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Abstract

The subject of the thesis is a novel technique of effective information retrieval. By
splitting a message into smaller fragments of the same length, it is possible to re-
cover the original message without knowing the original order of the fragments. In
the thesis, an assembly algorithm generating all possible reconstructions for a given
set of fragments has been designed together with its implementation in the form of
a small program and a module, possible optimizations, the complexity and perfor-
mance analysis, examples of its applications in cybersecurity, and the comparison to
other popular techniques. The effectiveness of the method was estimated based on
over 15,000 conducted experiments, where the effectiveness factor is the number of
unique solutions generated for chosen strings and the size of a single fragment. The
experiments have shown that the effectiveness of the technique drops with the in-
crease of the size of the original message. The advantages of the technique over other
known techniques is its independence to previous states and because of which it can
be effectively parallelized. In the thesis, an example application of the technique
was presented, based on situations where other known techniques did not provide
the exploitation opportunity of a vulnerable server.



Streszczenie

Przedmiotem badań jest nowatorska metoda efektywnego wydobywania oraz
odzyskiwania informacji. Poprzez rozłożenie wiadomości na mniejsze, równej dłu-
gości fragmenty, możliwe jest jej późniejsze odzyskanie bez znajomości kolejności,
w jakiej fragmenty oryginalnie występowały. W pracy zaprojektowany został algo-
rytm znajdujący wszystkie rozwiązania dla danego zbioru fragmentów wraz z jego
implementacją w postaci programu użytkowego oraz modułu, możliwymi optymali-
zacjami, analizą złożoności oraz wydajności, przykładami zastosowania w cyberbez-
pieczeństwie oraz porównaniem do innych popularnych metod. Efektywność metody
oszacowana została na podstawie ponad 15 000 przeprowadzonych eksperymentów,
gdzie wyznacznikiem efektywności jest liczba znalezionych rozwiązań dla wybranych
ciągów znaków oraz długości pojedynczego fragmentu. Eksperymenty pokazały, że
efektywność metody spada wraz ze zwiększającą się długością oryginalnej wiado-
mości. Przewagą metody nad innymi znanymi metodami jest jej niezależność od
poprzednich stanów, dzięki czemu, może być efektywnie zrównoleglona. W pracy zo-
stało również pokazane przykładowe zastosowanie metody w sytuacjach, w których
inne znane metody nie umożliwiały eksploitacji podatnego serwera.
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Chapter 1

Introduction

In the rapidly evolving world, the safety and confidentiality of information became
vital to societies and individuals. In the era of the Internet, keeping the informa-
tion secure was proven to be challenging. With the increasing value of personal
information such as passwords or identities, it became a target for attackers.

Because of arising threats, over the years many protection mechanisms have
been implemented to keep the Internet users secure and which made exploitation a
lot harder from the attackers’ perspective.

In the ideal scenario, the attacker wants to ask a vulnerable server a ques-
tion What is the password of the user123? to which the server responds with The
user123’s password is ababa. That’s an example of a direct information leak.

In the scenario where the vulnerable server responds with Yes and No only,
the direct data exfiltration1 cannot be performed. To exploit that scenario, multiple
questions must be sent to the server in order to retrieve the information. That tech-
nique is often referred to as boolean-based exfiltration or blind exfiltration.
It asks a series of questions about the secret that narrow down the search space. A
common approach is to start with an empty string and successively extend it with
the confirmed characters. Table 1.1 illustrates how the technique may work for the
secret ababa from an alphabet consisting of two letters ab. The last Yes answer from
the table is the answer to a question about the searched secret. That is because the
searched word ababa is the longest match and extending it by one character fails.

Note that in the example illustrated in Table 1.1, to retrieve the secret, 9
questions were required. However, if the length of the secret was known in advance,
the same secret can be potentially retrieved with a smaller number of questions.
Indeed, with the information from Table 1.2 that only ab and ba strings are found
in the secret of length 5, the only possible combinations for the secret are ababa

1Data exfiltration is the unauthorized copying, transfer or retrieval of data from a computer
or server. Data exfiltration is a malicious activity performed through various different techniques,
typically by cybercriminals over the Internet or another network. [17]
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10 CHAPTER 1. INTRODUCTION

No Question Answer

1 Does the secret contain ’a’? Yes

2 Does the secret contain ’aa’? No

3 Does the secret contain ’ab’? Yes

4 Does the secret contain ’aba’? Yes

5 Does the secret contain ’abaa’? No

6 Does the secret contain ’abab’? Yes

7 Does the secret contain ’ababa’? Yes

8 Does the secret contain ’ababaa’? No

9 Does the secret contain ’ababab’? No

Table 1.1: A common technique for retrieving secrets

and babab. By asking one or two questions, it can be confirmed that ababa is the
searched secret, which makes it only 5-6 questions in total.

No Question Answer

1 Does the secret contain ’aa’? No

2 Does the secret contain ’ab’? Yes

3 Does the secret contain ’ba’? Yes

4 Does the secret contain ’bb’? No

Table 1.2: Domino technique for retrieving secrets

The latter technique is the subject of this thesis with the proposed assembly
algorithm, its applications in information security, the efficiency of the technique
based on randomly generated, from the uniform distribution, secrets of different
sizes and alphabets, and its advantages over other commonly used techniques.



Chapter 2

The Domino problem

A general assembly problem can be phrased as:

With a given set of contiguous subsequences of a sequence, is it possible
to recover the original sequence? If so, what are the the possible assem-
blings?

The assembly problem together with recovering techniques play a vital role
in other areas such as bioinformatics, where a similar problem known as sequence
assembly occurs. It is used to recover a full DNA code from the smaller parts. From
Wikipedia page [1]:

It refers to aligning and merging fragments from a longer DNA sequence
in order to reconstruct the original sequence. This is needed as DNA
sequencing technology cannot read whole genomes in one go, but rather
reads small pieces of between 20 and 30,000 bases, depending on the
technology used. Typically the short fragments, called reads, result from
shotgun sequencing genomic DNA, or gene transcript (ESTs).

The Domino problem is a simplified version of the general assembly problem
and its definition ensures that it is always possible to recover the original, finite
sequence from a given set of contiguous subsequences. The definition of the Domino
problem, along with the constraints that the problem must satisfy, will be presented
in this chapter.

It’s worth mentioning that the Domino problem differs from the sequence as-
sembly and does not refer to Domino Problem from Wang Tiles [3] although the
idea for the name is shared between both problems. Both terms Domino problem
and Domino technique were invented independently during writing this thesis and
will refer to the constructions presented in this thesis.

