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Abstract

The following paper is inspired by Efimov’s problem – an undecided problem
of whether there exists an infinite compact topological space that does not contain
neither non-trivial convergent sequences nor a copy of βω. After introducing the
basic topological concepts, we present several classes of topological spaces in which
such sequences can certainly be found, namely ordered, scattered, metrisable spaces
and Valdivia compacta. We show that some cardinal coefficients set limits on the
smallest cardinality of the base and the smallest cardinality of a neighbourhood base,
under which the existence of convergent sequences can be ensured. In the final part
of the paper we define the space βω and show its selected properties. In particular,
we prove that there are indeed no non-trivial convergent sequences in βω.

Streszczenie

Poniższa praca inspirowana jest problemem Jefimowa – nierozstrzygniętym za-
gadnieniem, czy każda nieskończona zwarta przestrzeń topologiczna niezawierająca
nietrywialnych ciągów zbieżnych zawiera kopię przestrzeni βω. Po wprowadzeniu
podstawowych pojęć topologicznych prezentujemy kilka klas przestrzeni topologicz-
nych, w których nietrywialne ciągi zbieżne na pewno się znajdują, mianowicie prze-
strzenie uporządkowane, rozproszone, metryzowalne oraz kompakty Valdivii. Poka-
zujemy, że niektóre współczynniki kardynalne zadają ograniczenia na najmniejszą
moc bazy i najmniejszą moc bazy otoczeń, stanowiące warunek wystarczający ist-
nienia ciągów zbieżnych. W końcowej części pracy definiujemy przestrzeń βω oraz
pokazujemy wybrane jej własności. W szczególności dowodzimy, że istotnie w βω
nie ma nietrywialnych ciągów zbieżnych.
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0 Introduction
The study of convergent sequences in compact spaces is an active branch of contemporary
topology. However, there is no survey article in the literature about the reasons for their
existence.

We present several topological properties implying that the space having this property
contains a non-trivial convergent sequence (i.e. a sequence which is not eventually con-
stant). In particular those classes of compact infinite spaces have non-trivial convergent
sequences:

• scattered spaces (Theorem 2.1.2)

• ordered spaces (Theorem 2.2.4)

• metrisable spaces (Theorem 2.3.4)

• spaces of small character (Theorems 2.4.5 and 2.6.4)

• spaces of small weight (Theorem 2.7.10)

• Valdivia compacta (Theorem 2.8.10)

Notice that this list is not irreducible (e.g. compact metrisable spaces are ordered, they
are also Valdivia). Nevertheless, we enclose separate proofs for all those classes, in each
case trying to grasp the precise argument.

Whereas the statements of these theorems are commonly known, the proofs are notori-
ously difficult to find. In this paper we intend to fill that gap.

At the end we present the flagship compact infinite space without non-trivial convergent
sequences, namely βω. Note that the problem if every infinite compact space contains
either a non-trivial convergent sequence or a copy of βω is still unsolved (at least in ZFC;
it is called the Efimov Problem).

The proofs of Theorems 2.1.2, 2.7.10, 2.8.9, 2.8.10 are adaptations of proofs from the
literature. I proved the remaining claims myself with the invaluable guidance of my
supervisor.

1 Basic topological concepts
Definition 1.1. A topological space is a set (of points) X together with a collection
of some of its subsets. We call these distinguished sets open sets. We call their
complements closed sets. We call a set that is simultaneously closed and open clopen.
The family of all open sets will be called a topology. In a topological space the following
axioms must be satisfied:

1. X and ∅ are open;

2. the union of any collection of open sets is open;

3
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3. the intersection of finitely many open sets is open.

When speaking in context of a space, a set is a subset of said space.

Definition 1.2. We say that x is isolated if {x} is open.

Definition 1.3. The interior of a set A is the ⊆-biggest open set contained in it. Its
closure is the ⊆-smallest closed set containing it. We denote them by intA and clA
respectively. The boundary of A is defined as clA \ intA and denoted by ∂A.

Definition 1.4. A topological space is Hausdorff if every two points can be separated
by open sets, i.e. for all x, y ∈ X there are disjoint open sets U, V , such that x ∈ U and
y ∈ V .

Definition 1.5. We call a topological space compact if every open cover has a finite
subcover.

Specifically, in a compact space, given an arbitrary (possibly infinite) family of open
sets {Uα : α < κ}, such that

∪
Uα = X, we are always able to choose a finite collection

{Ua1 , . . . , Uan}, whose union will still be the whole space:
∪n

k=0 Uak = X.

Definition 1.6. We define the subspace topology of Y ⊆ X in the following way: a
set V ⊆ Y is open in Y only if there exists some U open in X such that V = Y ∩ U .

Lemma 1.7. A closed subspace Y of a compact space X is compact.

Proof. Take a cover {Vα} of Y . Let Uα be any open set in X such that Vα = Y ∩ Uα.
The family Uα, together with X \Y , constitutes an open cover of X. From compactness
of X we can take a subcover: {Ua1 , . . . , Uan , (X \ Y )}. But then, {Ua1 ∩ Y, . . . , Uan ∩
Y, (X \ Y ) ∩ Y } = {Va1 , . . . , Van ,∅} is, after discarding the empty set, a finite subcover
of Y . QED

Lemma 1.8. In a compact Hausdorff space a point y can be separated from a closed set
K by open disjoint sets U ∋ x, V ⊇ K.

