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DIMENSION-FREE ESTIMATES FOR RIESZ TRANSFORMS
RELATED TO THE HARMONIC OSCILLATOR

MACIEJ KUCHARSKI

Abstract. We study Lp bounds for two kinds of Riesz transforms on Rd related
to the harmonic oscillator. We pursue an explicit estimate of their Lp norms that
is independent of the dimension d and linear in max(p, p/(p− 1)).

1. Introduction

The aim of this paper is to prove a dimension-free estimate for the Lp norm of
vectors of a specific kind of generalized Riesz transforms. Recall that the classical
Riesz transforms on Rd are the operators

Rif(x) = ∂xi (−∆)−1/2 f(x), i = 1, . . . , d.

A well-known result concerning Riesz transforms, proved by Stein in [14], is the Lp
boundedness of the vector of the Riesz transforms

Rf = (R1f, . . . , Rdf)

with a norm estimate independent of d. Since then, the question about dimension-
free estimates for the Riesz transforms has been asked in various contexts. For
example Carbonaro and Dragičević proved in [1] a dimension-free estimate with an
explicit constant for the shifted Riesz transform on a complete Riemannian manifold.
Another path of generalizing the result of Stein is to consider operators of the form

Ri = δiL
−1/2, (1.1)

where δi is an operator on L2(Rd) and

L =
d∑
i=1

Li =
d∑
i=1

(δ∗i δi + ai) , ai > 0.

Such Riesz transforms were studied systematically by Nowak and Stempak in [13].
We will focus on the Riesz transforms of the form as in (1.1) where L is the harmonic
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oscillator (L = −∆ + |x|2), i.e.

δi = ∂xi + xi, δ∗i = −∂xi + xi, ai = 1. (1.2)

From this point δi and δ∗i are defined as above.
This so-called Hermite-Riesz transform was introduced by Thangavelu in [15], who

proved its Lp boundedness. Then a dimension-free estimate of its norm was proved
in [7] and [8], which later was sharpened by Dragičević and Volberg in [5] to an
estimate linear in max(p, p/(p− 1)).

In the first part we will give a result analogous to Theorem 10 from [16], however
concerning a slightly altered operator, namely

R′i = δ∗iL
′−1/2

with

L′i = δiδ
∗
i + 1, L′ =

d∑
i=1

L′i.

It arises as a result of swapping δi and δ∗i in the definition of Ri = δiL
−1/2. As

explained in Section 3, the results from [16] do not apply to this operator. The key
step in the proof is, as in [16], the method of Bellman function but we use its more
subtle properties to achieve the goal.

In the second part we consider the vector of the Riesz transforms

R̃f =
(
R̃1f, . . . , R̃df

)
,

where

R̃i = δ∗iL
−1/2.

Its boundedness was proved in [5] (where R̃i was denoted by R∗i ), [7] and [8] with
an implicit constant independent of the dimension. Our goal is to give an explicit
constant. Due to reasons explained in Section 4 we will focus on proving the bound-
edness of the operator S defined as

Sf(x) = |x|L−1/2f(x).

We obtain it by an explicit estimate of the kernel of S. As a corollary we get a
dimension-free estimate of the norm of the vector of the operators

R∗i = δ∗i (L+ 2)−1/2

with each R∗i being the adjoint of Ri = δiL
−1/2 studied in [5] and [16].
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2. Preliminaries

In order to define the operators L′, L, R′i and R̃i on L2(Rd) (later abbreviated as
L2) we introduce the Hermite polynomials and the Hermite functions. The Hermite
polynomials are given by

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

, x ∈ R

or, equivalently, by

Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−2(x), n > 2, x ∈ R,

H0(x) = 1, H1(x) = 2x.

The Hermite functions are

hn(x) =
1√

2nn!
√
π
e−x

2/2Hn(x), x ∈ R.

It is well known that the Hermite functions form an orthonormal basis of L2(R) and
that their linear span is dense in Lp(R) for every 1 6 p <∞.

For n = (n1, . . . , nd) ∈ Nd with N = {0, 1, 2 . . . } and x = (x1, . . . , xd) ∈ Rd we
define

hn(x) = hn1(x1) · · ·hnd
(xd).

We can see that {hn}n∈Nd is an orthonormal basis of L2. Throughout the paper we
will use D = lin{hn : n ∈ Nd} = lin{δ∗i hn : n ∈ Nd}.

Let L′ be the operator given on C∞c (Rd) by

L′ =
d∑
i=1

L′i, L′i = δiδ
∗
i + 1, δi = ∂xi + xi.

In a similar way we define on C∞c (Rd)

L =
d∑
i=1

Li, Li = δ∗i δi + 1.

Since δiδ∗i = δ∗i δi + 2, we can also write

L′ = L+ 2d. (2.1)

Note that the formal adjoint of δi with respect to the inner product on L2 is
δ∗i = −∂xi + xi. We recall well-known relations concerning the Hermite functions.

Lemma 1. For n ∈ Nd and i = 1, . . . , d we have

1. δihn(x) =

{√
2nihn−ei(x) if ni 6= 0

0 otherwise
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2. δ∗i hn(x) =
√

2(ni + 1)hn+ei(x),
3. L′ihn(x) = (2ni + 3)hn(x),
4. Lihn(x) = (2ni + 1)hn(x).

Hence, the multivariate Hermite functions {hn}n∈Nd are eigenvectors of L′ and
L corresponding to positive eigenvalues {λ′n}n∈Nd and {λn}n∈Nd respectively, where
λ′n = 2|n|1 + 3d, λn = 2|n|1 + d with |n|1 = n1 + · · · + nd for n = (n1, . . . , nd) ∈ Nd.
It is well known that L (and L′) are essentially self-adjoint on C∞c (Rd) with the
self-adjoint extensions given by

L′f =
∑
n∈Nd

λ′n 〈f, hn〉hn, Lf =
∑
n∈Nd

λn 〈f, hn〉hn,

where 〈·, ·〉 denotes the L2 inner product, acting on the domains

Dom(L′) = {f ∈ L2 :
∑
n∈Nd

λ′2n |〈f, hn〉|
2 <∞},

Dom(L) = {f ∈ L2 :
∑
n∈Nd

λ2
n|〈f, hn〉|

2 <∞}.

Then R′i = δ∗iL
′−1/2 can be defined rigorously as

R′if =
∑
n∈Nd

λ′−1/2
n 〈f, hn〉 δ∗i hn

and R̃i = δ∗iL
−1/2 as

R̃if =
∑
n∈Nd

λ−1/2
n 〈f, hn〉 δ∗i hn.

It is clear that R′i and R̃i are bounded on L2.
In what follows we will often identify a densely defined bounded operator on a

Banach space with its unique bounded extension to the whole space. As for the
notation, we will abbreviate

Lp = Lp(Rd), ‖·‖p = ‖·‖Lp and ‖·‖p→p = ‖·‖Lp→Lp

and for x = (x1, . . . , xd) ∈ Rd we will use |x| =
(∑d

i=1 x
2
i

)1/2

. For 1 < p < ∞ we

denote p∗ = max
(
p, p

p−1

)
.
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3. Riesz transforms of the first kind

Let R′f = (R′1f, . . . , R
′
df). The main result of this section gives an explicit esti-

mate for the Lp norm of R′.