11



12 CHAPTER 2. THE DOMINO PROBLEM

2.1 The Domino problem – definition

The Domino problem can be defined as:

For a given length of the secret1 and a set of puzzles2 where:

• each puzzle in the set has a fixed length K,

• the set is finite and consists of at least one puzzle,

• if the set consists of at least two puzzles, each puzzle from the set
is chained3 with at least one different puzzle from the set,

• every distinct contiguous subsequence (puzzle) of length K of the
secret occurs in the set,

find all assemblies4 satisfying the constraints:

1. Only puzzles from the Domino set occur in the searched assembly.

2. Each puzzle from the Domino set occurs in the searched assembly
at least once.

3. There are exactly N−K+1 puzzles in the searched assembly where
N is the length of the secret.

4. Every two adjacent puzzles in the searched assembly are chained at
K − 1 positions.

Assemblies satisfying the above constraints will later be called solutions. Partial
solution will refer to assemblies satisfying the constraints with the exception of 2 and
3. A given set in the Domino problem satisfying the conditions from the definition
will be later referenced as Domino set. Notice that the definition of the Domino
problem ensures that at least one solution exists.

Just like in the game of Dominoes [2], the goal is to find a correct line (solution)
of tiles (puzzles) in which values of adjacent pairs of tile ends (chains) must match.
From there, the original sequence can be recovered by ignoring repetitions of the
overlapping parts (chains).

1The term secret refers to the finite, original sequence to be recovered.
2The term puzzle refers to a contiguous subsequence of the original sequence (secret).
3The term chain refers to a sequence that connects two puzzles. For a given chain length L and

two puzzles x and y, y is chained to x if the suffix of the length L of x matches the prefix of the
same length of y; two puzzles x and y are chained if either x is chained to y or y is chained to x; if
L was not provided it is assumed that both puzzles have the same length K and the chain length

is K − 1. E.g. ’bcd’ is chained to ’abc’ by a chain of length 2, but ’abc’ can never be chained to
’bcd’.
4The term assembly refers to a sequence of a given number of puzzles where every two adjacent

puzzles are connected in some manner. That connection will be later called a chain, and its definition
can be found in another footnote.
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2.2 Domino technique

The Domino technique5 refers to a method of a secret retrieval through identifying
which tuples (puzzles) from a chosen charset6 exist in the secret. These tuples form
a set in the Domino problem from which the secret is to be recovered.

2.3 Examples

To provide more intuition about definitions that were introduced, the Domino tech-
nique will be presented on descriptive examples.

In the thesis, the effectiveness of the technique was measured basing on secrets
generated from most popular charsets presented in Table 2.1.

Charset name Alphabet

base64 0123456789abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ −
hex 0123456789abcdef

letters abcdefghijklmnopqrstuvwxyz

lowercase 0123456789abcdefghijklmnopqrstuvwxyz

Table 2.1: Example of popular charsets

Here, for simplicity, the goal is to retrieve the secret ’example’ by identifying
which pairs from all 36 possible puzzles of size 2 created from a charset ’aelmpx’
exist in the secret. Table 2.2 illustrates which pairs will be found in word ’example’.

Puzzle ee ex ea em ep el xe xx xa xm xp xl

In secret? No Yes No No No No No No Yes No No No

Puzzle ae ax aa am ap al me mx ma mm mp ml

In secret? No No No Yes No No No No No No Yes No

Puzzle pe px pa pm pp pl le lx la lm lp ll

In secret? No No No No No Yes Yes No No No No No

Table 2.2: All 36 pairs from charset ’aelmpx’ tested against the secret ’example’

5The term ”Domino” connected to a secret retrieval was first mentioned in ”justCTF 2019 write-
ups by @terjanq” article [5].
6The charset refers to an alphabet from which the secret is constructed. Table 2.1 presents

popular charsets used in the thesis.
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In a mathematical sense, the string ’example’ is treated as a finite sequence of
single characters: (”e”, ”x”, ”a”, ”m”, ”p”, ”l”, ”e”).

Puzzles of size 2, by definition, are contiguous subsequences of the secret. Ta-
ble 2.2 shows that puzzles: (”e”, ”x”), (”x”, ”a”), (”a”, ”m”), (”m”, ”p”), (”p”, ”l”),
(”l”, ”e”) exist in the secret. To simplify, it will be later written as ex, xa, am, mp,
pl, le.

An assembly, by definition, is a sequence of puzzles where every adjacent two
are connected in some manner. For example, (ex, ex, ex) could be an instance of an
assembly where every two adjacent puzzles are chained at 2 positions. However, in
the thesis, it will be assumed that the connection is usually a chain of chain length
K − 1 where K is the size of the puzzle.

A chain, by definition, is a sequence that connects two puzzles in a way that
the suffix of one puzzle matches the prefix of another. As for an example, puzzles
xa and am are chained by a chain of size 1: (”a”), therefore am is chained to xa.

Puzzles ex, xa, am, mp, pl, le form a Domino set from Domino problem defi-
nition, and it can be presented as a set: {ex, xa, am,mp, pl, le}

The assembly (ex, ex, ex) is not a partial solution because not every two adjacent
puzzles are chained at 1 position. An assembly (ex, xa, am) is an example of a partial
solution, because every two adjacent puzzles are chained and other constraints for
an assembly being a partial solution hold.

For a length of the secret N = 7 given in the Domino Problem, an assembly
(le, ex, xa, am,mp, pl) is an example of a solution because every two adjacent puzzles
are chained and there are N −K + 1 = 7− 2 + 1 = 6 puzzles in the assembly. The
solution can be converted back to the string, by ignoring repetitions of the chains
which would be: ’lexampl’. There are exactly 6 valid solutions that can be assembled
from puzzles ex, xa, am, mp, pl, le:

• example

• xamplex

• amplexa

• mplexam

• plexamp

• lexampl



Chapter 3

The assembly algorithm

One way to approach the Domino problem could be to apply dynamic programming.
In order to apply dynamic programming to a problem, the problem must be first
transformed to its equivalent recursive definition which the Domino problem can
be transformed to. A brief reasoning along with a proposed implementation of the
dynamic approach will be presented in this chapter.

3.1 DP Function

Domino problem can be transformed into a problem of finding all partial solutions
of the length N−K+1 to which constraint 2 from the Domino problem must be yet
applied. A function that returns a set of all possible partial solutions consisting of
k puzzles for a given number k > 0 and a Domino set S can be defined as DP(k, S).
Then:

1. DP(1, S) = S because every puzzle from the Domino set S satisfies the con-
straints for a partial solution and, at the same time, S is the largest possible
set of assemblies consisting of only one puzzle.

2. A set DP(N −K + 1 ,S ) for a Domino set S, a secret length N and a length
K of every puzzle from S, returns all solutions from the Domino problem after
applying the constraint 2 from the Domino problem definition.

3. DP(0, S) = ∅ because there are no partial solutions consisting of 0 puzzles.

3.1.1 Recursive definition

A vital observation is that the DP function can be recursively defined as:

DP(k, S) = DP(k − 1, S)× S

where × operator stands for a slightly modified Cartesian product[4] defined as:

15



16 CHAPTER 3. THE ASSEMBLY ALGORITHM

A × B := {(a1, . . . , am, b1, . . . , bn) : (a1, . . . , am) ∈ A, (b1, . . . , bn) ∈ B,

b1 is chained to am}1

for two non-empty sets of assemblies A and B, where every assembly from these sets
consists of n and m puzzles respectively. In other words, the formula defines a set
consisting of assemblies that are a product of chaining every two assemblies from
two different sets. In addition, an empty set ∅ will be a neutral element of the ×
operator, i.e. A× ∅ = A, ∅ ×B = B and ∅ × ∅ = ∅.

