, we can choose an
arbitrary singleton {pi} as the initial subset. Then a simulating word must be applied,
as otherwise f0 is activated.

Lemma 3.5. If a word w is f0-omitting, then w is a prefix of αiw′ for 1 ≤ i ≤ `

and some w′ that is a simulating word for {pi}.

Proof. Let w be a f0-omitting word. Since we start from {q0}, we know that w must
start with αi for some 1 ≤ i ≤ `, unless it is empty. Then, unless w ends, there is
some rule letter rj , which must be legal for {pi}, followed by α`.

Hence w = αirjα
`w′′ for some suffix w′′ of w. By Lemma 3.3, we have C =

δA∗({q0}, αirjα`) = S∪qg, for S = {pi}·rj . Since, the set rewriting is non-emptiable,
S 6= ∅. By Lemma 3.4 applied to C, since f0 cannot be activated, we know that w′′

must be a prefix of a simulating word for S. We let w′ = rjα
`w′′, which is a prefix

of a simulating word for {pi}.

Finally, we show the equivalence between the immortality of the set rewriting
system and the non-cofiniteness of the language of A∗.

Lemma 3.6. The set rewriting system (P,R) is immortal if and only if there are
infinitely many words not accepted by A∗.

Proof. Suppose that the set rewriting system is immortal. For every k > 0, we will
construct a non-accepted word w of length at least k · (` + 1). Since the system is
immortal and by Lemma 2.3, there exists a singleton {pi} and a sequence of k legally
applied rules ri1 , . . . , rik to {pi}. Hence, w = αiri1α

` · · · rikα` is a simulating word
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for S = {pi}. By Lemma 3.3, we know that δA∗({q0}, w) ⊆ QP ∪ {qg}, which does
not contain any final states, thus w is not accepted.

Conversely, assume that L∗ is not cofinite. Thus there are infinitely many words
that are not accepted, which, in particular, by Lemma 3.2, are f0-omitting.

Let w be a f0-omitting word of length at least `+ (`+ 1)2|QP|. By Lemma 3.5,
we know that w has the form of αiw′, where i ≤ ` and w′ is a prefix of a simulating
word for {pi}.

This simulating word must have length at least (` + 1)2|QP|, hence it contains
a sequence of k ≥ 2|QP| rule letters. We conclude that this sequence ri1 · · · · · rik
is legal for {pi}, and it does not lead to the empty set as it is unreachable from a
non-empty subset. If we look at the sequence of sets Sj = {pi} · ri1 · · · · · rij , for
j ∈ {0, . . . , 2|QP|}, then there must be some distinct indices x and y such that x < y

and Sx = Sy. Hence, the rewriting system is immortal because of Sx and the sequence
rix+1 , rix+2 , . . . , riy .

We conclude this part with

Theorem 3.7. Problem 1.1 is PSPACE-hard if L is specified by a DFA over a given
(growing) alphabet.

3.2 Binarization

To show that the PSPACE-hardness remains when the alphabet is restricted to
binary, we apply a variation of a standard binarization of a language.

We modify the construction ofA from to obtain a binary B = (QB, {0, 1}, δB, q0, F ),
where QB is QA with some states added, and q0 and F are from the original A.

The letter α is encoded by 0, every letter ri is encoded by 1i0 for i ≤ m − 1,
and rm is encoded by 1m. Note that this binary encoding is a complete prefix code,
thus the encoding of a word w ∈ Σ∗ is unambiguous and every binary word w′, after
removing at most m− 1 symbols from the end, encodes some word w.

The construction of B is as follows. The transitions labeled by α are now labeled
by 0. We introduce m − 1 new states for each state of QP in the way that a word
encoding ri acts as ri in the original automaton; these new states are not final. The
transitions of R on QB \QP, which are the same for every r ∈ R, are simply replaced
with one transition labeled by 1.

The correctness of the binarization is observed through the following lemmas.

Lemma 3.8. If a word w is f0-omitting for a subset C ⊆ QA∗ \QF, then its binary
encoding w′ is f0-omitting for C and such that δA∗(C,w) = δB∗(C,w

′).
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Proof. This can be observed by analyzing the transitions from each state in QA∗ \QF

in both automata.