Theorem 2. For f ∈ Lp we have

‖R′f‖p :=

(∫
Rd

|R′f(x)|p dx
)1/p

6 48(p∗ − 1)‖f‖p.

In order to prove Theorem 2, we will need some auxiliary objects. One can see
that L′i = −∂2

xi
+ x2

i + 2, so we can write

−∆ = −
d∑
i=1

∂2
xi

= L′ − r, where r(x) = |x|2 + 2d.

We will also need the operators Mi defined on C∞c (Rd) as

Mi =
∑
j 6=i

δjδ
∗
j + δ∗i δi = L′ + [δ∗i , δi] = L′ − 2,

where
[δ∗i , δi] = δ∗i δi − δiδ∗i .

Note that in our case [δ∗i , δi] = −2 < 0. This means that the crucial assumption from
[16] does not hold and the theory does not apply.

Non-zero elements of {cinδ∗i hn}n∈Nd (where cin are the normalizing constants) form
an orthonormal system of eigenvectors of Mi with eigenvalues {λ′n}n∈Nd . Thus, we
can define the self-adjoint extensions of Mi by

Mif =
∑
n∈Nd

λ′n
〈
f, cinδ

∗
i hn
〉
cinδ
∗
i hn

on the domain

Dom(Mi) = {f ∈ L2 :
∑
n∈Nd

λ′2n
∣∣〈f, cinδ∗i hn〉∣∣2 <∞}.

Having these operators, we can introduce the semigroups

Pt = e−tL
′1/2

and Qi
t = e−tM

1/2
i

rigorously defined as

Ptf =
∑
n∈Nd

e−tλ
′1/2
n 〈f, hn〉hn, Qi

tf =
∑
n∈Nd

e−tλ
′1/2
n
〈
f, cinδ

∗
i hn
〉
cinδ
∗
i hn.
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Lemma 3. Let i = 1, . . . , d. If f, g ∈ D, then

〈R′if, g〉 = −4

∫ ∞
0

〈
δ∗i Ptf, ∂tQ

i
tg
〉
t dt.

Proof. The proof is analogous to the proof of Proposition 3 in [16] but we give it for
the sake of completeness. By linearity it is sufficient to prove the lemma for f = hn
and g = δ∗i hk for some n, k ∈ Nd. We proceed as follows:

−4

∫ ∞
0

〈
δ∗i Pthn, ∂tQ

i
tδ
∗
i hk
〉
t dt = −4

∫ ∞
0

〈
e−tλ

′1/2
n δ∗i hn,−λ

′1/2
k e−tλ

′1/2
k δ∗i hk

〉
t dt

= 4λ
′1/2
k 〈δ∗i hn, δ∗i hk〉

∫ ∞
0

e−t(λ
′1/2
n +λ

′1/2
k ) t dt

=
4λ
′1/2
k(

λ
′1/2
n + λ

′1/2
k

)2 〈δ
∗
i hn, δ

∗
i hk〉 .

Hence, we get 〈
δ∗iL

′−1/2hn, δ
∗
i hk
〉

+ 4

∫ ∞
0

〈
δ∗i Pthn, ∂tQ

i
tδ
∗
i hk
〉
t dt

= λ′−1/2
n 〈δ∗i hn, δ∗i hk〉+

4λ
′1/2
k(

λ
′1/2
n + λ

′1/2
k

)2 〈δ
∗
i hn, δ

∗
i hk〉

=

λ′−1/2
n − 4λ

′1/2
k(

λ
′1/2
n + λ

′1/2
k

)2

 〈δ∗i hn, δ∗i hk〉 .
If λ′n = λ′k, then the expression in parentheses is 0, otherwise δ∗i hn and δ∗i hk —
eigenvectors of Mi — are orthogonal. �

We will also need a bilinear embedding theorem. First, for f = (f1, . . . , fN) : Rd×
(0,∞)→ RN we set

|f(x, t)|2∗ = r(x)|(f1(x, t), . . . , fN(x, t))|2

+ |(∂tf1(x, t), . . . , ∂tfN(x, t))|2

+
d∑
i=1

|(∂xif1(x, t), . . . , ∂xifN(x, t))|2.

We also define two auxiliary functions F and G. For f ∈ D and g = (g1, . . . , gd)
with gi ∈ D let

F (x, t) = Ptf(x) and G(x, t) = Qtg(x) =
(
Q1
tg1(x), . . . , Qd

t gd(x)
)
.
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Theorem 4. Take d > 2. Then we have∫ ∞
0

∫
Rd

|F (x, t)|∗|G(x, t)|∗ dx t dt 6 6(p∗ − 1)‖f‖p‖g‖q.

3.1. The Bellman function. In order to prove Theorem 4, let us introduce the
Bellman function. Take p > 2 and let q be its conjugate exponent. Define β :
[0,∞)2 → [0,∞) by

β(s, t) = sp + tq + γ

{
s2t2−q if sp 6 tq

2
p
sp +

(
2
q
− 1
)
tq if sp > tq

, γ =
q(q − 1)

8
.

The Nazarov–Treil Bellman function is then the function

B(ζ, η) = 1
2
β (|ζ|, |η|) , ζ ∈ Rm1 , η ∈ Rm2 .

It was introduced by Nazarov and Treil in [11] and then simplified and used by
Carbonaro and Dragičević in [1, 2] and by Dragičević and Volberg in [3, 4, 5]. Note
that B is differentiable but not smooth, so we convolve it with a mollifier ψκ to get
Bκ = B ∗ ψκ, where

ψκ(x) =
1

κm1+m2
ψ
(x
κ

)
and ψ(x) = cm1,m2e

− 1

1−|x|2χB(0,1)(x), x ∈ Rm1+m2

and cm1,m2 is the normalizing constant. The functions B and ψκ are biradial and so
is Bκ, hence there exists βκ : [0,∞)2 → [0,∞) such that

Bκ(ζ, η) = 1
2
βκ (|ζ|, |η|) .

We invoke some properties of βκ and Bκ that were proved in [5] and [9].

Theorem 5. Let κ ∈ (0, 1) and s, t > 0. Then we have

1. 0 6 βκ(s, t) 6 (1 + γ) ((s+ κ)p + (t+ κ)q),
2. 0 6 ∂sβκ(s, t) 6 Cp max ((s+ κ)p−1, t+ κ),

0 6 ∂tβκ(s, t) 6 Cp(t+ κ)q−1.

The function Bκ is smooth and for every z = (x, y) ∈ Rm1+m2 there exists τκ > 0
such that for ω = (ω1, ω2) ∈ Rm1+m2 we have

3. 〈Hess(Bκ)(z)ω, ω〉 > γ
2

(
τκ|ω1|2 + τ−1

κ |ω2|2
)
.