Proof. Note that K must be compact, from the previous lemma. For each x ∈ K
separate it from y by Vx ∋ y and Ux ∋ x. The sets Ux constitute an open cover of K,
thus there exists a finite open subcover {Uxn : n < N}. Their union is an open superset
of K, disjoint with the open set

∩
n<N Vxn ∋ y. QED

Definition 1.9. We say that a space is discrete (or has a discrete topology) if every
set is open.

Clearly, no infinite discrete space can be compact, because the family of all singletons
constitutes a cover without any subcovers, let alone finite ones.

The discrete topology is the natural topology on the set of natural numbers N. From
now on, we will denote that set by ω.

4
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Definition 1.10. A base of a topological space is a family of sets such that every open
set can be written as a union of those base sets.

Definition 1.11. The weight of a topological space is the minimal cardinality of a
base.

Definition 1.12. We say that a sequence ⟨an⟩ is convergent to a if for every open
neighbourhood U of a all but finitely many elements of ⟨an⟩ are in U . We then write
an → a. A sequence is trivial if it is eventually constant.

2 Spaces containing non-trivial convergent sequences
Now we proceed to describe several spaces which do have a convergent sequence. We
presume all spaces to be compact, infinite and Hausdorff.

2.1 Scattered spaces
Definition 2.1.1. We call a space scattered if every closed subspace has an isolated
point.

Possibly the most natural compact infinite example of such a space would be ω ∪ {∞}
thought of as the one-point compactification of the discrete space ω, in which all subsets
of ω are open, but a set containing ∞ is open iff it is cofinite.

Theorem 2.1.2. Every scattered space has a convergent sequence.

Proof. We present a slightly modified version of the proof from [4]. We are going to
construct such a sequence. Let X be an infinite scattered space. Our approach will
be to find a subspace similar to the previously mentioned ω ∪ {∞}, i.e. a countable
closed space, in which almost all singletons are open. We will temporarily forgo the
requirement of closedness, only taking closure later. So we are looking for an analogue
to ω – a space that is countable and discrete. Note that it implies openness. It can be
found in two ways.

The first is to use Lemma 3.2.2. Having an infinite discrete subspace provided by that
lemma, we take one of its countable subspaces and call it A.

The second way is to construct it explicitly. Because X is infinite, closed, and scattered,
there is an isolated p0 ∈ X. Note that X \ {p0} = X \

∪
n<1{pn}, as a complement of an

open set, is closed, so there exists an isolated p1 ∈ X \ {p0}. It means that {p0, p1} or
{p0} is open. But in compact Hausdorff spaces finite sets are always closed, so we know
that {p1}, being the intersection of X \ {p0} with one of said sets, is indeed open, so p1
is isolated. We can repeat this construction, obtaining an infinite sequence of isolated
points, and therefore the space we wanted, A :=

∪
n<ω{pn}.

Observe that the boundary ∂A of A is non-empty. Otherwise A itself would have to be
closed, and as a closed subspace of a compact space, compact. But then it would be

5

5:45897



impossible to find a finite subcover of a cover consisting of singletons. What’s more, the
boundary is equal to (X \A)∩ clA, so it is closed itself. Because A is open, no element
of ∂A is in A. Notice that there are no open sets contained in the boundary, because
otherwise the closure would be smaller.

This means that there is an isolated b ∈ ∂A. We can separate it, by Lemma 1.8, from
the remaining ∂A \ {b} by open U and R, respectively.

Let ⟨bn : n < ω⟩ be a sequence of all elements of the countable set B := A ∩ U . We will
show that it is convergent to b. First, we claim that B ∪ {b} is closed, while B is not.

1. Note that for every open neighbourhood N of b the sets N ∩ B and N \ (U ∩ B)
are non-empty. The latter contains b. The former cannot be empty, because if
N was disjoint with the open set B = U ∩ A, the open intersection N ∩ U would
have to be contained in ∂A \ A, which cannot happen, as previously mentioned.
Consequently b ̸∈ B while b ∈ ∂B, so B is not closed.

2. Of course then B ∪ {b} ⊆ clB. We will prove that the equality holds. Suppose
x ∈ clB\B. Then for every open neighbourhood N ∋ x the sets A∩(N∩U) = N∩B
and N \ B are non-empty. Considering an open neighbourhood N ∩ U allows us
to conclude that (N ∩ U) \ B = (N ∩ U) \ (A ∩ U) = (N ∩ U) \ A is non-empty.
Therefore N ∩A and N \A is non-empty, so x ∈ ∂A.

Note that B is a subset of a closed set X \R, therefore clB is too. Hence x is not
in R, but the only element of ∂A not in R is b, so x = b. This asserts that the
equality indeed holds.

