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Introduction

In this paper we present a new approach (which we call constructive) to a class of
topological spaces, named in the papers [Dra06], [Paw15] as Markov compacta. By
definition a Markov compactum is the limit of an inverse sequence of finite simpli-
cial complexes of a quite special kind. The notion of such an object is important
in geometric group theory, as Gromov boundaries of hyperbolic groups, and more
generally ideal boundaries of various groups can be described as Markov compacta
[Paw15].

The definitions of Dranishnikov and Pawlik are nonconstructive in the sense
that they describe what conditions a given inverse system must meet for its limit
to become a Markov compactum. The motivation for our approach came from the
observation that Markov compacta from some class described in [Paw15] are finitely
describable, which means that each space in this class is uniquely determined by a
finite set of data (via a certain algorithmic procedure). This aspect of Markov com-
pacta was not addressed in a satisfactory way in the existing literature. We present
a way in which certain specific collections of finite data induce inverse sequences
of spaces via certain recursive procedures. Moreover, as a corollary, we show that
Gromov boundaries of hyperbolic groups can be described as inverse limit of a spe-
cial kind of these inverse sequences. We call the inverse limit spaces of the induced
inverse sequences constructive Markov compacta.



0 Preliminaries

In this section we recall the definition of a simplicial complex, which will be used
throughout the paper. The definition is based on the ideas from Chapter 2 of [Hat02].

Definition 0.1. A standard i-dimensional simplex is the set

A= {(to,....t;) R > ;=1 and t; > 0 for all j}
J

The vertices of A® are the unit coordinate vectors e; € R0 < j <i. A face
of A% is the affine convex span of any nonempty subset of the vertex set of Al A
face is called proper if the corresponding vertex set is a proper subset of the full
vertex set. The boundary OA® is the union of all proper faces of A?, and the interior
intA’ is A"\ OA". In particular, we have OA? = () and intA° = A°. The faces of A’
are also viewed as standard simplices of the corresponding dimension, via obvious
identifications with the corresponding A7’s.

Definition 0.2. A geometric i-dimensional simplex (or a geometric i-simplex) in
a topological space X is a subspace 0 C X together with a homeomorphism ¢, :
A" — ¢ from the standard i-simplex. (We do not distinguish homeomorphisms that
differ by precomposition with any affine isomorphism of A‘’.) The homeomorphism
¢, above is called the characteristic map of the simplex o. A face of a geometric
simplex is the image 7 = ¢,(A’) through ¢, of any face A/ C A’ where j < i,
together with the restricted homeomorphism ¢, ; : AJ — 7. A face 7 of a geometric
simplex o as above is proper if the corresponding simplex A’ is a proper face of A"
The boundary Oo of o is the image through ¢, of the boundary of the corresponding
A, and the interior int(c) of a geometric simplex ¢ is the image through ¢, of the
interior of the corresponding A’

Definition 0.3. A simplicial complex is a space X equipped with a distinguished
family S(X) of geometric simplices in X such that

1. S(X) is closed under taking faces,
2. each point of X belongs to the interior of precisely one simplex from S(X),

3. the intersection of any two simplices from S(X) is either empty or a face in
each of the simplices,

4. for each simplex o of X the union of the interiors of all simplices of X that
contain o (called the open star of o with respect to X) is an open subset of

X.

The family S(X) is called the set of simplices of X. A geometric i-dimensional
simplex from S(X) is an i-dimensional simplex of X, or shortly an i-simplex. A
verter of X is any point p € X such that the singleton {p} is a O-simplex of X.
Note that it follows from condition 3 in the above definition that every simplex of
X, as an element of S(X), is uniquely determined by the set of its vertices. We thus
say of any simplex that it is the simplex spanned on the set of its vertices.
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A simplicial complex X is finite if the corresponding set S(X) of its simplices
is finite. X is finite-dimensional if there is a universal bound from above for the
dimension of its simplices.

Definition 0.4. Let X be a simplicial complex and let v be a vertex of X. The
closed star of v with respect to X, denoted by st(v, X) is the closure of the open star
of v with respect to X. In other words, it is the union of all simplices of X that
contain v.

Definition 0.5. Let X and Y be simplicial complexes. A continuous map f: X —
Y is simplicial if for any simplex ¢ C X there is a simplex 7 C Y such that the
restriction fj, is an affine map onto 7. More precisely, the latter means that if
by : A7 5 5 and ¢, : AY™T — 7 are the characteristic maps of o and 7, then
the composition ¢ 1o f o ¢, : Admo — AAMT ig 5 surjective affine map that sends
vertices to vertices. A simplicial isomorphism is a bijection f such that both f and
f~1 are simplicial maps.

1 Assembly system and semi-barycentric maps

In this section we describe general concepts and constructions used in the paper.

1.1 Assembly systems
Definition 1.1. Let K be a simplicial complex. Assume that

e with every simplex 7 C K there is associated a topological space Y,

e with every pair p C 7 of simplices from K there is an associated embedding
lor 2 Y, — Y.