Lemma 3.9. If a word w is not f0-omitting for a subset C ⊆ QA∗ \QF for A∗, then
its binary encoding w′ is not f0-omitting for C in B∗.

Proof. Suppose that a prefix of w activates f0; let ua be a shortest such prefix for
u ∈ Σ∗ and a ∈ Σ. From (1), we know that δA∗(C, u) = δB∗(C, u

′), where u′ is the
binary encoding of u. If a = α, then u′0 activates f0 in B∗. If a ∈ R, then active q0,
an active state si,jk , or an active state pi is mapped to f0 by the transition of a. In
the first two cases, u′1 activates f0, and in the third case, u′a′ activates f0, where a′

is the binary encoding of a.

Lemma 3.10. The language of B∗ is cofinite if and only the language of A∗ is
cofinite.

Proof. From Lemma 3.8 and by the fact that all not f0-omitting words for {q0} are
accepted, we know that if a word w ∈ Σ∗ is not accepted by A∗, then its binary
encoding w′ ∈ {0, 1}∗ is not accepted by B∗. Thus, we get that if infinitely many
words are not accepted by A∗, then the language of B∗ is also not cofinite.

Assume now that the language of B∗ is not cofinite. For a t ≥ m, let w′ be
a binary word not accepted by B∗ and of length at least t. Let u′ be the maximal
prefix of w′ that properly encodes a word u ∈ Σ∗; then u′ is shorter by at most
m − 1 than w′. We observe that Lemma 3.2 holds for B∗. Hence, since w′ is not
accepted, u′ must be f0-omitting. From Lemma 3.9, we know that u also must be
f0-omitting. By applying the same argument as in the proof of Lemma 3.6 to u for
t ≥ m((`+ 1)2|QP| + `), (this ensures that u is of length at least `+ 1 + (`+ 1)2|QP |,
since the any original letter is encoded by at most m letters) we conclude that the
set rewriting system is immortal, thus the language of A∗ is not cofinite.

3.3 List of words

Finally, we count the maximum length and the number of words in the language
accepted by B.

Lemma 3.11. The maximum length of words in the language of B is equal to 3`+

m+ 1 and the number of words is at most m`2 + (1 + `m(1 + `) + 1)(1 + `).

Proof. The maximum length of words accepted by our binary DFA B is equal to

3` + m + 1, which is the length of the longest path from q0 to a final state: q0
0`−→

p`
1m−−→ s`,m`

0`−1

−−−→ s`,m1
0−→ qg

1−→ f0
0`−→ f`.
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For the number of words in the recognized language, we consider all final states.
The first type of final states is the setting states. Each such state is reachable from q0

by a unique path, thus each of them induces one word in the language, which gives
at most m`2 words. The second type is forcing states. A state fi may be reached
through different paths, but all such paths consist of a path to f0, whose number is
bounded by the number of states, and a unique path from f0 to fi. In this case, we
have at most (1 + `m(1 + `) + 1)(1 + `) words.

We conclude with

Theorem 3.12. Problem 1.1 is PSPACE-hard if L is a finite list of binary words.

Using the construction, we can also infer the hardness for every fixed size larger
than one of the alphabet. For this, it is enough to add a suitable number of additional
letters to B with the action mapping QB \ (F ∪ {qs}) to f0 and mapping F ∪ {qs} to
qs.
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Chapter 4

The factor universality problem

We follow similarly as in Section 3. In a few steps, we reduce from Problem 2.3
(Emptying Set Rewriting) to Problem 1.2 (Factor Universality for a Finite Set of
Words) when L is a given as a finite list of binary words.

4.1 DFA construction

In the first step, we reduce to Problem 1.2 when L is specified as a DFA instead
of a list of words. To do this, we slightly modify the DFA construction A from
Subsection 3.1 as follows. We remove the last state f` and end the chain of the
forcing states with f`−1. Thus, the set QF becomes {fx | x ∈ {0, 1, . . . , `− 1}}, and
we redefine the transition δ(f`−1, α) = qs. As before, we build the standard NFA A∗

recognizing the language L∗, where L is the language of A.