We see that B∪{b} is closed and thus compact. We will now show that the defined earlier
sequence converges to b. Take an open neighbourhood N of b in X. The restriction
N ∩ clB to clB must be open in clB. If infinitely many points of B (of which all
are isolated) were outside N ∩ clB, they would constitute an open cover without a
finite subcover, which is a contradiction with compactness. Therefore for every open
neighbourhood of b all but finitely many elements of the defined sequence are in that
neighbourhood. QED

2.2 Ordered spaces
Definition 2.2.1. An ordered space is a topological space with a linear ordering,
such that the family of all open intervals (a, b) := {x ∈ X : a < x < b} and rays
(−∞, b) := {x ∈ X : x < b}, (a,∞) := {x ∈ X : a < x}, constitutes a base of its
topology.

Let ⟨an : n < ω⟩ be a strictly increasing sequence. Of course it is non-trivial. We will
prove that it is convergent. First we need to find its supremum.

Lemma 2.2.2. There exists an upper bound u such that u > an for all n.

6
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Proof. Otherwise {(−∞, a0)} ∪ {(an, an+2) : n < ω} would constitute an open cover
without a finite subcover, which is impossible in compact spaces. QED

Lemma 2.2.3. There exists a supremum of ⟨an⟩.

Proof. For each upper bound uα take the ray Uα = (uα,∞). Suppose none of the upper
bounds is the smallest. Then every upper bound (i.e. every point greater than all
elements of ⟨an⟩) is in some ray Uα. Note that the elements that are lesser or equal to at
least one an are in {(−∞, a1)}∪{(an, an+2) : n < ω}. But then {(−∞, a0)}∪{(an, an+2) :
n < ω} ∪ {Uα, α < κ} is an infinite open cover without a finite subcover, which is a
contradiction. QED

Theorem 2.2.4. There is a non-trivial convergent sequence in an infinite ordered space.

Proof. Let a be the supremum of ⟨an⟩. Take an open interval (l, r) such that a ∈ (l, r).
Because a is the supremum, l cannot be greater than all of the elements of the sequence.
It must then be lesser or equal to some an. But then, all but finitely many elements of
the sequence are in (l, r). Therefore ⟨an⟩ converges to a. QED

2.3 Metrisable spaces
Definition 2.3.1. A metric is a function d : X×X → [0,∞) such that for all x, y, z ∈ X
the following conditions are met:

1. d(x, y) = 0 ⇐⇒ x = y,

2. d(x, y) = d(y, x),

3. d(x, y) + d(y, z) ⩾ d(x, z).

We call the pair ⟨X, d⟩ a metric space. There is a topology connected with a metric
space, namely the topology in which all open balls Br(x0) := {x ∈ X : d(x, x0) < r}
form a base. We assume B∞(x0) = X.

Definition 2.3.2. A topological space is metrisable if there exists a metric on it that
generates the topology of that space.

Fact 2.3.3. Metrisable spaces are Hausdorff.

Proof. Let X be a metrisable space with a metric d. We want to separate x, y ∈ X.
They can be separated by the obviously disjoint B 1

3
d(x,y)(x) and B 1

3
d(x,y)(y). QED

Theorem 2.3.4. Every metrisable space contains a non-trivial convergent sequence.

7
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Proof. Let X be a metrisable space with a metric d. If all points were isolated, the space
could not be compact. Therefore we can take a non-isolated point x ∈ X. Of course∩∞

n=0B 1
n
(x) = {x}. But finite intersections

∩N
n=0B 1

n
(x) = B 1

N
(x) are open, thus are

not {x}. Define An = B 1
n
(x) \ B 1

n+1
(x). Note

∪
n∈NAn = X \ {x}. The sequence An

cannot stabilise, because it would imply that x is isolated. Taking a sequence Cn of
these sets Ak that are not equal to their predecessors we can choose cn ∈ Cn which are
convergent to x. Indeed, d(cn, x) < 1

n . QED

Fact 2.3.5. A metrisable space is of countable weight.

Proof. For every radius 1
n , n ∈ N we see by compactness that finitely many open balls

B 1
n
(xn1 ), . . . , B 1

n
(xnk) of that radius cover the whole space. We claim that the family of

all such balls constitutes a (obviously countable) base. Take a point x in an arbitrary
open set U . Because U is open, there is an r > 0 such that Br(x) ⊆ U . Take n such
that 1

n < r
2 . We already know, that for some l we have x ∈ B 1

n
(xnl ). It is obvious that

the distance between any two points in such a ball is lesser than 2
n and therefore lesser

than r. Hence x ∈ B 1
n
(xnl ) ⊆ U ; the conclusion follows. QED

We see that metrisable spaces have the smallest possible weight.

2.4 First-countable spaces
We can generalise our result from metrisable spaces in a different way, first noting that
in such a space every neighbourhood of a point contains a ball centred in that point.

Definition 2.4.1. A neighbourhood base of x ∈ X is a collection ⟨Nα⟩ of (some)
neighbourhoods of x such that for every neighbourhood M ∋ x there is an α such that
Nα ⊆ M .

Definition 2.4.2. A space is first-countable if every point has a countable neighbour-
hood base.

Definition 2.4.3. The character of a point of a topological space is the minimal
cardinality of a neighbourhood base of that point.

Definition 2.4.4. The character of a topological space is the supremum of the char-
acters of its points.

Therefore first-countability of a space is equivalent to that space having countable char-
acter.

Theorem 2.4.5. All first-countable spaces contain a non-trivial convergent sequence.