3.1.2 Proof of the recursive definition

The reason why the DP function can be defined recursively in the presented way
can be proven by induction.

Inductive hypothesis: Suppose the definition DP(k, S) = DP(k − 1, S) × S

is true, i.e. DP(k − 1, S) × S returns all possible partial solutions consisting of k
puzzles.

Inductive base case : The inductive base case DP(1, S) = DP(0, S)×S = S×
S holds because the product ∅×S = S and it was already shown that DP (1, S) = S.

Inductive step: If DP(k, S) is true, then DP(k+1, S) = DP(k, S)×S returns
all possible partial solutions consisting of k+1 puzzles from the Domino set S each.

Proof of the inductive step:

Let (d1, d2, . . . , dk, s) be any assembly from the product DP(k, S) × S. Then,
from the inductive hypothesis, (d1, d2, . . . , dk) must be a partial solution, and from
the definition of the operator ×, s must be chained to dk; thus (d1, d2, . . . , dk, s) is
also a partial solution because all constraints for being a partial solution hold.

Let assume that a partial solution (e1, e2, . . . , ek, ek+1) that is contained in the
set DP(k + 1, S) but not in the product DP(k, S) × S exists. Then, the assembly
(e1, e2, . . . , ek) must be also a partial solution because it satisfies all the required
constraints. It creates a contradiction, because DP(k, S) returns all possible partial
solutions consisting of k puzzles; hence (e1, e2, . . . , ek) must be contained in the set
DP(k, S). This proves by contradiction that the partial solution (e1, e2, . . . , ek, ek+1)

must be contained in the product DP(k, S) × S because (e1, e2, . . . , ek) must be
contained in DP(k, S) and ek+1 must be contained in S by constraint 1 from the
Domino problem definition.

Because any partial solution (e1, e2, . . . , ek, ek+1) must be contained in the prod-
uct DP(k, S)×S and every assembly (d1, d2, . . . , dk, s) from the product DP(k, S)×S
is a partial solution, it proves that the inductive hypothesis indeed holds.
1(a1, . . . , am) is an assembly (sequence of puzzles) from the set A, consisting of m puzzles.

Similarly (b1, . . . , bn) consists of n puzzles and (a1, . . . , am, b1, . . . , bn) consists n+m puzzles and is
a result of concatenating the two previous sequences (assemblies).
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3.1.3 Extended recursive definition

Directly from the recursive definition of the DP function, it can be also defined as:

DP(k, S) = S × · · · × S︸ ︷︷ ︸
k times

In consequence, the recursive definition can be extended to:

DP(k + l, S) = DP(k, S)×DP(l, S)

because DP(k + l, S) can be written as

S × · · · × S︸ ︷︷ ︸
k times

×S × · · · × S︸ ︷︷ ︸
l times

and in contrast to Cartesian product, the operator × is associative2.

3.2 Dynamic approach

Because of the defined recursive function DP , the Domino problem can be solved
using Dynamic Programming where the DP state at times i is a structure containing
all partial solutions from the set DP(i, S) for a given Domino set S from the Domino
problem. A DP state i + 1 is created from the state i by extending each partial
solution from the state with all puzzles from the Domino set (state 1 ) chained to
the last puzzle in the assembly that is being extended.

Notice that every DP state only consists of unique assemblies. This is because
the state 1 is created from the Domino set which consists of unique assemblies from
the definition of a set and every other state is created by extending a unique as-
sembly with the unique puzzles from the Domino set. Hence, on every DP state

the technique is duplicate-free by design, or in other words, none of the DP states
contain any duplicates.

Another observation is that every contiguous subsequence of a secret split into
k puzzles is contained in the DP state k. Directly from the definition of the Domino
set, all puzzles from that subsequence must exist in the Domino set, but also, every
two adjacent puzzles are already chained. Because an assembly created from chaining
these puzzles satisfies constraints for being a partial solution, it must be contained
in the result of DP(k, S).

3.3 Pseudocode

In Listing 2, the pseudocode of the described algorithm written in Python is pre-
sented, where each step is also briefly described in the comments.
2It can be proven that (A×B)×C = A×(B×C), because every assembly from both sides will be in

the form of (a1, . . . , ak, b1, . . . , bl, c1, . . . , cm) for (a1, . . . , ak) ∈ A, (b1, . . . , bl) ∈ B, (c1, . . . , cm) ∈ C.
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The algorithm takes three arguments as input:

• N – the length of the secret to be recovered,

• K – the length of every puzzle in the Domino set,

• S – the Domino set (list of distinct puzzles).

The algorithm first fills a chain graph with puzzles from the Domino set S, which
happens in lines 6 − 9 in the pseudocode. A chain graph is an optimization that
helps to compose a product of DP(I−1, S)×S more effectively. It’s a data structure
that represents chains between puzzles – for each puzzle p from the Domino set S,
G[p] returns a list of puzzles chained to p. In the line 9, the algorithm adds a chain
between puzzles p1 and p2 to the graph if p2 is chained to p1.

In lines 12–14, the algorithm creates the DP state 1 (DP[1]) from all puzzles
contained in the Domino set S.

Then, in lines 18–22, it fills the DP[I] (which corresponds to the DP state I ),
in a loop where I is in a range from 2 to N − K + 1 inclusively, with assemblies
created from chaining all assemblies from DP[I-1] with puzzles from the chain graph
G that returns assemblies from DP[1] chained to the last puzzle in each assembly
being extended.

After these steps, DP[N-K+1] will return all partial solutions consisting of N −
K + 1 puzzles. To generate the searched solutions, only partial solutions satisfying
constraint 2 must be returned.

3.4 Implemented optimizations

In the included to the thesis application, two more optimizations have been imple-
mented, Repetitions and Less knowledge, that improve the memory usage and the
performance.

3.4.1 Repetitions

From the Domino problem constraints, if a solution is of the same length as the
Domino set, it implies that all puzzles in the solution are distinct; otherwise, some
puzzles occur in the solution more than once. Moreover, it can be precisely calculated
how many repetitions will occur in the solution, i.e. repetitions = N −K −#S +1,
where N is the size of the secret, #S is the size of the Domino set and K is the
size of a single puzzle from the set. Assemblies that exceed the allowed number of
repetitions on a state i will not be extended to the state i + 1, which ensures that
DP[NN] in the code from Listing 2 will only contain valid solutions, but also saves
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the overall computing time and memory usage by ignoring on early stage partial
solutions that cannot produce a valid solution after applying the constraint 2 from
the Domino problem definition.

With a function repetitions that returns the number of total repetitions in
an assembly, the repetitions optimization of the algorithm from Listing 2 can be
implemented as shown in Listing 1.

for puzzle in G[assembly[-1]]:

new_assembly = assembly + [puzzle]

if repetitions(new_assembly) > N - K - len(S) + 1:

continue

else:

DP[I].push(new_assembly)

Listing 1: Repetitions optimization

3.4.2 Less knowledge

It can be noticed that in the presented assembly algorithm, to calculate the state
i only two other states have to be stored in memory: the DP state 1 and the DP
state i− 1. With that observation, memory usage can be significantly decreased at
the cost of losing information about partial solutions.