The idea of the modified construction is as follows. In the NFA A∗, all states
are reachable from the initial state q0. Since we also remove the sink state qs, the
NFA meets the mentioned criterion for factor universality (Subsection 2.2). Thus,
the language of A∗ is factor universal if and only if there is a QA∗-emptying word.

Simulating words in our NFA correspond to applications of rule sequences in the
set rewriting system in the same way as in Subsection 3.1. The construction ensures
that to map the whole set QP to the empty set, there must exist a P -emptying
sequence of rules in the set rewriting system. The forcing states have the property
that whenever f0 is activated, the only way to get rid of all forcing states is to make
the whole QP active again. When f0 is active, which is also the case at the beginning,
this is done by applying the word α`.

Correctness. The correctness is observed through the following lemmas.

Lemma 4.1. We have:

1. δA∗(QA∗ , r2
1) = {f0, q0}, and
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2. δA∗(f0, α
`) = QP.

We show that when f0 is activated, the only way to get rid of all forcing states
is to activate the whole QP at some point.

Lemma 4.2. Let C ⊆ QA∗, let f0 ∈ C, and let w be a word such that δA∗(C,w) ∩
QF = ∅. There exists a prefix u of w such that QP ⊆ δA∗(C, u).

Proof. It is enough to prove the lemma for C = {f0}. Let w be a shortest word with
the property. Hence, there is no non-empty prefix u of w such that f0 ∈ δA∗({f0}, u).
Consider a prefix αi of w for an i < `. Then δA∗({f0}, αi) = {fi, q0, p1, . . . , pi}. Thus
w must have length at least `. If w would start with αirj for an i < ` and some rule
letter rj , then active state q0 would be mapped to f0 by the transition of rj . Thus,
w must start with the prefix u = α`, which is that δA∗({f0}, u) = QP.

We show the properties of a simulating word.

Lemma 4.3. Let C ⊆ QP ∪ {qg}, let S = C ∩ QP be non-empty, and let w =

ri1α
` · · · rikα` be a simulating word for S. Then:

C ′ =

(S · ri1 · · · · · rik) ∪ {qg}, if S · ri1 · · · · · rik−1
6= ∅

∅ = (S · ri1 · · · · · rik), otherwise.

Proof. In the case of S ·ri1 · · · · ·rik−1
6= ∅, the proof is the same as that of Lemma 3.3,

since for all 0 ≤ j ≤ k− 1, we have S · ri1 · · · · · · · rj 6= ∅, thus all preconditions apply.

Otherwise, let j < k be the smallest index such that the set S · ri1 · · · · · rij is
empty. By the argument for the first case, we know that δA∗(S, ri1α` · · · rijα`) = {qg}.
Applying the next letter rij+1 removes this single state, yielding the empty set.

For the other direction, words that are f0-omitting are related with simulating
words.

Lemma 4.4. Let S ⊆ QP be non-empty, and let C = S ∪ {qg}. If w is f0-omitting
for C, then either:

1. w is a prefix of a simulating word for S, or

2. a prefix of w is a simulating word for S whose sequence of rules is S-emptying.

Proof. Following the proof of Lemma 3.4, we observe that a word w must start with
rjα

`, unless it ends prematurely. Then, by Lemma 4.3, we have C ′ = δA∗(C, rjα
`) =

(S · rj) ∪ {qg}. We apply this argument iteratively, until either w ends, in which
case (1) holds, or C ′ becomes {qg}, in which case (2) holds.
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Lemma 4.5. Let w be a word such that δA∗(QP, w) = ∅. Then w contains a factor
v which is a simulating word for QP whose sequence of rules is P -emptying.

Proof. It is enough to prove the lemma for words w that do not have a non-empty
prefix u such that δA∗(QP, u) = QP; otherwise, we can search for a factor v in w

with u removed. Hence, by Lemma 4.2, w must be f0-omitting. By Lemma 4.4, we
have two possibilities (1) and(2). In case (2), we immediately know that w contains
a prefix that is a simulating word for QP whose sequence of rules is P -emptying. In
case (1), w is a prefix of a simulating word for QP. If w itself is not a simulating
word, write w = vrik+1

αi for a simulating word v = ri1α
` · · · rikα` for QP and some

0 ≤ i < `; otherwise let v = w. Let C ′ = δ(QP, v). By Lemma 4.3, C ′ ⊆ QP∪{qg} and
S′ = C ′∩QP = P ·ri1 ·· · ··rik . If S′ 6= ∅, then the transitions of the possibly remaining
suffix rik+1

αi do not map S′ to ∅, which yields a contradiction with the assumption
about w. Therefore, S′ = ∅, thus the sequence of rules in v is P -emptying.