There is a continuous function Eκ : Rm1+m2 → R such that

4. 〈∇Bκ(z), z〉 > γ
2

(
τκ|x|2 + τ−1

κ |y|
2)− κEκ(z) +Bκ(z),

5. |Eκ(z)| 6 Cm1,m2,p

(
|x|p−1 + |y|+ |y|q−1 + κq−1

)
.
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3.2. Proof of Theorem 4. Having defined the Bellman function, we proceed to the
proof. First we should emphasize that the presence of the term Bκ(z) in 4. is the key
ingredient for the Bellman method to work despite the fact that [δ∗i , δi] < 0. Because
of that, the proof of Lemma 6 is more involved than in [16].

Let
u(x, t) = (Ptf(x), Qtg(x)) =

(
Ptf(x), Q1

tg1(x), . . . , Qd
t gd(x)

)
for x ∈ Rd and t > 0 and fix p > 2. We will use the Bellman function Bκ and
bκ = Bκ ◦ u with m1 = 1 and m2 = d. Our aim is to estimate the integral

I(n, ε) =

∫ ∞
0

∫
Xn

(
∂2
t + ∆

)
(bκ(n))(x, t) dx te

−εt dt,

where κ(n) is a number depending on n and Xn = [−n, n]d so that {Xn}n∈N is an
increasing family of compact sets such that Rd =

⋃
nXn.

Lemma 6. We have

lim inf
ε→0+

lim inf
n→∞

I(n, ε) > γ

∫ ∞
0

∫
Rd

|F (x, t)|∗|G(x, t)|∗ dx t dt.

Proof. In order to make formulae more compact, we will sometimes write ∂x0 instead
of ∂t. The first step will be to prove that(

∂2
t + ∆

)
(bκ)(x, t) > γ|F (x, t)|∗|G(x, t)|∗ − κr(x)Eκ(u(x, t))

+ r(x)Bκ(u(x, t))− 2
d∑
i=1

∂ηiBκ(u(x, t))Qi
tgi(x).

(3.1)

From the chain rule we get ∂xibκ(x, t) = 〈∇Bκ(u(x, t)), ∂xiu(x, t)〉 for i = 0, . . . , d.
Then, again by the chain rule, we have

∂2
xi
bκ(x, t) =

〈
∇Bκ(u(x, t)), ∂2

xi
u(x, t)

〉
+ 〈Hess(Bκ)(u(x, t))(∂xiu(x, t)), ∂xiu(x, t)〉 .

Summing for i = 0, . . . , d, we get(
∂2
t + ∆

)
(bκ)(x, t) =

〈
∇Bκ(u(x, t)), (∂2

t + ∆)(u)(x, t)
〉

+
d∑
i=0

〈Hess(Bκ)(u(x, t))(∂xiu(x, t)), ∂xiu(x, t)〉 .

By the definition of Pt and Qt we see that

(∂2
t − L′)Ptf = 0

and
(∂2
t − L′)Qi

tgi = (∂2
t −Mi)Q

i
tgi − 2Qi

tgi = −2Qi
tgi.
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Therefore, using the fact that −∆ = L′ − r we get(
∂2
t + ∆

)
(bκ)(x, t) = r(x) 〈∇Bκ(u(x, t)), u(x, t)〉

− 2
d∑
i=1

∂ηiBκ(u(x, t))Qi
tgi(x)

+
d∑
i=0

〈Hess(Bκ)(u(x, t)) (∂xiu(x, t)) , ∂xiu(x, t)〉 .

Next, inequalities 3. and 4. from Theorem 5 and the inequality of arithmetic and
geometric means imply that(

∂2
t + ∆

)
(bκ)(x, t) > r(x)

γ

2

(
τκ|Ptf(x)|2 + τκ

−1|Qtg(x)|2
)

− r(x)κEκ(u(x, t)) + r(x)Bκ(u(x, t))

− 2
d∑
i=1

∂ηiBκ(u(x, t))Qi
tgi(x)

+
γ

2

d∑
i=0

(
τκ|∂xiPtf(x)|2 + τκ

−1|∂xiQtg(x)|2
)

=
γτκ|Ptf(x)|2∗ + γτκ

−1|Qtg(x)|2∗
2

− r(x)κEκ(u(x, t))

+ r(x)Bκ(u(x, t))− 2
d∑
i=1

∂ηiBκ(u(x, t))Qi
tgi(x)

> γ|F (x, t)|∗|G(x, t)|∗ − κr(x)Eκ(u(x, t))

+ r(x)Bκ(u(x, t))− 2
d∑
i=1

∂ηiBκ(u(x, t))Qi
tgi(x).

In summary(
∂2
t + ∆

)
(bκ)(x, t) > γ|F (x, t)|∗|G(x, t)|∗ − κr(x)Eκ(u(x, t))

+ r(x)Bκ(u(x, t))− 2
d∑
i=1

∂ηiBκ(u(x, t))Qi
tgi(x).

(3.2)

The next step is to show that

r(x)B(u(x, t))− 2
d∑
i=1

∂ηiB(u(x, t))Qi
tgi(x) > 0. (3.3)
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We have the following equalities:

∂β

∂y
(x, y) = qyq−1 + γ

{
(2− q)x2y1−q

(2− q)yq−1
,

∂|η|
∂ηi

=
∂
√
η2

1 + · · ·+ η2
d

∂ηi
=

ηi√
η2

1 + · · ·+ η2
d

=
ηi
|η|
,

2
∂

∂ηi
B(ζ, η) =

∂

∂ηi
β(|ζ|, |η|) =

∂β

∂y
(|ζ|, |η|) · ∂|η|

∂ηi

=

(
q|η|q−1 + γ(2− q)

{
|ζ|2|η|1−q

|η|q−1

)
ηi
|η|
.

Using them, we may rewrite inequality (3.3) as

(
|x|2 + 2d

)(
|ζ|p + |η|q + γ

{
|ζ|2|η|2−q
2
p
|ζ|p +

(
2
q
− 1
)
|η|q

)
−

2

(
q|η|q + γ(2− q)

{
|ζ|2|η|2−q

|η|q

)
> 0,

(3.4)

where ζ = Ptf(x) and η = Qtg(x). Then, we consider two cases.
Case 1: |ζ|p 6 |η|q. We omit |x|2 reducing (3.4) to

d|ζ|p + (d− q)|η|q + γ(d− 2 + q)|ζ|2|η|2−q > 0.

Since q 6 2, this is true as long as d > 2.
Case 2: |ζ|p > |η|q. In this case inequality (3.4) becomes(
|x|2 + 2d

)(
1 +

2γ

p

)
|ζ|p +

((
|x|2 + 2d

)(
1 +

2γ

q
− γ
)
− 2q − 2γ(2− q)

)
|η|q > 0.