Proof. Take a non-isolated x ∈ X and its countable neighbourhood base ⟨Nn⟩. Consider
a sequence of open sets Mn := N1 ∩ . . . ∩ Nn. First, note that none of these sets is a
singleton of x, because we demanded x to be non-isolated.

8
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We will now show that the sequence does not stabilise. Take y ∈ Mn \ {x} and separate
x and y by open sets U and V . But then there is some Nk ⊆ U , so Mk ⊂ Mn. Therefore,
the sequence ⟨Mn⟩ contains infinitely many different sets. Renumerate them in such a
way that that sequence is strictly decreasing. Notice that ⟨Mn⟩ is a neighbourhood base
– for every neighbourhood U of x some Nn is contained in U , but then Mn also is.

Let xn ∈ Xn \ Xn+1 for every n. We will now show that xn → x. Take an open set
U ∋ x. It must contain a set Mn for some n. But then all xk for k ⩾ n are in Mn and
therefore in U . Hence only finitely many elements of the sequence ⟨xn⟩ lie outside any
given open set containing x. QED

Note that our assumption need not be so strong – a countable neighbourhood base
existing just for one non-isolated point would suffice. Furthermore, we can permit the
neighbourhood base to be somewhat larger.

2.5 Spaces of weight smaller than s

In this subsection all sets will be subsets of ω, unless specified otherwise. The family of
all infinite subsets of ω will be denoted [ω]ω.

Definition 2.5.1. Given two infinite sets A,B we say that A splits B if both B ∩ A
and B \A are infinite.

Definition 2.5.2. Consider a family A = {Aα : α < κ} of infinite subsets of N. We say
that A is splitting if for every B ∈ [ω]ω there is a set A ∈ A which splits B.

Definition 2.5.3. The splitting number s is the cardinality of the smallest splitting
family.

Fact 2.5.4. The splitting number is uncountable.

Proof. Take a family A = {Aα : α < ω}. We will recursively will construct a sequence
Bn of infinite sets, whose limit (in some sense) will not be split by A. We assume
B−1 = ω. The set B−1 \A0 must be infinite or have an infinite complement. Let B0 be
the infinite one of them. We repeat this operation, setting Bn to be either Bn−1 ∩An or
Bn−1 \ An, depending on which one is infinite. Both cannot be finite, as their union is
an infinite set Bn−1. Note that is for every set An all the following sets Bn+k are either
disjoint with An, or contained in it.

Denote the k-th element of Bn by Bn(k). Let Cn = Bn(n) and C = {Cn : n < ω}.
Observe that ⟨Cn⟩ is a strictly increasing sequence. Fix Ap. We know that Cn ∈ Ap for
all n ⩾ p or Cn ̸∈ Ap for all n ⩾ p. Therefore only the sets Cn for n < p can be different
in this aspect. So we have proved that either Ap \ C is finite or Ap ∩ C is finite.

Therefore we have demonstrated that there exists a set not split by any element of
A. QED

9
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Theorem 2.5.5. All spaces of weight smaller than s contain a non-trivial convergent
sequence.

Proof. Take a countable sequence ⟨yn⟩. Note that because all splitting families have
cardinality of at least s, there exists an infinite subsequence ⟨yan⟩ =: ⟨zn⟩ such that no
element of the base splits it. Therefore the base can be divided into two classes – the
class ⟨Fα⟩ of the base sets containing only finitely many elements of ⟨zn⟩ and the class
⟨Aα⟩ of the base sets containing all but finitely many elements of ⟨zn⟩. Suppose ⟨Fα⟩ is
an open cover of X. Compactness means that there exists a finite subcover. But then,
only finitely many elements of ⟨zn⟩ can be covered. This contradiction means that there
exists a point z ∈ X not contained in any Fα. Therefore, its every neighbourhood has
an Aα included, hence every open neighbourhood of z contains all but finitely many
elements of ⟨zn⟩.

QED

2.6 Spaces of character smaller than p

Definition 2.6.1. We say that P ⊆ ω is a pseudo-intersection of a family N of
subsets of ω if for every Nα ∈ N the set P \ F is finite.

Definition 2.6.2. We say that a family N of sets has the finite intersection property
or, equivalently, is a filter base if every finite subfamily has a non-empty intersection.

Definition 2.6.3. The pseudo-intersection number p is the cardinality of the small-
est filter base not containing an infinite pseudo-intersection.

Theorem 2.6.4. All spaces containing a smaller than p neighbourhood base of a non-
isolated point x ∈ X non-trivial convergent sequence.

Proof. Recall that an infinite space K must have a countable discrete subspace A. It
cannot be closed in K, because a closed subspace of a compact space is compact and there
are no infinite compact spaces. Therefore ∂A ̸= A. Take x ∈ ∂A. Let {Nα : α < κ < p}
be a neighbourhood base of x. Note that a neighbourhood base of x is a filter base –
finite intersections of base elements are open sets containing x.

Let Mα := Nα ∩ A. Notice that every neighbourhood of x contains an element of A –
otherwise x would not be in clA. Therefore the family {Mα : α < κ < p} is a filter base
on A. Hence, there exists a pseudo-intersection P ⊆ A for that family.