3.4.3 An example

To illustrate how the algorithm works, Table 3.1 shows how partial solutions at every
DP state are calculated, starting with puzzles exa, xam, amp, mpl, ple. At DP state
4, only one solution (exa, xam, amp,mpl, ple) is present which after conversion to
string gives the secret example.

DP state Partial solutions

0 {exa, xam, amp,mpl, ple}

1 {(exa, xam), (xam, amp), (amp,mpl), (mpl, ple)}

2 {(exa, xam, amp), (xam, amp,mpl), (amp,mpl, ple)}

3 {(exa, xam, amp,mpl), (xam, amp,mpl, ple)}

4 {(exa, xam, amp,mpl, ple)}

Table 3.1: Partial solutions at each DP state
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1 NN = N - K + 1 # Number of puzzles in a solution

2 G = Graph() # Custom data structure Graph

3

4 # For every pair (p1, p2) of puzzles from the Domino set S,

5 # check if p2 is chained to p1. If so, add it to the chain graph G[p1]

6 for p1 in S:

7 for p2 in S:

8 if p1[1:] == p2[:-1]:

9 G[p1].add(p2)

10

11 # DP state 1 is created directly from puzzles from the Domino set

12 DP[1] = []

13 for puzzle in S:

14 DP[1].append([puzzle])

15

16 # For every state I, try to append an assembly to DP[I] created through

17 # extending every assembly from state I-1 with chained puzzles from S

18 for I in range(2, NN+1):

19 DP[I] = []

20 for assembly in DP[I-1]:

21 for puzzle in G[assembly[-1]]:

22 DP[I].push(assembly + [puzzle])

23

24 # DP[NN] contains partial solutions consisting of N - K + 1 puzzles,

25 # that after filtering ones satisfying constraint 6,

26 # will only consist of valid solutions

Listing 2: Pseudocode to the Assembly algorithm written in Python



Chapter 4

The assembly algorithm
performance

The conducted experiments have shown that the implementation of the assembly
algorithm, even with the optimization applied, experiences performance issues, both
computing time and memory.

The expected time complexity is not easy to predict but can be well visualized
on Graphs 4.1, 4.2, 4.3, 4.4 and 4.6 where the painted area under the graph represents
a summary number of partial solutions from all DP states. At the same time, it also
represents the estimated number of the performed calculations (multiplied by some
constant).

Figure 4.1: Growth of the number of partial solutions at different DP states for a
secret of length 57, from base64 charset, split into puzzles of size 2

From Graph 4.6 it is clear that the time complexity does not necessarily depend
on the number of valid solutions produced but rather on the distribution of partial

21
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Figure 4.2: Growth of the number of partial solutions at different DP states for a
secret of length 312, from base64 charset, split into puzzles of size 3

Figure 4.3: Growth of the number of partial solutions at different DP states for a
secret of length 32, from hex charset, split into puzzles of size 2

solutions, which seems to be related to the length of the secret. From Table 4.1 we
can read that for the presented case, for the secret of length 202, the number of solu-
tions was only 17,408 while its time performance can be estimated to 20,000,000,000
(2 · 1010) operations. The area under the graph can be estimated as 200,000,000
(2 ·108), which is the minimal number of operations that were performed, multiplied
by the constant 100 (linear operations such as searching in an array, chained puzzles,
etc.) gives the former estimation.

For the contrast, from Graph 4.1 the number of solutions for the secret of size 57
is 213,696 while the time performance can be estimated to 8,000,000,000 operations
(8 · 109) – the area under graph estimated as 400,000,000 (4 · 108) multiplied by the
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Figure 4.4: Growth of the number of partial solutions at different DP states for a
secret of length 32, from hex charset, split into puzzles of size 3

Figure 4.5: Plot illustrating the memory exhaustion

constant 20.

Memory usage related to the graph can be estimated as the maximum number
of partial solutions multiplied by 3. That is because at least two states must be
stored in the memory and the garbage collector [7] in Node.js must be taken into
account. In the experiments, the maximum memory usage for the process was 30GB
which can be used as a reference to these numbers.

The growth of the partial solutions can also be read in Tables 4.2 and 4.3. For
each DP state i, the right column represents the difference between two states i and
i− 1. Table 4.2 presents an example of the memory exhaustion. It can be noticed,
that from the state 21 to the state 22, the DP function started growing slightly
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Figure 4.6: Plot illustrating high computing time for a secret of length 202, from
lowercase charset, split into puzzles of size 2

Charset Puzzle size Secret length Number of solutions Figure

base64 2 57 213,696 4.1

base64 3 312 4,012 4.2

hex 2 32 159,072 4.3

hex 3 32 1 4.4

hex 2 32 N/A 4.5

lowercase 3 202 17,408 4.6

Table 4.1: Number of solutions for performance plots

slower, which could indicate that the DP function was near the highest peak, from
where the solution would be recovered. The similarity with Table 4.3 can be spotted,
where the DP function also slowed its growth on the state 21.
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DP state i Partial solutions difference

1 0

2 105

3 271

4 679

5 1,651

6 4,002

7 9,418

8 21,502

9 47,125

10 99,146

11 201,246

12 386,456

13 716,730

14 1,260,014

15 2,095,204

16 3,286,630

17 4,903,522

18 6,788,298

19 8,815,054

20 10,501,251

21 11,543,401

22 10,808,052

Table 4.2: Differences between states i and i− 1 for Figure 4.5
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DP state i Partial solutions difference

1 0

2 78

3 179

4 402

5 919

6 2,111

7 4,769

8 10,697

9 22,923

10 49,815

11 99,269

12 204,007

13 396,092

14 725,180

15 1,311,234

16 2,209,297

17 3,513,620

18 5,246,463

19 7,167,757

20 8,917,165

21 9,597,627

22 8,558,207

23 5,152,269

24 1,210,915

25 -6,578,890

26 -12,516,990

27 -14,206,644

28 -13,205,399

29 -5,984,840

30 -1,749,220

Table 4.3: Differences between states i and i− 1 for Figure 4.3



Chapter 5

Further optimizations

The assembly algorithm performance chapter has shown that the assembly algorithm
faces performance issues, specifically high memory usage that stops the algorithm
from finding the solutions. Figure 4.3 shows that the number of final solutions might
be relative small 1 compared to the memory used.

In this chapter, a better assemblings method that attempts to improve the per-
formance will be designed but which has not been implemented in the application
attached to this thesis. To improve the overall computing time on multi-core ma-
chines, the assembly algorithm can be also parallelized2.

5.1 Better assemblings

In the current implementation of the algorithm, the DP state i+1 is created through
extensions of the state i with chained puzzles from the Domino set. That creates
performance and memory issues as described in the section The assembly algorithm
performance and shown in Figures 4.5 and 4.6.