We omit the first term, |x|2 and |η|q in the above. Then we are left with proving

2d

(
1 +

2γ

q
− γ
)
− 2q − 4γ + 2γq > 0.

Plugging the definition of γ into this inequality and rearranging it, we arrive at

q3 + q2(−d− 3) + q(3d− 6) + 6d > 0,

which is true for 1 < q 6 2 and d > 2.
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Having proved (3.3), we come back to (3.2) and write(
∂2
t + ∆

)
(bκ)(x, t) > γ|F (x, t)|∗|G(x, t)|∗ − κr(x)Eκ(u(x, t))

+ r(x)Bκ(u(x, t))− 2
d∑
i=1

∂ηiBκ(u(x, t))Qi
tgi(x)

− r(x)B(u(x, t)) + 2
d∑
i=1

∂ηiB(u(x, t))Qi
tgi(x).

(3.5)

The last step is to show that
κr(x)Eκ(u(x, t))

and the difference between

r(x)B(u(x, t))− 2
d∑
i=1

∂ηiB(u(x, t))Qi
tgi(x)

and

r(x)Bκ(u(x, t))− 2
d∑
i=1

∂ηiBκ(u(x, t))Qi
tgi(x)

are negligible.
First let us prove that u(x, t) is bounded on Xn × [0,+∞). Recall that

u(x, t) = (Ptf(x), Qtg(x)) =
(
Ptf(x), Q1

tg1(x), . . . , Qd
t gd(x)

)
,

where

Ptf =
∑
n∈Nd

e−tλ
′1/2
n 〈f, hn〉hn, Qi

tgi =
∑
n∈Nd

e−tλ
′1/2
n
〈
gi, c

i
nδ
∗
i hn
〉
cinδ
∗
i hn

and f, gi ∈ D. Since hk are continuous, they are bounded on Xn, thus

|Ptf(x)| 6
∑
k∈Nd

e−tλ
′1/2
k |〈f, hk〉|Mn,k

for some constants Mn,k. The above sum has only finitely many non-zero terms and
it is a decreasing function of t, so Ptf(x) is bounded uniformly for all x ∈ Xn and
t > 0. A similar argument shows that each Qi

tgi is bounded.
Using inequality 5. from Theorem 5 and the previous paragraph, we see that there

exists a sequence {κ(n)}n∈N such that∫
Xn

∣∣κ(n)r(x)Eκ(n)(u(x, t))
∣∣ dx 6 1

n
. (3.6)
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Now we turn to estimating |B(u(x, t))−Bκ(u(x, t))|. As we have shown, u[Xn ×
[0,+∞)] is bounded, which means that B is uniformly continuous on this set. There-
fore, for each n ∈ N there exists κ(n) satisfying (3.6) and such that for all x ∈ Xn

and t > 0∣∣B(u(x, t))−Bκ(n)(u(x, t))
∣∣ 6 ∫

B(0,κ(n))

|B(u(x, t))−B(u(x, t)− y)|ψκ(n)(y) dy

6
1

n

(∫
Xn

|r(x)| dx
)−1

. (3.7)

A similar reasoning shows that for each n ∈ N there exists κ(n) satisfying (3.6) and
(3.7) and such that for all x ∈ Xn, t > 0 and i = 1, . . . , d∣∣∂ηiB(u(x, t))− ∂ηiBκ(n)(u(x, t))

∣∣ 6 1

n

(∫
Xn

∣∣2Qi
tgi(x)

∣∣ dx)−1

. (3.8)

Coming back to inequality (3.5), we get∫
Xn

(
∂2
t + ∆

)
(bκ(n))(x, t) dx

> γ

∫
Xn

|F (x, t)|∗|G(x, t)|∗ dx−
∫
Xn

κ(n)r(x)Eκ(n)(u(x, t)) dx

+

∫
Xn

r(x)
(
Bκ(n)(u(x, t))−B(u(x, t))

)
dx

− 2

∫
Xn

d∑
i=1

Qi
tgi(x)

(
∂ηiBκ(n)(u(x, t))− ∂ηiB(u(x, t))

)
dx.

Using conditions (3.6), (3.7) and (3.8) on κ(n) we get

lim inf
n→∞

∫
Xn

(
∂2
t + ∆

)
(bκ(n))(x, t) dx > γ

∫
Rd

|F (x, t)|∗|G(x, t)|∗ dx

and by the monotone convergence theorem

lim inf
ε→0+

lim inf
n→∞

I(n, ε) > γ

∫ ∞
0

∫
Rd

|F (x, t)|∗|G(x, t)|∗ dx t dt.

�

Lemma 7. For f, g ∈ D we have

lim sup
ε→0+

lim sup
n→∞

I(n, ε) >
1 + γ

2

(
‖f‖pp + ‖g‖qq

)
.
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Proof. Denote

I1(n, ε) =

∫ ∞
0

∫
Xn

∂2
t

(
bκ(n)

)
(x, t) dx te−εt dt,

I2(n, ε) =

∫ ∞
0

∫
Xn

∆
(
bκ(n)

)
(x, t) dx te−εt dt.

Then I(n, ε) = I1(n, ε) + I2(n, ε). First we prove that limn→∞ I2(n, ε) = 0. Since

I2(n, ε) =
d∑
i=1

∫ ∞
0

∫
Xn

∂2
xi

(
bκ(n)

)
(x, t) dx te−εt dt,

it is sufficient to prove that each summand tends to 0. We will present the proof for
the first term only, call it I1

2 (n, ε). Let x′ = (x2, . . . , xd). Integrating by parts with
respect to x1, we get

I1
2 (n, ε) =

∫ ∞
0

∫
[−n,n]d−1

∂x1
(
bκ(n)

)
(n, x′, t)− ∂x1

(
bκ(n)

)
(−n, x′, t) dx′ te−εt dt.

By the chain rule

∂x1
(
bκ(n)

)
(±n, x′, t) = ∂ζBκ(n)(u(±n, x′, t))∂x1Ptf(±n, x′)

+
〈
∇ηBκ(n)(u(±n, x′, t)), ∂x1Qtg(±n, x′)

〉
.

Recall that f, gi ∈ D and hence Ptf,Q
i
tgi ∈ D. Using item 2. of Theorem 5

and the fact that the Hermite functions converge to 0 rapidly we conclude that
limn→∞ I2(n, ε) = 0.

Now we turn to I1. Using Fubini’s theorem, we may interchange the order of
integration to get

I1(n, ε) =

∫
Xn

∫ ∞
0

∂2
t

(
bκ(n)

)
(x, t) te−εt dt dx.