Now take an arbitrary neighbourhood U ∋ x. For some α we have Mα ⊆ Nα ⊆ U . But
then P \Mα is finite. We have proved that only finitely many elements of P are outside
of an arbitrary neighbourhood of x, so any enumeration of P works.

QED

10
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2.7 Spaces of weight smaller than cov(M)

Now we are going to provide an unnecessary, but nonetheless aesthetically pleasing
definition of an object dual to filters – a family of sets, in some sense, small.

Definition 2.7.1. An ideal over X is a family I of subsets of X such that:

1. ∅ ∈ I, X ̸∈ I;

2. if A,B ∈ I, then A ∪B ∈ I;

3. if A ∈ I and B ⊆ A, then B ∈ I.

Definition 2.7.2. We call a set B nowhere dense if int clB = ∅.

Definition 2.7.3. We call a set meagre if it is a countable union of nowhere dense
sets.

Definition 2.7.4. The Cantor space is the metric space 2ω (the set of all infinite
sequences of zeroes and ones), where the distance between two sequences is equal to 1

2n ,
where n is the number of the first place where the sequences differ.

Note that the balls in that space consist of sequences having a common beginning. Recall
that in metric spaces all the balls constitute a canonical base.

Fact 2.7.5. The Cantor space has a clopen countable base.

Proof. We will show on an example that all balls are closed. Take the ball containing
sequences beginning with ⟨0, 1⟩, denoted by B⟨0,1⟩. Its complement is the union of B⟨0,0⟩,
B⟨1,0⟩ and B⟨1,1⟩, therefore it is open.

In general, it is clear that the complement of a ball is the union of finitely many balls.

The countability is trivial – the canonical base is a countable union of finite sets – for
every n < ω we take balls corresponding to the beginnings of length n. QED

Lemma 2.7.6. A compact space containing a countable clopen base contains countably
many clopen sets.

Proof. Let C be an arbitrary clopen set. It has to be equal to an arbitrary union of
balls. But C is also closed, so it is compact, by 1.7. Therefore it is equal to the union
of a countable subcollection of previously mentioned balls.

We have proved that every clopen set is a finite union of base sets. But there are only
countably many such unions. QED

Fact 2.7.7. The set of all meagre subsets of the topological space 2ω constitutes an ideal.
We call that ideal M.

Proof.

11
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1. The empty set is trivially meagre.

Now we are going to prove that the whole space is not meagre. Take a nowhere
dense set A0. Its closure cannot be equal to 2ω (because its interior is not empty).
Therefore there exists clBr0(x0) disjoint with A0. Now consider another nowhere
dense set A1. If its closure contained clBr(x0), its interior would also have to
contain it. Therefore there exists clBr1(x1) ⊆ clBr(x0) disjoint with A0 ∪ A1.
This is how we inductively construct a countable decreasing sequence of closed
sets. Their intersection must contain a point, so we have proved that for any
countable sequence of nowhere dense sets we are able to find a point not belonging
to their union. Therefore the whole space cannot be meagre.

2. Let N,M be meagre, N =
∪
Nn,M =

∪
Mn and Ni,Mj nowhere dense. Then

N ∪ M can be written as a countable union of alternatively chosen elements of
both sequences.

3. Let M be a meagre set, N ⊆ M . Then M =
∪
Mn, where Mi are nowhere

dense. But it means that int clMn = ∅. Now consider Nn := Mn ∩N . Of course
Nn ⊆ Mn. But then clNn ⊆ clMn, hence int clNn ⊆ int clMn = ∅.

QED

Definition 2.7.8. The covering coefficient of an ideal I is the smallest cardinality of
a family of sets from an ideal covering the whole ideal. Formally, cov(I) := min{|A| :
A ⊆ I ∧

∪
A = X

}
.

Fact 2.7.9. We can use ”nowhere dense” in place of ”meagre” in the previous definition.

Proof.
2ω =

∪
α<cov(M)

Mα =
∪

α<cov(M)

∪
n<ω

Nn
α =

∪
⟨α,n⟩∈cov(M)×ω

Nn
α ,

| cov(M)×ω| = cov(M) because of Baire’s category theorem, which states that cov(M) >
ω. QED

Theorem 2.7.10. Every space X of weight smaller than cov(M) contains a non-trivial
convergent sequence.

The following proof is a modified version of a proof from [3].

Proof. We will prove that result for spaces with no isolated points. It will suffice, because
either X is scattered, in which case we have already proved that result, or it contains a
subspace with no isolated points, in which case we will find a convergent sequence there.
Note that the weight of a subspace cannot be bigger than the weight of the original
space.

We are going to construct a continuous surjection f : X ⊇ Y → 2ω. To construct it,
take the family ⟨Os⟩s∈2<ω of open subsets of X, indexed by finite sequences of zeroes and
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ones. We also demand that for incomparable s, t the sets Os, Ot are disjoint and if s ⊆ t,
then Os ⊆ Ot. We can easily construct such a family by induction: given Os we take
two different points x, y ∈ Os (which we can do by our assumption that no open sets
are singletons) and use Hausdorffness to obtain two disjoint open sets separating these
to points. After restricting them to Os we obtain two sets satisfying given conditions.
We call them Os⌢0, Os⌢1.