Finally, we show the equivalence between the reduced problems.

Lemma 4.6. The following conditions are equivalent:

1. The permissive set rewriting system (P,R) admits a P -emptying sequence of
rules.

2. There exists a QP-emptying and f0-omitting for QP word for A∗.

3. There exists a QA∗-emptying word for A∗.

Proof. (1) ⇒ (2): Suppose that for the set rewriting system there is a sequence of
rules ri1 , . . . , rik that is P -emptying. We take the word w = r1α

` · · · rkα`, which is a
simulating word for QP. By Lemma 4.3, we conclude that δA∗(QP, w) ⊆ {qg}. Thus,
wr1 is QP-emptying and f0-omitting for QP.

(2) ⇒ (3): If w is a QP-emptying word, then, by Lemma 4.1, δA∗(QA∗ , r2
1α

`w) = ∅.

(3)⇒ (1): If there exists aQA∗-emptying word w ∈ Σ∗, then, in particular, δA∗(QP, w) =

∅. By Lemma 4.5, w contains a factor v which is a simulating word for QP whose
sequence of rules is P -emptying.

We conclude this part with

Theorem 4.7. Problem 1.2 is PSPACE-hard if L is specified by a DFA over a given
(growing) alphabet.

4.2 Binarization and list of words

We reduce to a binary DFA B using the same construction as in Subsection 3.2.
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We observe that Lemma 3.8 and Lemma 3.9 hold also in this case. It is because
both constructions differ only on the set QF, whose transitions are irrelevant for the
observations.

Lemma 4.8. For B∗, there is a QP-emptying and f0-omitting for QP word if and
only if there is a QB∗-emptying word. In particular, a QB∗-emptying word contains
a factor that is QP-emptying and f0-omitting for QP.

Proof. Assume that there is a QP-emptying word w. We have δB∗(QB∗ , 1m+1) =

{f0, q0} and δB∗(f0, 0
`) = QP. Thus, δB∗(QB∗ , 1m+10`w) = ∅.

Conversely, let w be a QB∗-emptying word. Let u be the longest prefix of w such
that QP ⊆ δB∗(QB∗ , u), and let w = uv. Observe that Lemma 4.2 holds for B∗; for
this, it is enough to change in its proof α to 0 and rj to 1. By this lemma, v has to
be f0-omitting for QP , as otherwise u could be longer. Hence, v is QP -emptying and
f0-omitting for QP .

Lemma 4.9. There is a QP-emptying and f0-omitting for QP word for A∗ if and
only if there is such a word for B∗. In particular, if w′ is such a word for B∗, then
w′0 encodes a word with this property for A∗.

Proof. Let w be aQP-emptying and f0-omitting forQP word forA∗. From Lemma 3.8,
we know that its binary encoding w′ is f0-omitting forQP and such that δB∗(QP, w

′) =

δA∗(QP, w) = ∅.

Conversely, assume that there is a QP-emptying and f0-omitting for QP binary
word w′ for B∗. We know that w′0 has the same properties, and it must be an
encoding of some word w ∈ Σ∗A. Then, from Lemma 3.9, w must be also f0-omitting
for QP. From Lemma 3.8, we conclude that w has to be also QP-emptying.

4.3 List of words

Lemma 4.10. The maximum length of words in the language of B is equal to 3`+m

and the number of words is at most m`2 + (1 + `m(1 + `) + 1)`.

Proof. We count words as in the proof of Lemma 3.11, taking into account that the
chain of forcing states is shorter by 1.

We conclude with

Theorem 4.11. Problem 1.2 is PSPACE-hard when the alphabet is binary.

As for the previous problem, in the same way, by adding a suitable number of
letters, it is possible to show the hardness for every fixed size larger than one of the
alphabet.
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Chapter 5

Lower bounds

By ||L||max we denote the length of the longest words in L and by ||L||sum we denote
the sum of the lengths of the words in L. Thus, ||L||sum can be treated as the size of
the input L.