Next, we use integration by parts on the inner integral twice, neglecting the boundary
terms (this is allowed by the same argument as in the previous paragraph). This
leads to

I1(n, ε) = −
∫
Xn

∫ ∞
0

∂t
(
bκ(n)

)
(x, t) (1− εt)e−εt dt dx

=

∫
Xn

bκ(n)(x, 0) dx+ ε2

∫
Xn

∫ ∞
0

bκ(n)(x, t) te
−εt dt dx

− 2ε

∫
Xn

∫ ∞
0

bκ(n)(x, t) e
−εt dt dx

6
∫
Xn

bκ(n)(x, 0) dx+ ε2

∫
Xn

∫ ∞
0

bκ(n)(x, t) te
−εt dt dx.
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Denote the last two terms by I1
1 (n) and I2

1 (n, ε).
First we will show that lim supε→0+ lim supn→∞ I

2
1 (n, ε) = 0. Item 1. of Theorem 5

implies that

I2
1 (n, ε) 6 ε2Cp

∫
Xn

∫ ∞
0

(|Ptf(x)|p + |Qtg(x)|q + max (κ(n)p, κ(n)q)) te−εt dt dx.

Taking κ(n) satisfying (3.6), (3.7) and (3.8) and such that

(2n)d max (κ(n)p, κ(n)q) 6
1

n
, (3.9)

we get

lim sup
n→∞

I2
1 (n, ε) 6 ε2Cp

∫
X

∫ ∞
0

(|Ptf(x)|p + |Qtg(x)|q) t dt dx 6 Cε2.

The last step is to estimate I1
1 (n). Using item 1. of Theorem 5 again, we obtain

I1
1 (n) 6

1 + γ

2

∫
Xn

(|f(x)|+ κ(n))p dx+
1 + γ

2

∫
Xn

(|g(x)|+ κ(n))q dx.

We take ε > 0, denote A = {x ∈ Rd : ε|f(x)| > |κ(n)|} and split these two integrals
as follows:

I1
1 (n) 6

1 + γ

2

∫
A

(|f(x)|+ κ(n))p dx+

∫
AC

(|f(x)|+ κ(n))p dx

+
1 + γ

2

∫
A

(|g(x)|+ κ(n))q dx+

∫
AC

(|g(x)|+ κ(n))q dx

6
1 + γ

2

(
(1 + ε)p‖f‖pp + (1 + ε)q‖g‖qq

)
+

1 + γ

2
(2n)d

((
1 + ε−1

)p
κ(n)p +

(
1 + ε−1

)q
κ(n)q

)
.

Since κ(n) satisfies (3.9), we get

lim sup
ε→0+

lim sup
n→∞

I1
1 (n, ε) 6

1 + γ

2

(
‖f‖pp + ‖g‖qq

)
and hence, as we have shown that other terms are negligible, we obtain

lim sup
ε→0+

lim sup
n→∞

I(n, ε) 6
1 + γ

2

(
‖f‖pp + ‖g‖qq

)
.

�

Now we are ready to prove the bilinear embedding theorem.
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Proof of Theorem 4. Combining Lemma 6 and Lemma 7, we get∫ ∞
0

∫
Rd

|F (x, t)|∗|G(x, t)|∗ dx t dt 6
1 + γ

2γ

(
‖f‖pp + ‖g‖qq

)
.

Multiplying f by
(
q‖g‖qq
p‖f‖pp

) 1
p+q and g by the reciprocal of this number, we obtain

∫ ∞
0

∫
Rd

|F (x, t)|∗|G(x, t)|∗ dx t dt 6
1 + γ

2γ

((
q

p

)1/q

+

(
p

q

)1/p
)
‖f‖p‖g‖q.

We need to show that 1+γ
2γ

((
q
p

)1/q

+
(
p
q

)1/p
)
6 6(p∗ − 1). Recall that p > 2, so

p∗ = p and 1 < q 6 2, hence

1 + γ

2γ

((
q

p

)1/q

+

(
p

q

)1/p
)

=
8 + q(q − 1)

2
(q − 1)

1
q
−1(p− 1)

6 (q + 3)(q − 1)
1
q
−1(p− 1) 6 6(p− 1).

A proof of the last inequality can be found in [16, pp. 15–16]. If p 6 2, we
swap p with q and Ptf with Qtg in the definition of bκ, i.e., it becomes bκ(x, t) =
Bκ(Qtg(x), Ptf(x)), and we proceed as before. Since p∗ = max(p, q), the conclusion
holds. �

3.3. Proof of Theorem 2. Having proved the bilinear embedding theorem, we move
on to the main result of this section.

Proof. If d = 1, then, by (2.1), L′ = L+2 and equations (4.8) and (4.9) imply that R′
is the adjoint of R from Section 5.4 of [16], so Theorem 10 (there) gives the desired
result. Now assume that d > 2. By duality, it is sufficient to prove that∣∣∣∣∣

d∑
i=1

〈R′if, gi〉

∣∣∣∣∣ 6 48(p∗ − 1)‖f‖p

∥∥∥∥∥∥
(

d∑
i=1

|gi|2
)1/2

∥∥∥∥∥∥
q

for any f, gi ∈ D. Since D is dense in Lp for 1 6 p <∞, this will mean thatR′ admits
a bounded extension to the whole Lp space with the same norm. By Lemma 3, we
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have ∣∣∣∣∣
d∑
i=1

〈R′if, gi〉

∣∣∣∣∣ 6 4

∫ ∞
0

d∑
i=1

∣∣〈δ∗i Ptf, ∂tQi
tg
〉∣∣t dt

6 4

∫ ∞
0

∫
Rd

d∑
i=1

(|∂xiPtf(x)|+ |xiPtf(x)|)
∣∣∂tQi

tgi(x)
∣∣ dx t dt

6 4

∫ ∞
0

∫
Rd

( d∑
i=1

|∂xiPtf(x)|2
)1/2

+
√
r(x)|Ptf(x)|

 |G(x, t)|∗ dx t dt

6 8

∫ ∞
0

∫
Rd

|F (x, t)|∗|G(x, t)|∗ dx t dt 6 48(p∗ − 1)‖f‖p

∥∥∥∥∥∥
(

d∑
i=1

|gi|2
)1/2

∥∥∥∥∥∥
q

.

The last inequality follows from Theorem 4. �

4. Riesz transforms of the second kind

This section is devoted to estimating the norm of the vector of the Riesz transforms

R̃if(x) = δ∗iL
−1/2f(x).

As noted earlier, we will give a result similar to Corollary 1 from [5] but with an
explicit constant.

We want to estimate ∥∥∥R̃f∥∥∥
p

:=

(∫
Rd

∣∣∣R̃f(x)
∣∣∣p dx)1/p

.

Observe that for f ∈ D it holds

R̃if(x) = δ∗iL
−1/2f(x) = (−∂xi + xi)L

−1/2f(x)

= −δiL−1/2f(x) + 2xiL
−1/2f(x)

= R1
i f(x) +R2

i f(x).