5.1.1 The idea

Instead, from the extended recursive definition of the DP function, DP state i + j

can be composed as a product of states i and j, DP(i+ j, S) = DP(i, S)×DP(j, S),
by chaining all assemblies from states i and j. For example, the secret ’babab’ of
length 6 could be assembled as a result of merging two assemblies ’bab’ and ’bab’
where the chaining length is 1. For a chain of length 2, the same could be factorized

1From Table 4.1, the number of solutions was 159,072 while at DP state 24 over 50,000,000
partial solutions had to be stored in memory.
2DP(k ,S) can be split into two disjoint subsets A,B ∈ DP(k ,S) that DP(k ,S) = A ∪ B.

Then the DP(k + 1 ,S) = (A× S) ∪ (B × S) which can be calculated in parallel and which can be
generalized to any number of subsets.
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as a connection of two assemblies: ’baba’ and ’bab’.

Based on experiments illustrated in Figures 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6, a
pattern of how the number of partial solutions (assemblies) changes over different
DP states was discovered. The distribution of partial solutions appears to behave
like the natural distribution curve. That information can be used to optimize the
algorithm for certain use-cases or improve the overall performance. The goal of the
optimization is to omit high peaks3 that often exceed available RAM (as presented
on the Figure 4.5), even at the cost of a slightly worse computing time performance
if necessary.

With the information about the shape of the curve, it’s possible to design an
efficient algorithm that will effectively omit the mentioned high peaks if possible.
The crucial observed property of the DP function is that it monotonically increases
until a certain point and then monotonically decreases until the final DP state4 is
reached. Thanks to that, more efficient algorithms can be designed.

5.1.2 The algorithm

Assuming the existence of a function that effectively calculates the product A × B

of sets consisting of partial solutions, where the operator × is the same operator
defined in Recursive definition section, the idea for omitting a high peak is:

1. Try to calculate a set of partial solutions C (which will be also referred as DP
state C ) satisfying the condition 〈C × C〉 = 〈final state〉, where 〈 · 〉 is the
length of every assembly from the set.

2. If the state C cannot be calculated because of the memory limit, calculate a
state C ′ that is the closest to the state C by the means of the DP index and
does not exceed the memory.

3. If a state created as a product of C ′ × C ′ exceeds the memory, it means that
omitting the high peak will be impossible. Otherwise, it is guaranteed that the
state C ′ ×C ′ is on the decreasing curve, from where it is possible to calculate
the final state because less memory will be used at the next steps.

The proof of the statement 3: If the state C ′×C ′ wasn’t on the decreasing part
of the curve, that would mean that it was on the increasing part instead. But C ′

is the furthest state that did not exceed the memory, therefore, it must be on the
increasing part. That creates a contradiction with C ′ being the furthest state on
the increasing part because the state C ′ × C ′ is further than the state C ′.

3High peak refers to DP states that have the biggest number of partial solution and which could
exceed the memory limit. For example, in Figure 4.3 high peak could refer to DP states in range
[18, 27] if the memory limit allowed to only store 3,000,000 assemblies.
4Final state refers to the DP state consisting of solutions.
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5.1.3 The product of partial solutions

The question is how to effectively implement a function that returns a product
A × B of two sets of partial solutions. The naive algorithm could iterate over all
pairs (a, b) where a and b are assemblies from states A and B respectively, attempt
to chain them and, if successful, append to the new bigger state. However, that
approach might not be sufficient enough since its time complexity can be written as
O(#A ·#B) where #A,#B are sizes of the sets A,B and which can be large.

A better approach to merge two states A and B could be to use a data structure
that efficiently returns list of assemblies satisfying the query:

Return list of all assemblies starting with a sequence P from a set A.

Assuming that this data structure returns the requested list of assemblies in constant
time O(1), the chain size is K − 1 where K is the size of a single puzzle and that
assemblies in both sets A and B are uniformly distributed, the performance of the
algorithm could be estimated as O(#A·#B

#S ), where #S is the size of the Domino
set. The reason why #A ·#B is divided by #S comes from the assumption about
uniform distribution. For a given prefix of a size of almost one puzzle from the
Domino set S and the state B, the data structure should return around #B

#S distinct
assemblies.

Notice that in the definition of the product A × B it was assumed that both
partial solutions (a1, . . . , am) and (b1, . . . , bn) are merged to (a1, . . . , am, b1, . . . , bn)

if b1 is chained to am. This definition can be slightly modified to:

A ?B := {(a1, . . . , am, bi+1, . . . , bn) : (a1, . . . , am) ∈ A, (b1, . . . , bn) ∈ B,

(am−i+1, . . . , am) = (b1, . . . , bi)}

for a given number i which stands for a number of puzzles that both partial solutions
must be chained by. Because bi+1 is chained to bi from the definition of a partial
solution, it implies that bi+1 is chained to am because am = bi. Hence, the product
A ? B of two sets consists of partial solutions of the size m + n − i where m and n

are the sizes of every partial solutions in A and B respectively. Furthermore, the
product A ? B corresponds to the DP state m+ n− i.

With the new definition of the product and the same assumptions as before,
time complexity of calculating A ?B can be estimated as O(#A·#B

#DP [i] ) where #DP [i]

is the number of partial solutions in the DP state i. This is because, DP state i
consists of all partial solutions of size i which is the number of puzzles in the chain.

5.1.4 Total repetitions

When merging two states A and B, of the total repetitions numbers of X and Y

respectively, with the chain consisting of i puzzles, the minimum number of repeti-



30 CHAPTER 5. FURTHER OPTIMIZATIONS

tions in the new state A ? B equals to X + Y − i. The total number of repetitions
might be higher than the formula, but cannot be lower which is a vital observation
for choosing the best candidates to merge, given the optimization described in the
section Repetitions. With that observation, the data structure can be improved to
satisfy the rule:

Return a list of all assemblies starting with a sequence P from a set A

where a total number of repetition is less than L.

which will ignore assemblies that cannot produce a valid partial solution when
merged.

5.1.5 Jump search

In Figure 4.2, it can be noticed that for longer secrets, the calculations of the solu-
tions might take a long time while memory required to perform these calculations
might be relatively low. With the function that effectively calculates product of two
states, and with the information how the DP function behaves, a jump search[6]
algorithm can be performed to calculate the searched state faster.

The goal of the jump search is to find either state C or C ′ from the algorithm
presented in this chapter without exceeding the memory. A DP state k can be
calculated as DP(k, S) = DP(n, S)× · · · ×DP(n, S)︸ ︷︷ ︸

l times

×DP(r, S) where l = b knc and

r = k mod n for some n, because k can be factorized as k = l · n+ rs. By choosing
the n as

√
L where L is the index of the final DP state, both C and C ′ can be found

in O(
√
L) steps.

The reason why jump search will work is the increasing behaviour of the DP
function until a certain point. If the algorithm at DP state i will not be able to
calculate DP (i +

√
L, S), then from that state the algorithm can check all states

between states i and i +
√
L linearly. The last successfully calculated state will be

searched C ′ if calculating C has failed.

5.1.6 Summary

Although no specific algorithm nor data structure has been implemented to test
the designed optimizations, these optimizations should significantly improve the
overall performance, i.e. jump search should improve the computing time and better
assemblings should at least improve usage of memory. It’s worth to mention that
with the proposed optimizations, information about partial solutions will be lost.