5.1 The longest omitted words

It is know that for each odd integer n ≥ 5, there exists a set of binary words L of
length at most n such that L∗ is cofinite and the longest words not in L∗ are of length
Ω(n22

n
2 ) [13]. However, the constructed L contains exponentially many words, thus

an exponential lower bound in terms of the size of L could not be inferred.

We show an exponential in ||L||sum lower bound on the length of the longest
words not in L∗ when L∗ is cofinite. The idea is to construct a list of binary words
from a mortal set rewriting system whose longest legal sequences of rules have an
exponential length (Theorem 2.1).

Theorem 5.1. There exists an infinite family whose elements L are finite sets of
binary words and are such that L∗ is cofinite and the longest words not in L∗ are of
length at least 2

||L||max−1
4 · ||L||max−1

4 and this length is 2Ω( 5
√
||L||sum).

Proof. For an n ≥ 2, we take the set rewriting system (P,R) and a subset S from
Theorem 2.1 meeting the bound 2n − 2, and we use the construction from Section 3
to create a list of binary words L. Since the set rewriting system is mortal, L∗ is
cofinite.

The length of the longest words in this list is equal to ||L||max = 4n + 1 and
there are at most n3 + (1 + n2(1 + n) + 1)(1 + n) = n4 + 3n3 + n2 + 2n + 2 words
(Lemma 3.11), thus ||L||sum ≤ (n4 + 3n3 + n2 + 2n+ 2)(4n+ 1).

We take a binary simulating word w′ for the longest possible legal sequence
of rules in this set rewriting system for some singleton S. From Lemma 3.3 and
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Lemma 3.8, we know that 0iw′ /∈ L∗, for some i ≥ 1. The number i corresponds
to the initial singleton set S in the construction. For n ≥ 2, we can lower bound
the length of the encoding of each rule letter by 2. Since the longest possible legal
sequence of rules has length 2n − 2 and one rule application corresponds to at least
n + 2 letters (the encoding of the rule letter and 0n) the length of the word 0iw′ is
at least (2n − 2) · (n+ 2) + 1. For n ≥ 2, we have (2n − 2) · (n+ 2) + 1 ≥ 2n · n.

Since n = ||L||max−1
4 and n = Ω( 5

√
||L||sum), the length of the word 0iw′ is at

least 2
||L||max−1

4 · ||L||max−1
4 when written in terms of ||L||max, and it is 2Ω( 5

√
||L||sum) in

terms of ||L||sum.

5.2 The shortest incompletable words

We show that when L∗ is not factor universal, the length of the shortest words that
are not completable can be exponential in either ||L||max or ||L||sum.

The idea is to construct a list of binary words from a permissive set rewriting
system whose shortest legal sequences of rules that are P -emptying are of exponential
length (Theorem 2.5).

Theorem 5.2. There exists an infinite family whose elements L are finite sets of
binary words such that the shortest incompletable binary words are of length at least
2
||L||max

4 · ||L||max

4 and this length is 2Ω( 5
√
||L||sum).

Proof. For n ≥ 2, we take the set rewriting system (P,R) from Theorem 2.5. Then
we apply the construction from Subsection 4 to create a list of binary words L. Since
there exists a P -emptying sequence of rules, by Lemmas 4.6, 4.9, and 4.8, we conclude
that there is a QB∗-emptying word in B∗, thus L∗ is not factor universal.

We show a lower bound on the length of such words. If some word is not a factor
of any word from L∗, then this word must be QB∗-emptying. From Lemma 4.8, we
know that it contains a factor w′ that is QP-emptying and f0-omitting for QP. Then,
from Lemma 4.9, we know that the word w encoded by binary word w′0 is QP-
emptying for A∗. By Lemma 4.5, w contains as a factor a simulating word v whose
sequence of rules is P -emptying. Since the shortest such sequence of rules has length
2n − 1, word v and also w have length at least (2n − 1) · (n + 2). Moreover, they
contain at least (2n − 1) rule letters. Since, for n ≥ 2, each rule letter is encoded by
at least two binary symbols, we conclude that w′, where w′0 is the encoding of w,
has length at least (2n − 1) · (n+ 2)− 1. For n ≥ 2, (2n − 1) · (n+ 2)− 1 ≥ 2n · n.