We now define the subspace Y :=
∩

n∈ω
∪

s∈2n clOs. Note that any y ∈ Y is in infinitely
many sets clOs. But all sequences of equal length are incomparable, so y is in exactly
one set clOt if we restrict our attention only to indices of a certain, fixed length. Of
course then x belongs to either clOt⌢0 or clOt⌢1. This means that we can assign a
sequence x such that y ∈ clOx|n for all n ∈ ω. This is the surjection f we were aiming
to define. It is continuous, because the preimages of base sets are closed.

We can assume f is irreducible, which means that no proper closed subspace of Y
is mapped by f onto the whole 2ω (because otherwise we can restrict our function
to a subspace having that property – by transfinite induction we obtain a decreasing
sequence of such subspaces and take their intersection, which by compactness must be
non-empty; it is the subspace we wanted, because for any x ∈ 2ω the set f−1[{x}] is
closed and so is its intersection with every element of the decreasing sequence – so the
finite subspace cannot be disjoint with this preimage ). For every open U ⊆ Y we define
DU :=

∪
{A ∈ Clop(2ω) : f−1[A] ⊆ U ∨ f−1[A] ∩ U = ∅}.

We are now going to show that every DU is dense. Let V be an arbitrary non-empty
open subset of 2ω. If f−1[V ] is disjoint with U , then trivially A ⊆ DU . If, however,
f−1[V ] ∩U is non-empty, it is a non-empty subset of Y . Note that (from irreducibility)
f restricted to the complement of that set is not surjective. Therefore, there exists a
non-empty clopen W ⊆ 2ω disjoint with f [Y \ (f−1[V ] ∩ U). But then W ⊆ V and
f−1[W ] ⊆ U , therefore DU is indeed dense.

The set DU is also open, so its complement Dc
U is nowhere dense. Now we consider the

family of nowhere dense sets D := {Dc
U : U ∈ B}, where B is of cardinality lesser than

cov(M), so D has to be too. Therefore D cannot cover the whole Y , so there must exist
p ∈ Y \

∪
D.

We will finish the proof by showing that any y ∈ f−1[{p}] has a countable neighbour-
hood base. It suffices because of Theorem 2.4.5. Indeed, we will show that {f−1[A] :
A clopen in 2ω} contains a neighbourhood base. Take a point y ∈ f−1[{p}] and its base
neighbourhood U ⊆ Y . We know that p ∈ DU , so there is a clopen set C ∋ p such that
either f−1[C] ⊆ U or f−1[C] ∩ U = ∅. But the second case cannot be true because
y ∈ f−1[{p}] ∩ U . Therefore f−1[C] ⊆ U .

QED
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2.8 Valdivia compacta
Classes of topological spaces stable under some operations often are subjects of intensive
study. For example, Čech-Stone compactification of Σ-products is the Σ-product of
Čech-Stone compactifications. We are going to focus our attention on the Σ-product of
Rs.

Definition 2.8.1. For an arbitrary set Γ we define Σ(Γ) as the set of all the vectors
from RΓ with at most countably many non-zero coordinates.

It turned out that Σ(Γ) contains all Eberlein spaces and that these spaces are stable
under continuous images. This notion has been generalised to Corson spaces, i.e. com-
pact subspaces of Σ(Γ). They too are stable under continuous images. However, we can
generalise Corson spaces, introducing Valdivia compacta.

The following results can be found in [2] and [1].

Definition 2.8.2. A Σ-subset A of a space K is a set for which there exists an injective
homeomorphism h : K → RΓ such that h[A] = h[K] ∩ Σ(Γ).

Definition 2.8.3. We say that a space X is a Valdivia compactum if it is compact
and contains a dense Σ-subset.

Definition 2.8.4. A set K ⊆ X is countably compact if its arbitrary countable open
cover has a finite subcover.

Fact 2.8.5. A space is countably compact iff every countable decreasing family of closed
sets has a non-empty intersection.

Proof. If the space is countably compact, the complements of the distinguished sets
would be an countable cover without a finite subcover if the intersection was empty.

Conversely, consider a countable open cover U0, U1, U2, . . .. Note that V0 := U0, V1 :=
U0 ∪ U1, V2 := U0 ∪ U1 ∪ U2, . . . is also an open cover. The complements of Vn are
decreasing closed sets, therefore there has to be an element outside of all Vn. But it
would contradict it being a cover. Therefore from some point on, the complements must
be empty, so if V c

m = ∅, then X = Vm = U0 ∪ . . . ∪ Um is a finite subcover. QED

Definition 2.8.6. A set F ⊆ X is countably closed if the closure of every countable
subset of F is also contained in F .

Lemma 2.8.7. All Σ-subsets are countably closed.

Proof. First, note that Σ(Γ) is countably closed – taking closure of a countable set will
not add an element with uncountably many non-zero coordinates, because in our set
only countably many coordinates are non-zero in at least one element to begin with.

Then notice that countable closedness is transferred back by an injective homeomor-
phism. QED
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Fact 2.8.8. A countably closed subset of a compact space is countably compact.