Then R̃f(x) = R1f(x) +R2f(x) (with R̃f(x) =
(
R̃1f(x), . . . , R̃df(x)

)
and R1 and

R2 defined analogously), hence∣∣∣R̃f(x)
∣∣∣ 6 ∣∣R1f(x)

∣∣+
∣∣R2f(x)

∣∣
and ∥∥∥R̃f∥∥∥

p
6
∥∥R1f

∥∥
p

+
∥∥R2f

∥∥
p
. (4.1)
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Theorem 10 from [16] gives the bound of 48(p∗ − 1) for the Lp norm of R1, so we
will focus on R2. Next, note that

∣∣R2f(x)
∣∣ = 2

(
d∑
i=1

∣∣xiL−1/2f(x)
∣∣2)1/2

= 2|x|
∣∣L−1/2f(x)

∣∣,
which means that it is sufficient to deal with the operator |x|L−1/2, formally defined
on D as Sf(x) = |x|L−1/2f(x). This operator turns out to be bounded on all Lp
spaces for 1 6 p <∞.

Theorem 8. For 1 6 p <∞ we have ‖S‖p→p 6 3.

In order to prove this theorem, we first derive an expression for the kernel of S,
i.e., a function K(x, y) such that

Sf(x) =

∫
Rd

K(x, y)f(y) dy for f ∈ D.

Lemma 9. For x, y ∈ Rd we have

K(x, y) = |x|
∫ ∞

0

1√
t
Kt(x, y) dt,

where

Kt(x, y) =
Cd

(sinh 2t)d/2
exp

(
−|x− y|

2

4 tanh t
− tanh t

4
|x+ y|2

)
, Cd =

1

(2π)d/2
√
π
.

Proof. Equation (16) in [6] states that

e−tLf(x) =
1

(2π)d/2

∫
Rd

K ′t(x, y)f(y) dy,

with

K ′t(x, y) =
1

(sinh 2t)d/2
exp

(
−|x|

2 + |y|2

2
coth 2t+

〈x, y〉
sinh 2t

)

=
1

(sinh 2t)d/2
exp

(
−|x− y|

2

4 tanh t
− tanh t

4
|x+ y|2

)
.

Note also that

λ−1/2 =
1√
π

∫ ∞
0

e−tλ
1√
t
dt.
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Since D = lin{hn : n ∈ Nd}, it is sufficient to prove the formula for f = hn. We have

L−1/2hn(x) = λ−1/2
n hn(x) =

1√
π

∫ ∞
0

e−tλnhn(x)
1√
t
dt

=
1√
π

∫ ∞
0

e−tLhn(x)
1√
t
dt

=
1√
π

1

(2π)d/2

∫ ∞
0

1√
t

∫
Rd

K ′t(x, y)hn(y) dy dt.

This integral is absolutely convergent, so we may interchange the order of integration
and the conclusion follows. �

Next we prove that the operator T defined on Lp, 1 6 p 6∞, as

Tf(x) =

∫
Rd

K(x, y)f(y) dy

is bounded uniformly in d and p. This will mean that S is bounded on D in Lp norm
and, by density, that it has a unique bounded extension to Lp for 1 6 p < ∞ with
the same norm. We want to use interpolation and our goal is to prove that∫

Rd

K(x, z) dz 6 2 and
∫
Rd

K(z, y) dz 6 3 (4.2)

for all x, y ∈ Rd. Clearly, we have∫
Rd

K(z, y) dz =

∫
Rd

|z|
∫ ∞

0

1√
t
Kt(z, y) dt dz

6
∫
Rd

|y|
∫ ∞

0

1√
t
Kt(z, y) dt dz

+

∫
Rd

|y − z|
∫ ∞

0

1√
t
Kt(z, y) dt dz,

(4.3)

so, by symmetry of Kt, it is sufficient to prove the first inequality of (4.2) and the
following proposition.

Proposition 10. For y ∈ Rd it holds∫
Rd

|y − z|
∫ ∞

0

1√
t
Kt(z, y) dt dz 6 1. (4.4)

Proof. We begin with an auxiliary computation:

I(k) :=

∫
Rd

|x|e−k|x|
2

dx =
Γ
(
d+1

2

)
Γ
(
d
2

) πd/2

k(d+1)/2
for k > 0. (4.5)
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To prove (4.5), let Sd = 2πd/2

Γ( d
2)

denote the surface area of the unit sphere in the

d-dimensional Euclidean space. Then we can write∫
Rd

|x|e−k|x|
2

dx =

∫ ∞
0

re−kr
2

rd−1Sd dr =
Sd

2k(d+1)/2

∫ ∞
0

x(d−1)/2e−x dx

=
Γ
(
d+1

2

)
Γ
(
d
2

) πd/2

k(d+1)/2
.

Coming back to (4.4), in view of (4.5) we have, for t > 0,

∫
Rd

|x− y|Kt(x, y) dx =
Cd

(sinh 2t)d/2

∫
Rd

|x− y| exp

(
−|x− y|

2

4 tanh t
− tanh t

4
|x+ y|2

)
dx

6
Cd

(sinh 2t)d/2

∫
Rd

|x− y| exp

(
−|x− y|

2

4 tanh t

)
dx

=
Cd

(sinh 2t)d/2

∫
Rd

|x| exp

(
− |x|2

4 tanh t

)
dx

=
Cd

(sinh 2t)d/2
I

(
1

4 tanh t

)
=

πd/2

(2π)d/2
√
π

Γ
(
d+1

2

)
Γ
(
d
2

) (4 tanh t)(d+1)/2

(sinh 2t)d/2

=
1

2d/2
√
π

Γ
(
d+1

2

)
Γ
(
d
2

) (4 tanh t)(d+1)/2

(sinh 2t)d/2
.

Plugging it into (4.4), we get

∫
Rd

|y − z|
∫ ∞

0

1√
t
Kt(z, y) dt dz 6

1

2d/2
√
π

Γ
(
d+1

2

)
Γ
(
d
2

) ∫ ∞
0

(4 tanh t)(d+1)/2

(sinh 2t)d/2
dt√
t
.

To estimate the last integral, we will use formula [12, 5.12.7]:∫ ∞
0

1

(cosh t)2adt = 4a−1B(a, a),
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where B denotes the beta function. We obtain∫ ∞
0

(4 tanh t)(d+1)/2

(sinh 2t)d/2
dt√
t

=
4(d+1)/2

2d/2

∫ ∞
0

(
tanh t

t

)1/2
1

(cosh t)d
dt

6 2
d
2

+1

∫ ∞
0

1

(cosh t)d
dt = 2

d
2

+1 · 4
d
2
−1B

(
d

2
,
d

2

)
= 2

3d
2
−1 Γ

(
d
2

)2

Γ(d)
.

Finally, using the Legendre duplication formula (Γ(z)Γ(z + 1
2
) = 21−2z

√
πΓ(2z)), we

get ∫
Rd

|y − z|
∫ ∞

0

1√
t
Kt(z, y) dt dz

6 2
3d
2
−1 1

2d/2
√
π

Γ
(
d+1

2

)
Γ
(
d
2

) Γ
(
d
2

)2

Γ(d)
= 2d−1 Γ

(
d+1

2

)
Γ
(
d
2

)
√
πΓ(d)

= 1.