By setting n = ||L||max

4 and n = Ω( 5
√
||L||sum), the length of every QP-emptying

word is at least 2
||L||max

4 · ||L||max

4 when written in terms of ||L||max, and it is 2Ω( 5
√
||L||sum)

in terms of ||L||sum.
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Chapter 6

Upper bounds

We show algorithms and upper bounds on the related length for both problems,
which are exponential only in ||L||max while remains polynomial in ||L||sum.

For the Frobenius monoid problem, there was shown upper bound 2
2|Σ|−1(2||L||max |Σ|||L||max−

1) on the length of the longest words not in L∗ when L∗ is cofinite [13]. We show an
upper bound that involves both ||L||max and ||L||sum.

Theorem 6.1. Problem 1.1 can be solved in time exponential only in ||L||max while
polynomial in ||L||sum. If L∗ is cofinite, then the longest words not in L∗ have length
at most 1 + (||L||sum + 1)2||L||max .

Proof. We construct a DFA A recognizing L in the way that it forms a radix trie.
Then every distinct word w maps the initial state q0 to a different state, unless it is
the unique non-final sink state qs. By a standard construction for the Kleene star, we
construct an NFA A∗ = (QA∗ ,Σ, δA∗ , q0, FA∗) recognizing L∗. We can assume that
L does not contain the empty word, so A∗ contains an ε-transition from every final
state to the initial state q0. The final states FA∗ is the set of final states of A with q0

added. We can remove the sink state from A∗, hence from every state, a final state
is reachable in A∗.

We observe that in A∗, after reading any word w, there are no more than |QA∗ | ·
2||L||max +1 active states. We define the level of a state q ∈ QA∗ \{qs} to be the length
of the (unique) shortest word mapping q0 to q. Every state by the action of every
letter is mapped to at most one state, which has the level larger by 1, and possibly to
q0 by following ε-transition. Hence, for a subset with at most one state at each level,
the action of every letter preserves this property. Since the initial subset is {q0}, after
reading any word, for every level at most one state can be active. Moreover, if q is
the active state with the largest level i, the set of possible active states with smaller
levels is determined, because if w is the unique shortest word of length i such that
{q} ⊆ δ(q0, w), then the only possible active state at a level j < i is that in δ(q0, w

′)

(if it contains a state of level j), where w′ is the suffix of w of length j. The largest
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possible level is `. State q0 is active if and only if a final state other than q0 is active,
with the exception of the initial active subset {q0}. Hence, we can choose one of the
|QA∗ | states to be that with the largest level, and then any subset of the ` states
that are determined by the chosen state.

Having the number of reachable active subsets of states bounded, we can deter-
minize A∗ to a minimal DFA DA∗ with at most |QA∗ | · 2||L||max + 1 states. Finally,
the problem of whether a minimal DFA recognizes a cofinite language is equivalent
to whether there exists a cycle containing a non-final state.

Since |QA∗ | ≤ ||L||sum + 1, the upper bound on the length follows.

For the factor universality problem, only trivial upper bound 2||L||sum−||L||max+1

was known [10].

Theorem 6.2. Problem 1.2 can be solved in time exponential only in ||L||max while
polynomial in ||L||sum. If the set is not complete, then the shortest incompletable
words have length at most ||L||max + 1 + (||L||sum + 1)2||L||max.

Proof. We construct an NFA A∗ for L∗ as in the proof of Theorem 6.1. We remove
its sink state and make all states initial and final, hence it recognizes the language
of all factors of L∗. The language is universal if and only if there exists a word w

such that δ(QA∗ , w) = ∅ [17].

Similarly as before, we observe that in A∗, after reading any word w of length
at least ||L||max, there are no more than |QA∗ | · 2||L||max + 1 active states. Since we
start with the set of all states QA∗ , at the beginning there could be more reachable
subsets.

If there exists a word w such that δA∗(Q∗A, w) = ∅, then for every word u we
also have δA∗(QA∗ , uw) = ∅. Hence, we can start from an arbitrary word u of length
||L||max, and then check the reachability of ∅ visiting at most |QA∗ | · 2||L||max + 1

states.