Proof. Take a family Fn of sets closed in a countably closed set A. We can assume that
the family is decreasing. We need to show it has a non-empty intersection. Now take
fn ∈ Fn. Consider a family of sets

{cl{f0, f1, f2, . . .}, cl{f1, f2, . . .}, cl{f2, . . .}, . . .}.

They are closed in A, so their intersection must be non-empty, so
∩
Fn ̸= ∅.

QED

Lemma 2.8.9. Every Σ-subset K of a compact space has the property that for every
A ⊆ K every member of clA is a limit point, i.e ∃A ∋ xn → x.

Proof. We find the appropriate sequence in Σ(Γ) and the injective homeomorphism
transfers the sequence to K.

For x ∈ Σ(Γ) at most countably many coordinates of x are non-zero, so we can enumerate
them, obtaining a sequence ⟨γn(x) : n < ω⟩. If it is finite, make it periodic.

Now take a subset A ⊆ Σ(Γ) and a vector x ∈ clA. We inductively construct a sequence
xn ∈ A such that |xn(γk(xl)) − x(γk(xl))| < 1

n for 0 ⩽ l < n, 0 ⩽ k ⩽ n. It is the
sequence we wanted. QED

Theorem 2.8.10. An infinite Valdivia compactum contains a non-trivial convergent
sequence.

Proof. Let A be a dense Σ-subset of K, an infinite Valdivia compactum. It means that
A is infinite. It is also countably compact, by 2.8.7 and 2.8.8, so it contains a point x
whose all neighbourhoods are infinite (otherwise for every point we take its finite neigh-
bourhood, thus obtaining a countable open cover without a finite subcover). It follows
that x ∈ cl(A \ {x} (because x couldn’t be in the complement of the closure, because its
every neighbourhood would then wander out of the allegedly open complement), so by
2.8.9 we obtain the required sequence.

QED

3 A space without non-trivial convergent sequences
3.1 Construction of βω

Definition 3.1.1. A filter over X is a family F of subsets of X such that:

1. ∅ ̸∈ F , X ∈ F ;

2. if A,B ∈ F , then A ∩B ∈ F ;
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3. if A ∈ F and A ⊆ B, then B ∈ F .

Definition 3.1.2. An ultrafilter over X is a ⊆–maximal filter over X .

Lemma 3.1.3. If U is an ultrafilter over X, then for every A ⊆ X either A ∈ U or
X \A ∈ U .

Proof. First notice that at most one of A,X \ A can be in a particular filter because a
filter is closed under intersections and cannot contain the empty set, but the intersection
of A and X \A is empty.

We will prove that given a set A ∈ X such that neither it nor its complement is in the
filter F , it is possible to extend F to a strictly larger filter G.

Let G = {H ⊆ X : (∃S ∈ F )S ∩ A ⊆ H}. We will show that it is indeed a larger filter,
beginning with checking the filter axioms.

1. It is obvious that X ∈ G. If the empty set was in G, it would mean that for some
S ∈ F the set S ∩A = ∅, which would then mean that S ∈ X \A, so X \A ∈ F ,
which is a contradiction.

2. If G1, G2 ∈ G, there exist F1, F2 ∈ F such that F1 ∩ A ⊆ G1 and F2 ∩ A ⊆ G2.
Because F1 ∩ F2 ∈ F , then G1 ∩G2 ⊇ (F1 ∩A) ∩ (F2 ∩A) = (F1 ∩ F2) ∩A, hence
G1 ∩G2 ∈ G.

3. Closure under superset is trivial.

So far we have shown that G is a filter. What is left is to prove that it is an extension
of F containing A.

The set A obviously belongs to G, as it suffices to fix S = X,H = A in the definition to
obtain X ∩A ⊆ A. Now take any F1 ∈ F and fix S = F1 = H in the definition. We get
F1 ∩ A ⊆ F1. Hence every element of the filter F , as well as the set A, belongs to the
filter G and the proof is complete. QED

Our aim will be to define a topology on the space of all ultrafilters over ω, denoted βω.

Definition 3.1.4. Given any A ⊆ ω we define a cone of A as the family of all ultrafilters
containing A, denoted ⟨A⟩ := {U ∈ βω : A ∈ U}.

This definition allows us to concisely describe the simplest ultrafilters – the principal
ultrafilters Un := ⟨{n}⟩.

Fact 3.1.5. Let us observe three key properties of cones:

1. ⟨A ∩B⟩ = ⟨A⟩ ∩ ⟨B⟩,

2. ⟨A ∪B⟩ = ⟨A⟩ ∪ ⟨B⟩,

3. ⟨ω \A⟩ = βω \ ⟨A⟩.
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Proof.

1. Take U ∈ ⟨A ∩ B⟩. It must then contain A ∩ B. From the superset property, it
must contain A and B, so it must be in ⟨A⟩ and ⟨B⟩ and thus in ⟨A⟩ ∩ ⟨B⟩.

Conversely, take U ∈ ⟨A⟩ ∩ ⟨B⟩. It must of course be in ⟨A⟩ and ⟨B⟩, and thus
contain A and B. From the intersection property A ∩B ∈ U , so U ∈ ⟨A ∩B⟩.