Chapter 6

Technique overview

In this chapter, effectiveness of the Domino technique will be tested based on the
conducted experiments.

6.1 Time and memory complexity

The pessimistic time and memory complexity of the Domino technique is O(CN )

where C is the size of the charset and N is the size of the secret. The inefficient
complexity comes from the fact that if all tuples from a given charset occur in the
secret, then each combination of elements from the charset is a valid solution. For
example, for the charset 01 and the Domino set consisting of 00 , 01 , 10 , 11 puzzles,
every binary number can be assembled from the puzzles. Nonetheless, conducted
experiments have estimated that for randomly1 generated secrets, relatively small
compared to the chosen charsets2, the Domino technique works effectively – the
number of unique solutions is satisfactory.

6.2 The experiments

To prove the effectiveness of the Domain technique over 15,000 experiments have
been conducted for different charsets, secret sizes and puzzle sizes. Experiments
have been computed for 36 hours on 11 cores within 3 different cloud instances with
the limit of 35GB RAM per core.

The results are presented in Figures 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 6.10,
where:

• Min function represents the minimum number of solutions within the experi-
1It is assumed that randomness comes from the uniform distribution if not specified otherwise.
2Relaction between secrets, charsets and puzzle sizes has been presented in Figures attached to

this chapter summarized in Table 6.1.
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ments per a single secret size,

• Max function represents the maximum number of solutions within the exper-
iments,

• Median function represents the median value of the solutions within the ex-
periments,

• X-axis represents the size of the secret,

• Y-axis represents the number of solutions per secret size in the logarithmic
scale for better readability.

If the experiment exceeded the allowed memory usage the result was treated as the
maximum value from the group multiplied by 10.

Table 6.2 represents the number of conducted experiments for different charac-
teristics. For every secret from the presented ranges, 30, 20 or 10 experiments were
performed depending on the chosen puzzle size.

6.3 The experiments summary

The experiments have been summarized in the form of Table 6.1. The table illus-
trates the optimal size of the puzzle for a given secret size in order to achieve the
expected number of solutions, respectively:

• exactly one solution

• less than 10 solutions

• less than 100 solutions

• less than 1,000 solutions

• less than 100,000 solutions

• less than 1,000,000 solutions

For example, for a hexadecimal secret of size 32 and the expected number of solutions
less than 19, the optimal size of the puzzle is 3.

The number of validations indicates how many tuples should be validated in
order to recover the secret. In other words, it is a number of all tuples of size puz-
zle size created from the charset. The formula can be written as #charsetpuzzle size .
For example, 30 experiments were performed for the secret of size 32, hex charset
and the puzzle size 2 and for each experiment, 4,096 validations would have to be
made to recover the secret.
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Depending on the use-cases, the optimal puzzle size can vary. Tests have in-
dicated that by repeating the experiment multiple times, better results can be ob-
tained. Despite the fact that the expected number of solutions for the secret size of
31 and the puzzle of size 2 is 394,128 in Figure 4.3, the minimum obtained value is
only 6,048. The same can be applied oppositely. In the scenario where exactly one
request can be made this becomes problematic. From the same figure, for a secret of
size 5, the maximum obtained value is 80 which, therefore, gives only 1.25% chances
of a successful recovery.

Charset Puzzle
size

Number of validations
to recover the secret

1 10 100 1k 100k 1M

base64 2 4,096 20 30 40 46 54 –

base64 3 262,144 100 230 280 312 – –

hex 2 256 10 15 20 23 30 31

hex 3 4,096 40 60 75 90 – –

hex 4 65,536 150 230 280 320 – –

letters 2 676 12 19 25 30 36 –

letters 3 17,576 60 95 125 145 – –

letters 4 456,976 300 450 – – – –

lowercase 2 1,296 13 23 28 34 41 45

lowercase 3 46,656 100 128 164 190 – –

Table 6.1: Table shows how an expected number of solutions changes with the in-
crease of the secret size for different characteristics

Figure 6.1: Number of solutions compared to secret length for secrets from
base64 charset
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Charset Puzzle
size

Size range
for a secret

Number of experi-
ments per secret size

base64 2 4− 57 30

base64 3 200− 313 20

hex 2 4− 32 30

hex 3 3− 102 20

hex 4 200− 323 10

letters 2 4− 38 30

letters 3 30− 148 20

letters 4 200− 500 10

lowercase 2 3− 47 30

lowercase 3 100− 202 20

Table 6.2: Conducted experiments

Figure 6.2: Number of solutions compared to secret length for secrets from
base64 charset
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Figure 6.3: Number of solutions compared to secret length for hexadecimal secrets

Figure 6.4: Number of solutions compared to secret length for hexadecimal secrets
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Figure 6.5: Number of solutions compared to secret length for hexadecimal secrets

Figure 6.6: Number of solutions compared to secret length for secrets from
letters charset
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Figure 6.7: Number of solutions compared to secret length for secrets from
letters charset

Figure 6.8: Number of solutions compared to secret length for secrets from
letters charset
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Figure 6.9: Number of solutions compared to secret length for secrets from
lowercase charset

Figure 6.10: Number of solutions compared to secret length for secrets from
lowercase charset



Chapter 7

Advantages of the Domino
technique

There are a few techniques used to exfiltrate information from vulnerable software.
The choice of the technique often relies upon what types of questions the vulnerable
application accepts. In this chapter, only indirect exfiltration is considered. More
specifically, the vulnerable application can only answer with Yes and No responses.

7.1 Common techniques

Common techniques that can be found on the Internet rely on multiple-step ques-
tions – to ask a new question the technique may need an answer to the previous. A
few known techniques rely on that behavior.

7.1.1 Binary Search

Binary search is considered the most efficient technique but can be only applied in
specific situations. The vulnerable application must usually either accept complex
questions or perform any kind of comparison between objects. A great example of a
situation when an application accepts complex questions is Blind SQL Injection [8]
From Wikipedia:

Blind SQL injection is used when a web application is vulnerable to
an SQL injection but the results of the injection are not visible to the
attacker. The page with the vulnerability may not be one that displays
data but will display differently depending on the results of a logical
statement injected into the legitimate SQL statement called for that
page.

In SQL injection, every bit of the information can be exfiltrated through the
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binary search algorithm. This can be achieved by crafting questions in the form of:
Is the first character of the secret less than ’e’? which in SQL language translates
to SELECT SUBSTRING(secret, 1, 1) < "e";.

7.1.2 Prefix and suffix extension

Prefix and suffix extension can be often seen in the situation where a vulnerable ap-
plication responds to questions like Does the secret start/end with ”e”?. The example
of that case are CSS-Leaks1. The principle of the attack is to take advantage of CSS
Selectors [9] that allow styling elements containing certain phrases. For example, a
question If the value of the secret element starts with ’e’, set the background image
to external resource translates to: input[name=secret][value^=e]{background:
url(external)} in CSS language. The external resource can be used to send the
retrieved information to the attacker. As in the Binary Search, requesting a new
character requires information about the previous. To get the second character of
the secret, a selector [value^=ex] must be inserted.