Under a fixed-sized alphabet (as otherwise ||L||sum can be arbitrarily large with
respect to ||L||max), we have ||L||sum ≤ |Σ|||L||max . We conclude that 2O(||L||max) is a
tight upper bound on the lengths related to both problems.
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Appendix

Large length of the shortest incompletable words

We define explicitly the family from the proof Theorem 5.1 of sets of words L for
which the shortest incompletable words in L∗ are of exponential length 2

||L||max
4 ·

||L||max

4 in terms of ||L||max and 2Ω( 5
√
||L||sum) in terms of ||L||sum.

For a given n ≥ 2, the words in L are as follows. The paths in the construction
from the initial state to a final state, which correspond to words in L, are also listed.
We rename the elements in the set P = {b0, b1, . . . , bn−1} from the set rewriting
system in the proof to the elements from {p1, p2, . . . , pn} such that bi = pi+1 as in
the reduction. In this way, the construction keeps the property that if si,jk is final
and pi is active, then after 1j00n (or 1j0n if j = n), pk will be active.

The words coming from final states fx for x ∈ {0, 1, . . . , n− 1}:

• 10x for x ∈ {0, . . . , n− 1}; (q0
1−→ f0

0x−→ fx)

• 0n00x for x ∈ {0, . . . , n− 1}; (q0
0n−→ pn

0−→ f0
0x−→ fx)

• 0i1j00k10x for i ∈ {1, . . . , n}, j ∈ {1, . . . , n − 1}, k ∈ {0, . . . , n − 1}, and

x ∈ {0, . . . , n− 1}; (q0
0i−→ pi

1j0−−→ si,jn
0k−→ si,jn−k

1−→ f0
0x−→ fx)

• 0i1n0k10x for i ∈ {1, . . . , n}, k ∈ {0, . . . , n − 1}, and x ∈ {0, . . . , n − 1};
(q0

0i−→ pi
1n−→ si,nn

0k−→ si,nn−k
1−→ f0

0x−→ fx)

• 0i1j00n00x for i ∈ {1, . . . , n}, j ∈ {1, . . . , n − 1}, and x ∈ {0, . . . , n − 1};
(q0

0i−→ pi
1j0−−→ si,jn

0n−→ qg
0−→ f0

0x−→ fx)

• 0i1n0n00x for i ∈ {1, . . . , n} and x ∈ {0, . . . , n − 1}; (q0
0i−→ pi

1n−→ si,nn
0n−→

qg
0−→ f0

0x−→ fx)

The words coming from the final setting states corresponding to the transition
rj(pj) = {pi | i ∈ {0, 1, 2, . . . , j − 1}}:

• 0j1j00n−k for j ∈ {1, . . . , n − 1} and k ∈ {1, . . . , j − 1}; (q0
0j−→ pj

1j0−−→
sj,jn

0n−k

−−−→ sj,jk )
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• 0n1n0n−k for k ∈ {1, . . . , n− 1}; (q0
0n−→ pn

1n−→ sn,nn
0n−k

−−−→ sn,nk )

The words coming from the final setting states corresponding to the transition
rj(pi) = P for i ∈ {0, 1, 2, . . . , j − 1}:

• 0i1j00n−k for j ∈ {1, 2, . . . , n − 1}, i ∈ {1, . . . , j − 1}, and k ∈ {1, 2, . . . , n};
(q0

0i−→ pi
1j0−−→ si,jn

0n−k

−−−→ si,jk )

• 0i1n0n−k for i ∈ {1, . . . , n− 1} and k ∈ {1, 2, . . . , n}; (q0
0i−→ pi

1n−→ sn,nn
0n−k

−−−→
sn,nk )

The words coming from the final setting states corresponding to the transition
rj(pi) = {pi} for i ∈ {j + 1, j + 2, . . . , n− 1}:

• 0i1j00n−i for j ∈ {1, 2, . . . , n − 1} and i ∈ {j + 1, . . . , n}; (q0
0i−→ pi

1j0−−→
si,jn

0n−i

−−−→ si,ji )

A program generating these examples is also available at [15] as a source file.
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