2. Take U ∈ ⟨A ∪ B⟩. Therefore A ∪ B ∈ U . If A ∈ U or B ∈ U , then U ∈ ⟨A⟩
or U ∈ ⟨B⟩, so U ∈ ⟨A⟩ ∪ ⟨B⟩. Suppose otherwise. Then by Lemma 3.1.3 we
get ω \ A ∈ U and ω \ B ∈ U . By the intersection property (ω \ A) ∩ (ω \ B) =
ω \ (A ∪B) ∈ U , which contradicts our assumption that A ∪B ∈ U , because then
(ω \ (A ∪B)) ∩ (A ∪B) = ∅ ∈ U .

Conversely, take U ∈ ⟨A⟩ ∪ ⟨B⟩. Then U ∈ ⟨A⟩ or U ∈ ⟨B⟩. Suppose without loss
of generality that U ∈ ⟨A⟩, which means that A ∈ U . Because A ⊆ A ∪ B, from
the superset property we obtain A ∪B ∈ U , hence U ∈ ⟨A ∪B⟩.

3. Lemma 3.1.3 lets us conclude that the ultrafilters not contained in ⟨A⟩ (and thus
not containing A) are strictly these containing ω \A or, equivalently, strictly these
contained in ⟨ω \A⟩.

QED

Closure of cones under finite intersections allows us to generate a topology using them as
a base. Their closure under complements makes that topology zero-dimensional (which
means that it has a clopen base).

Fact 3.1.6. βω is Hausdorff.

Proof. We need to prove that every two elements can be separated by open sets. Let us
take two different ultrafilters U, V . They must differ by an element, let’s take such an
A. Without a loss of generality we have A ∈ U and A ̸∈ V . But then it must be that
ω \ A ∈ V . It means that U ∈ ⟨A⟩, V ∈ ⟨ω \ A⟩. Therefore by the intersection property
⟨A⟩ ∩ ⟨ω \A⟩ = ⟨A ∩ (ω \A)⟩ = ⟨∅⟩ = ∅. QED

Fact 3.1.7. βω is compact.

Proof. Assume otherwise. We must then have an open cover without finite subcover. It
can be assumed that this cover consists solely of cones {⟨Aα⟩ : α ∈ I}, because every
open set is a union of cones; taking them instead of the original open sets only makes it
harder to find a finite subcover.

For all finite subsets of the index set I we have ⟨Aα0∪. . .∪Aαn⟩ = ⟨Aα0⟩∪. . .∪⟨Aαn⟩ ̸= βω.
So Aα0∪. . .∪Aαn ̸= X, because X is in all ultrafilters. It follows that Ac

α0
∩. . .∩Ac

αn
̸= ∅,

empowering us to generate an ultrafilter with the family {Ac
α : α ∈ I}. But then, that
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ultrafilter is bound to be in the cone of some Aβ, so Aβ and Ac
β are in the same ultrafilter,

which is a contradiction. QED

3.2 Properties of βω

We can think that ω ⊆ βω, equating n to Un. It is worth noting that βω is, in some
sense, the best compactification of ω (formally, it is the Čech-Stone compactification of
ω). It might seem to be somewhat large for this role, but the following fact will show
otherwise.

Fact 3.2.1. The set ω is dense in βω.

Proof. Pick any open set. It must contain a cone ⟨A⟩ because of the definition of the
base. Pick any n ∈ A. Then we have Un ∈ ⟨A⟩, because A ∈ Un. QED

Lemma 3.2.2. Every infinite Hausdorff space contains an infinite discrete subspace.

Proof. Let X be an infinite Hausdorff space and Y the set of isolated points. If it’s
infinite, we are done. If it is not, then Z := X \ Y ̸= ∅. We will be defining Un and pn
recursively. Let p1 ∈ Z,U1 = X. Then we take any unisolated pn ∈ Un−1 and separate
it from pn−1 by disjoint open sets Un ∋ pn, Vn−1 ∋ pn−1. If it wasn’t possible to find
such an unisolated point, that open set would have consisted of pk and isolated points,
but then pk would have to be isolated itself.

Then pn ̸∈ cl{pj : j ̸= n} because pn ∈ Vn and we have Vn ∩ {pj : j < n} ⊆ Un ∩ {pj :
j < n} = ∅ while Vn ∩ {pj : j > n} ⊆ Vn ∩ Un+1 = ∅. Therefore {pn : n ∈ ω} is an
infinite discrete subspace of X.

Theorem 3.2.3. There are no convergent nontrivial sequences in βω.

Proof. Let Vn be a sequence of distinct ultrafilters. Since Hausdorffness is hereditary,
{Vn : n ∈ ω} is infinite and Hausdorff. By the previous lemma we have a subsequence
Un, which is a discrete subspace of βω. It means that every ultrafilter has its own cone.
Therefore there exists a sequence of subsets of ω such that An is in and only in Vn.
Define Bn = An \ (A1 ∪ . . .∪An−1). That sequence is pairwise disjoint and Bn is in and
only in Vn (because Bn = An ∩Ac

1 ∩ . . . ∩Ac
n−1).

If we define B =
∪
B2n then B is in and only in the even terms of the sequence. But

then ⟨B⟩ is an open set containing every other term of the sequence. Therefore our
subsequence is divergent, so the original sequence must be too. QED
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