�

Now it remains to justify the first inequality of (4.2).

Proposition 11. For x ∈ Rd we have∫
Rd

|x|
∫ ∞

0

1√
t
Kt(x, y) dt dy 6

1√
π

+
√

2.

Proof. The first step is to compute the integral
∫
Rd Kt(x, y) dy. Observe that

exp

(
−|x− y|

2

4 tanh t
− tanh t

4
|x+ y|2

)
=

exp

−1

4

∣∣∣∣∣∣y
√

tanh t+
1

tanh t
+ x

tanh t− 1
tanh t√

tanh t+ 1
tanh t

∣∣∣∣∣∣
2

− |x|2

tanh t+ 1
tanh t

 =

exp

−1

4

∣∣∣∣∣∣y√2 coth(2t) + x
tanh t− 1

tanh t√
tanh t+ 1

tanh t

∣∣∣∣∣∣
2

− |x|2

2 coth(2t)

 ,
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hence

∫
Rd

exp

(
−|x− y|

2

4 tanh t
− tanh t

4
|x+ y|2

)
dy =

exp

(
− |x|2

2 coth(2t)

)∫
Rd

exp

(
−1

4

∣∣∣y√2 coth(2t)
∣∣∣2) dy =

exp

(
− |x|2

2 coth(2t)

)(
4π

2 coth(2t)

)d/2
,

so that

∫
Rd

Kt(x, y) dy =
Cd

(sinh 2t)d/2
exp

(
− |x|2

2 coth(2t)

)(
4π

2 coth(2t)

)d/2
.

To estimate the integral with respect to t, we need to split it into two parts. Note
that for t > 0, 1

t
6 2 coth(2t). Let τ ∈ [0.95, 0.96] denote the unique positive solution

of 2 coth(2t) = 2
t
. It follows that 2 coth(2t) 6 2

t
for 0 6 t 6 τ . Thus, we obtain

|x|
∫ τ

0

1

(sinh 2t)d/2
1√
t

exp

(
− |x|2

2 coth(2t)

)(
4π

2 coth(2t)

)d/2
dt 6

|x|
∫ τ

0

1

(2t)d/2
exp

(
−t|x|

2

2

)
(4π)d/2

td/2√
t
dt =

|x| (2π)d/2
∫ τ

0

exp

(
−t|x|

2

2

)
1√
t
dt 6

|x| (2π)d/2
∫ ∞

0

exp

(
−t|x|

2

2

)
1√
t
dt = |x| (2π)d/2

√
2π

|x|2
= (2π)(d+1)/2 .

(4.6)
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For the second part, when t > τ and 2 coth(2t) 6 2
τ
, calculations are as follows:

|x|
∫ ∞
τ

1

(sinh 2t)d/2
1√
t

exp

(
− |x|2

2 coth(2t)

)(
4π

2 coth(2t)

)d/2
dt 6

|x| exp

(
−τ |x|

2

2

)∫ ∞
τ

1

(sinh 2t)d/2

(
4π

2

)d/2
1√
t
dt 6

|x| exp

(
−τ |x|

2

2

)
1√
τ

(2π)d/2
∫ ∞
τ

(
4

e2t

)d/2
dt 6

1

τ
√
e

(2π)d/2 2d
∫ ∞
τ

e−td dt 6 (2π)d/2 2d
e−τd

d
6 (2π)d/2 .

(4.7)

In the second inequality we used the fact that sinh(2t) > e2t

4
for t > τ . Combining

(4.6) and (4.7) and recalling the definition of Kt completes the proof. �

Now we are ready to prove the main theorem of this section.

Proof of Theorem 8. Proposition 10, Proposition 11 and (4.3) imply that∫
Rd

K(x, z) dz 6 3 and
∫
Rd

K(z, y) dz 6 3,

hence T is bounded on L1 and L∞ with norm at most 3. Using the Riesz–Thorin
interpolation theorem we obtain ‖T‖p→p 6 3 for 1 6 p 6 ∞ and since S = T on D
— a dense subspace of Lp for 1 6 p < ∞ — S has a unique bounded extension to
Lp with norm at most 3. �

Recollecting (4.1), we see that Theorem 8 and Theorem 10 from [16] imply an Lp

norm estimate for R̃f =
(
R̃1f, . . . , R̃df

)
.

Theorem 12. For f ∈ Lp we have∥∥∥R̃f∥∥∥
p

=

(∫
Rd

∣∣∣R̃f(x)
∣∣∣p dx)1/p

6 54(p∗ − 1)‖f‖p.

As a corollary of the above result we will prove one more theorem. Let

R∗f = (R∗1f, . . . , R
∗
df)

with
R∗i f(x) = δ∗i (L+ 2)−1/2f(x).

It is worth noting that each R∗i is the adjoint of Ri = δiL
−1/2 — the ’usual’ Riesz–

Hermite transform. To prove it, we check that 〈hn, R∗ihk〉 = 〈Rihn, hk〉. For the
left-hand side we use item 2. from Lemma 1.
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〈hn, R∗ihk〉 =
〈
hn, δ

∗
i (L+ 2)−1/2hk

〉
= (λk + 2)−1/2 〈hn, δ∗hk〉

=
√

2(ki + 1)(λk + 2)−1/2 〈hn, hk+ei〉

=

{√
2(ki+1)

2|k|1+d+2
if n = k + ei

0 otherwise
.

(4.8)

For the right-hand side we use item 1.

〈Rihn, hk〉 =
〈
δiL
−1/2hn, hk

〉
= λ−1/2

n 〈δihn, hk〉
=
√

2niλ
−1/2
n 〈hn−ei , hk〉

=

{√
2ni

2|n|1+d
if n− ei = k

0 otherwise
.

(4.9)

Now we are ready to state the last theorem of this paper.

Theorem 13. For f ∈ Lp we have

‖R∗f‖p =

(∫
Rd

|R∗f(x)|p dx
)1/p

6 108(p∗ − 1)‖f‖p.

To prove this theorem, we perform a slightly more general calculation. For a > 0
we define

Uaf(x) =
(
L(L+ 2a)−1

)1/2
f(x), f ∈ D.

Proposition 14. For 1 6 p <∞ we have ‖Ua‖p→p 6 2.

Proof. We begin with a well-known fact: If A is a positive operator and ‖A‖ 6 1,
then

(I − A)1/2 = I −
∞∑
n=1

cnA
n, (4.10)

where

cn =
(2n)!

(n!)2 (2n− 1)4n
and

∞∑
n=1

cn = 1.