7.1.3 Expansion technique

If an application responds to questions in the form of Does secret include ’e’?,
it is possible to successively extend the searched phrase by the newly discovered
characters, just as was presented in Table 1.1 in the Introduction chapter and in
Prefix and suffix extension but starting from a random character. The technique
is especially useful in vulnerabilities known as XS-Search 2 that often search for
information in the mentioned way.

7.2 Advantages of the Domino technique

An advantage of the Domino technique over other described techniques is that the
technique does not rely on the previous results. Therefore, it can be run in parallel.
The technique is especially useful in mentioned CSS-Leaks, where multiple tries
cannot be performed or are too inefficient.

A popular technique that imitates a single step attack was described in the
article Better Exfiltration via HTML Injection [10]. It connects Prefix and suffix

1The term CSS-Leaks refers to the class of vulnerabilities called CSS Injection. CSS injection
vulnerabilities arise when an application imports a style sheet from a user-supplied URL, or embeds
user input in CSS blocks without adequate escaping. They are closely related to cross-site scripting
(XSS) vulnerabilities but often trickier to exploit. [15] [16]
2Cross-site search (XS-Search) refers to the class of attacks that circumvent the same-origin

policy [11] in the browsers through numerous applicable side-channels attacks called cross-site leaks
(XS-Leaks). [13] [12]



7.2. ADVANTAGES OF THE DOMINO TECHNIQUE 41

extension technique with the recursive imports in CSS via @import rule. The ap-
plication is stalled until the attacker receives the information about the searched
character. After that, the server extends the generated styles by the newly discov-
ered characters and imports them as a stalled import rule by simply returning the
response. The process is repeated until the full secret is retrieved. The disadvantages
of the technique over the Domino technique are:

• external stylesheets are often blocked by Content Security Policy 3

• because of the nature of the attack, if the searched secret occurs after the
injected stylesheets in the code, the information about that element cannot be
retrieved

In both cases, the Domino technique should work if only the size of the crafted
exploit is accepted. Because the technique often requires many validations to be
performed as shown in Table 4.1, it may result in a significant exploit size.

3Content Security Policy CSP is an added layer of security that helps to detect and mitigate
certain types of attacks, including Cross Site Scripting XSS and data injection attacks. These
attacks are used for everything from data theft to site defacement to distribution of malware. [14]





Chapter 8

Applications of the Domino
technique

8.1 Vulnerable websites

As part of the research, two websites were found vulnerable to CSS-Leaks that in
combination with Domino technique might result in personal information exposure
or successful theft of the online accounts. Both websites provided the functionality
of custom styles uploads used to alter the default appearance of the website. This,
however, allowed to request all pairs constructed from base64 charset and expose
a unique CSRF token1 that is used to protect against Cross-site request forgery2

attacks and therefore, take full control over the user’s account. In the other case,
personal information such as email addresses, full name, email titles could be re-
trieved by attackers.

Both vulnerabilities were reported to vendors which at the time of writing the
thesis have not been yet fixed.

8.2 Recreated example

While the permission for the disclosure of the discovered vulnerabilities has not
yet been granted, a similar scenario has been recreated and included to the thesis

1Synchronizer token pattern (STP) is a technique where a token, secret and unique value for
each request, is embedded by the web application in all HTML forms and verified on the server
side. The token may be generated by any method that ensures unpredictability and uniqueness
(e.g. using a hash chain of random seed). The attacker is thus unable to place a correct token in
their requests to authenticate them. [18]
2Cross-site request forgery, also known as one-click attack or session riding and abbreviated as

CSRF (sometimes pronounced sea-surf) or XSRF, is a type of malicious exploit of a website where
unauthorized commands are transmitted from a user that the web application trusts. [18]
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files3. A simple page imitating the behavior of the vulnerable application is shown
in the Listing 3. In the real scenario, the attacker would control the contents of the
exploit.css stylesheet. The goal of the attack is to retrieve the value of the _csrf
input element.

By combining CSS Selectors with the Domino technique, it is possible to retrieve
all pairs of character from the base64 charset and then recover the original token of
length 36.

In Table 6.1 it can be read that for a puzzle of size 2 and a secret of length 36
from base64 charset the expected number of solutions is between 10-100. Table 8.1
shows that there are exactly 4 possible solutions that can be recovered from 34 pairs4

included in the ZiKWm3RS tbhXUVneRXT8cTwNYpN5yCeRv-f token, which is
less than expected number. In Figure 6.1 it can be noticed that the minimum
number of solutions in the conducted 30 experiments for a secret of size 36 was as
low as 1 unique solution produced, hence the actual number of the solution can be
lower than the expected value.

In real case scenario, that recovered token could be used to perform actions on
behalf of the user in the introduced CSRF attack and which could lead to account
theft, also called account takeover [19].

No Solution
1 ZiKWm3RS tbhXUVneRXT8cTwNYpN5yCeRv-f
2 ZiKWm3RS tbhXT8cTwNYpN5yCeRXUVneRv-f
3 ZiKWm3RXUVneRS tbhXT8cTwNYpN5yCeRv-f
4 ZiKWm3RXT8cTwNYpN5yCeRS tbhXUVneRv-f

Table 8.1: Number of solutions for the CSRF token

3The files can be found in the ./usecase/css-leaks/ directory.
4List of the pairs used to recover the token: Zi, iK, KW, Wm, m3, 3R, RS, S , t, tb, bh, hX,

XU, UV, Vn, ne, eR, RX, XT, T8, 8c, cT, Tw, wN, NY, Yp, pN, N5, 5y, yC, Ce, Rv, v-, -f. It can
be noticed that the pair eR occurs in the token twice but is used only once in the algorithm.
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<!DOCTYPE html>

<html>

<head>

<title>Vulnerable application</title>

<!-- The file exploit.css is controlled by an attacker -->

<link rel=stylesheet href="exploit.css"/>

</head>

<body>

<h1>Vulnerable to CSS-Leaks application</h1>

<input name="_csrf" value="ZiKWm3RS_tbhXUVneRXT8cTwNYpN5yCeRv-f"/>

</body>

</html>

Listing 3: A simple HTML page imitating the vulnerable application





Chapter 9

Conclusion

The goal of this thesis was to determine whether a Domino technique is an effective
method of a secret retrieval. The conducted experiments have confirmed that in
real-case scenarios the technique should work sufficiently, i.e. produce a relative
low number of unique solutions within which the searched secret is included. The
chapter Technique overview summarized in what scenarios it could be optimal to use
the technique. Nevertheless, as the length of the secret increases, the effectiveness
of the technique drops, i.e. the number of unique solutions increases. The intuition
behind that behavior is that a percentage of all tuples from a charset included in
the Domino set grows; hence more sequences can be assembled.

Although the presented implementation of the Assembly algorithm shown in
the chapter The assembly algorithm has its flaws (mostly high memory usage), it
does not impact the effectiveness of the technique itself. The idea for improvements
to the performance of the implementation has been presented in the chapter Further
optimizations along with a brief reasoning why the proposed optimizations should
work.

What is special about the Domino technique and what makes the technique
unique, is the property of independence to the previous states, i.e. to retrieve the
secret, prior information about the results is not required. Therefore, the technique
can be effectively parallelized.

The technique is a good fit to CSS-Leaks introduced in the Applications of
the Domino technique chapter. Since the technique does not rely on the previous
results, whole secrets can be retrieved without reloading the page, which other known
techniques could not achieve.

In the files to the thesis, the implementation of the Assembly algorithm in the
form of a Javascript module and command-line client has been included along with
the recreated example of a vulnerable application and a small application to draw
graphs from the data collected from over 15,000 experiments. A brief manual how
to use the included programs has been described in Appendix A.
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Appendix A

Brief user manual

A.1 Domino solver

In the included files, the assembly algorithm can be found in the ./solver directory.

A.1.1 Requirements

In order to use the domino-solver, Node.js1 in version 10.0.0 or later must be
installed.

A.1.2 Useful commands

• add --max-old-space-size=8000 after node command to increase the allo-
cated memory for the heap to 8,000 MB. The default value is only 512 MB.

A.1.3 Command-line client

To run the command-line client of the Domino solver, execute command node
domino-solver-cli.js --help from the ./solver directory. This will provide a
detailed instruction on how to use the program. For example, node domino-solver-cli.js
recover ex xa am mp pl le -S 7 -t json will produce all the solutions in the
JSON format.

> node domino-solver-cli.js recover ex xa am mp pl le -S 7 -t json

[

"example",

"xamplex",

"amplexa",

1<https://nodejs.org/en/>
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"mplexam",

"plexamp",

"lexampl"

]

A.1.4 Javascript module

Usage

To use the domino-solver module, it can be included in the Javascript code via:

const solver = require('domino-solver')

Methods

Three methods are implemented in the module:

• solve() – returns a list of solutions for a given set of puzzles and the size of
the secret

• make puzzle() – returns a list of puzzles for a given secret and the size of a
single puzzle

• test solve() – splits the given secret into a list of puzzles and executes
solve() method on them.

Each method is described in the snippet below:

// tries to solve Domino problem for the domino set as puzzles and the

// size of the secret as secret_size, and returns a list of the solutions

solver.solve(

puzzles: Array<string>,

secret_size: Number,

settings?: JSON

) : Array<string>

// returns the secret split into puzzles of the size puzzle_size

solver.make_puzzles(

secret: String,

puzzle_size: Number,

settings?: JSON

) : Array<string>

// splits the secret into puzzles of the size of puzzle_size,

// attempts the recovery and returns list of the solutions
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solver.test_solve(

secret: String,

puzzle_size: Number,

settings?: JSON

) : Array<string>

Options

Each method can take an optional argument settings described as the snippet
below:

settings:

withDuplicates don't remove duplicates from the puzzles
[boolean] [default: false]

maxRepetitions number of maximum repetitions for all puzzles.

Default value is calculated from secret_size

[number]

hints list of hints that must occur in each solution

[array<hint>] [default: []]

best_match return the best match if no solutions were found

[boolean] [default: false]

shuffle randomize the order of the puzzles

[boolean] [default: false]

onlyDebug only return debug info, without solutions

[boolean] [default: false]

debugFile file path where to save the debug info [string]

debug display debug logs into the console

[boolean] [default: false]

fullKnowledge keep all DP states in the memory

[boolean] [default false]

type hint:

string | RegExp | Array<hint>

string: hint must occur in a solution

RegExp: regular expression that a solution must match

Array<hint>: list of hints from where at least one must match

Examples:

"xyz": must occur in solution

/abc/: regular expression that must

match the solution

["xyz", /abc/]: at least one rule from the

list must be satisfied
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[

"xyz",

/abc/,

["xyz2", ["ijk", /abc2/]]

]: more complex construction

Example usage

The example usage of the domino-solvermodule, also located in the ./prod/solver/example.js
file, is shown below.

const solver = require('domino-solver')

const puzzles = solver.make_puzzles('example', 2);
const test_solutions = solver.test_solve('example', 2);
const solutions1 = solver.solve(puzzles, 7);

const solutions2 = solver.solve(

solver.make_puzzles('example', 3),
20

);

const solutions3 = solver.solve(

solver.make_puzzles('example', 3),
20, {

bestMatch: true

}

);

const solutions4 = solver.solve(puzzles, 7, {

hints: [

/^e/

]

});

console.log(puzzles);

console.log(test_solutions);

console.log(solutions1);

console.log(solutions2);

console.log(solutions3);

console.log(solutions4);

/*

* Expected output:
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*

* [ 'ex', 'xa', 'am', 'mp', 'pl', 'le' ]
* [ 'example', 'xamplex', 'amplexa', 'mplexam', 'plexamp', 'lexampl' ]
* [ 'example', 'xamplex', 'amplexa', 'mplexam', 'plexamp', 'lexampl' ]
* []

* [ 'example' ]
* [ 'example' ]
*/

A.2 Experiments

In the included files, all results from the conducted experiments have been placed
in the ./experiments/ directory, where:

• ./data folder includes results of all conducted experiments.
• ./metrics folder includes metrics used in the thesis from the experiment data.
• ./plots folder includes graphs used in the thesis.

A.2.1 Plot generator

All plots were generated using chart.js2 library. To use the included the single-page
application, any HTTP server will be sufficient. The main file is located in the
following location: ./experiments/plot.html.

To generate graphs from the available data:

1. Start a simple HTTP server through the command:

node simple-server.js

2. Visit http://localhost:8888/plot.html3.

3. You should see pregenerated metrics from data from the ./metrics folder.

4. To generate a custom graph, the form at the top of the page can be used. For
the input hex | 2 | 32 | 4, clicking the generate chart button will generate
a chart from the file located in ./data/hex/2/32/test 4.json.

Step 1 can be omitted if the HTTP server was already set up. Otherwise,
Node.js will be required.

2<https://www.chartjs.org/>
3<http://localhost:8888/plot.html>

https://www.chartjs.org/
http://localhost:8888/plot.html
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A.3 Vulnerable application

The recreated vulnerable app from the previous chapter is included in the ./usecase/css-leaks
directory. To run the program, Node.js is required.

Run the exploit

1. In the console, execute the node server/receive.js command from the same
folder.

2. Visit http://localhost:1337/leak.html4 to see the process of secret retrieval in
action.

Experiment explanation

1. Generated by the script rules.js file server/public/exploit.css is in-
cluded as stylesheets.

2. Upon visiting the URL leak.html, a random base64 secret is generated.
3. The secret is inserted into the document in the form of <input name=" csrf"
value="[secret]" hidden>.

4. The stylesheet exploit.css leaks CSRF token split into pairs of two characters
from the inserted <input> element.

5. The server server/receive.js receives all puzzles and stores them in the
memory.

6. Upon requesting http://localhost:1337/solutions?secret size=365 the assembly
algorithm is run which returns all solutions.

7. The solutions are inserted into the document.

4<http://localhost:1337/leak.html>
5<http://localhost:1337/solutions?secret_size=36>

http://localhost:1337/leak.html
http://localhost:1337/solutions?secret_size=36
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