Next, observe that (
L(L+ 2a)−1

)1/2
=
(
I − 2a(L+ 2a)−1

)1/2
,

so, taking A = 2a (L+ 2a)−1 in (4.10), we see that it is enough to prove that∥∥(L+ 2a)−1
∥∥
p→p 6

1
2a
. We proceed as in the proof of Theorem 8. First, we find

the kernel of (L+ 2a)−1, then prove its boundedness on L1 and L∞ and finally use
interpolation.
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A computation similar to the proof of Lemma 9 shows that

(L+ 2a)−1 f(x) =

∫
Rd

K̃(x, y)f(y) dy for f ∈ D,

where

K̃(x, y) =

∫ ∞
0

e−2atK̃t(x, y) dt

and

K̃t(x, y) =
C̃d

(sinh 2t)d/2
exp

(
−|x− y|

2

4 tanh t
− tanh t

4
|x+ y|2

)
, C̃d =

1

(2π)d/2
.

Since this time the kernel is symmetric, we only prove that∫
Rd

K̃(x, y) dy 6
1

2a
.

Calculations are as follows:∫
Rd

K̃(x, y) dy = C̃d

∫
Rd

∫ ∞
0

e−2at

(sinh 2t)d/2
exp

(
−|x− y|

2

4 tanh t
− tanh t

4
|x+ y|2

)
dt dy

6 C̃d

∫ ∞
0

e−2at

(sinh 2t)d/2

∫
Rd

exp

(
−|x− y|

2

4 tanh t

)
dy dt

= C̃d

∫ ∞
0

e−2at

(sinh 2t)d/2

∫
Rd

exp

(
− |y|2

4 tanh t

)
dy dt

= C̃d

∫ ∞
0

e−2at

(sinh 2t)d/2
(4π tanh t)d/2 dt

= C̃d

∫ ∞
0

e−2at (4π)d/2

2d/2
1

(cosh t)d
dt

=

∫ ∞
0

e−2at

(cosh t)d
dt.

We split the last integral into two parts — from 0 to 1 and from 1 to ∞. The first
part can be estimated by∫ 1

0

e−2at

(cosh t)d
dt 6

∫ 1

0

e−2at dt =
1− e−2a

2a
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and the second one by∫ ∞
1

e−2at

(cosh t)d
dt = 2d

∫ ∞
1

e−2at

(et + e−t)d
dt

6 2d
∫ ∞

1

e−2ate−td dt

= 2d
e−2a−d

2a+ d
.

Adding, we get ∫ ∞
0

e−2at

(cosh t)d
dt 6

1− e−2a

2a
+ 2d

e−2a−d

2a+ d

6
1 + 2de−de−2a − e−2a

2a
<

1

2a
.

This means that the operator V defined as

V f(x) =

∫
Rd

K̃(x, y)f(y) dy

is bounded on L1 and L∞ with norm at most 1
2a

and the Riesz–Thorin interpolation
theorem gives its boundedness on Lp for 1 6 p 6 ∞ with the same upper bound
for the norm. Density of D implies that (L+ 2a)−1 has a unique bounded extension
to the whole Lp space, 1 6 p < ∞, with norm at most 1

2a
. Applying (4.10) with

A = 2a (L+ 2a)−1 completes the proof. �

This leads us to the proof of Theorem 13.

Proof of Theorem 13. It is sufficient to note that for f ∈ D

R∗i f = δ∗i (L+ 2)−1/2 f = δ∗iL
−1/2

(
L(L+ 2)−1

)1/2
f = R̃iU1f.

Now Theorem 12 and Proposition 14 complete the proof. �

Finally, let us mention that in the light of (2.1), a very similar argument (with Ud
instead of U1) can be used to prove Theorem 2 with the constant equal to 108.

Acknowledgements

The author is very grateful to Błażej Wróbel for suggesting the topic, supervision
and helpful discussions.

Research was supported by the National Science Centre, Poland, research project
No. 2018/31/B/ST1/00204.

The paper will constitute author’s master’s thesis.



DIMENSION-FREE ESTIMATES FOR RIESZ TRANSFORMS 27

References

[1] A. Carbonaro, O. Dragičević, Bellman function and dimension-free estimates in a theorem of
Bakry, J. Funct. Anal. 265 (2013), pp. 1085–1104.

[2] A. Carbonaro, O. Dragičević, Functional calculus for generators of symmetric contraction semi-
groups, Duke Math. J. (5) 166 (2017), pp. 937–974.

[3] O. Dragičević, A. Volberg, Bellman functions and dimensionless estimates of Littlewood-Paley
type, J. Oper. Theory (1) 56 (2006), pp. 167–198.

[4] O. Dragičević, A. Volberg, Bilinear embedding for real elliptic differential operators in diver-
gence form with potentials, J. Funct. Anal. 261 (2011), pp. 2816–2828.

[5] O. Dragičević, A. Volberg, Linear dimension-free estimates in the embedding theorem for
Schrödinger operators, J. London Math. Soc. (2) 85 (2012), pp. 191–222.

[6] O. Dragičević, A. Volberg, Linear dimension-free estimates for the Hermite-Riesz transforms,
https://arxiv.org/abs/0711.2460.

[7] E. Harboure, L. de Rosa, C. Segovia and J. L. Torrea, Lp-dimension free boundedness for Riesz
transforms associated to Hermite functions, Math. Ann. 328 (2004) pp. 653–682.

[8] F. Lust-Piquard, Dimension free estimates for Riesz transforms associated to the harmonic
oscillator on Rn, Potential Anal. 24 (2006) pp. 47–62.

[9] G. Mauceri, M. Spinelli, Riesz transforms and spectral multipliers of the Hodge-Laguerre Op-
erator, J. Funct. Anal. 269 (2015), pp. 3402–3457.

[10] G. Mauceri, M. Spinelli, Riesz transforms and spectral multipliers of the Hodge-Laguerre Op-
erator, https://arxiv.org/abs/1407.2838.

[11] F. L. Nazarov, S. R. Treil, The hunt for a Bellman function: applications to estimates for
singular integral operators and to other classical problems of harmonic analysis, St. Petersburg
Math. J. 8 (1997), pp. 721–824.

[12] F. Olver, D. Lozier, R. Boisvert, C. Clark, NIST Handbook of Mathematical Functions, Cam-
bridge University Press, 2010.

[13] A. Nowak, K. Stempak, L2-theory of Riesz transforms for orthogonal expansions, J. Fourier
Anal. Appl. (6) 12 (2006), pp. 675–711.

[14] E. M. Stein, Some results in harmonic analysis in Rn, for n → ∞, Bull. Amer. Math. Soc.
(N.S.) 9 (1983), no. 1, pp. 71–73.

[15] S. Thangavelu, Lectures on Hermite and Laguerre expansions, Mathematical Notes 42, Prince-
ton University Press, Princeton, NJ, 1993.

[16] B. Wróbel, Dimension-free Lp estimates for vectors of Riesz transforms associated with orthog-
onal expansions, Anal. PDE 11 (2018), no. 3, pp. 745–773.

Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384
Wrocław, Poland


	1. Introduction
	2. Preliminaries
	3. Riesz transforms of the first kind
	3.1. The Bellman function
	3.2. Proof of Theorem 4
	3.3. Proof of Theorem 2

	4. Riesz transforms of the second kind
	Acknowledgements
	References