We also assume that maps from the family {i,,},c, satisfy the following condition:
for simplices p, 7, v from the complex K such that p C 7 C v we have i,, = i, 0 i),
(convention: i,, = idy,). Call this the composition property. We also assume
that for simplices 71, and ¢ from the complex K such that 7,7 C o, we have
imo(Yr) Ninyo(Yr,) = iram.o(Yrnn) (convention: ip,(Yy) = 0). We call this the in-
tersection property. A system A = ({Y;}res(x), {ipr}pcr) Which satisfies the above
conditions is called an assembly system over the complex K.

Whenever it won’t lead to ambiguities, instead of writing "let A = ({YT}TG S(KY)s Vipr ) pCT)
be an assembly system” we will simply write ”let A be an assembly system” assum-
ing that there is given a collection of topological spaces {Y: };cs(x) and embeddings
{ipr }pcr satisfying the composition and intersection properties given in the definition
above.

Definition 1.2. Let A be an assembly system over a simplicial complex K. The
A-quotient is the topological space

y - Y (1)

TCK



where ~ is the smallest equivalence relation generated by the relation ~:

pRq = pEY,qEY,p#T,pCTandiyn(p) =q (2)
The relation ~ is effectively characterised in the following lemma.

Lemma 1.3. Let A be an assembly system over a simplicial compler K and let ~
be the equivalence relation from Definition 1.2. Then for simplices p,7 C K and
pointsp € Y, q € Y, we have p ~ q < 7Np # 0 and there exists a point r € Y;r,
such that iy, (1) =p and i.q,,(r) = q.

Proof. The proof is a fairly easy computation, which involves only using the as-
sumption that the maps from the family {i,,},c, are injective and that they satisfy
the composition and intersection property, and we skip the details. O

Comment. In the setting as in the statement of Lemma 1.3 we say that the point
r glues together the points p and q.

Fact 1.4. Let A be an assembly system over a simplicial compler K and let Y be
the A-quotient. The restriction of the quotient map m : [{ -, Y — Y to each of
the spaces Y, is one-to-one.

Proof. Let p,q € Y, for some 7 C K. If w(p) = 7(q), it follows directly from Lemma
1.3 that p = q. O

Remark. The above fact lets us adopt the following convention: in the course of
this paper we will identify the spaces Y, with the corresponding subspaces of Y, and
points of Y, with their images in Y.

For the purposes of this paper, we will now describe a simplicial version of
assembly systems.

Definition 1.5. A simplicial assembly system over a simplicial complex K is an
assembly system A, in which {Y;},cs(x) is a family of simplicial complexes and
{ipr}pcr is a family of simplicial embeddings.

Remark. We will adopt the following convention: whenever we speak of a simplicial
assembly system, we denote it by A, dropping the calligraphic font.

It is natural to consider a simplicial version of Lemma 1.3, which is slightly
stronger.

Lemma 1.6. Let A be a simplicial assembly system. If for some points z; € int(o;)
CY,,7 = 1,2 we have z; ~ 29, then, in addition to the assertions of Lemma 1.3,
there exists a simpler 0 C Yp,ar, such that irqr,, -, (0) = o for j = 1,2. Moreover,
the equality w(o1) = w(03) holds as well.

Proof. In the course of the proof we will use the following facts:

e in a simplicial complex every point lies in the interior of exactly one simplex;



e suppose f: X — Y is a simplicial map between simplicial complexes X and Y
and consider two points x € int(7) C X, y € int(c) C Y such that f(z) =y.
Then f(7) = 0.

Let z; € int(0y), 22 € int(oy) be such that z; ~ z9. It follows from Lemma 1.3 that
there is a point z € Y, n,, which glues together z; and z,. The first fact above gives
z € int(o) for some simplex o C Y7 . Since the embeddings irnr, -, j = 1,2 are
simplicial maps, the second fact above gives ir,qy, - (o) = o for j = 1,2. It follows
from the last equality that 7(o1) = 7(09). O

Comment. In the setting as in the statement of Lemma 1.6 we say that the simplex
o glues together the simplices o; and os.

Lemma 1.7. Let A be an assembly system over a simplicial complex K, and let' Y
be the A-quotient. Then there is a natural structure of a simplicial complex on Y.

Proof. We only give a sketch of the proof, and direct the reader’s attention to the
essential steps in giving the space Y a structure of a simplicial complex.
Since for every 7 C K the space Y, is equipped with a distinguished family S(Y;) of

geometric simplices, the space [ Y, is equipped with the family Y = | S(Y5).
TCK

TCK

We want to realize geometric simplices in the A-quotient as subsets of the form
m(0), where m: ], Y; = Y is the quotient map and o € ). The characteristic
maps of those simplices will be of the form 7 o ¢, where ¢, : A" — o is the char-
acteristic map for ¢ which comes from the simplicial complex structure given on
each of the spaces Y,. It follows from basic topology and Fact 1.4 that every such
composition is a homeomorphism.

Note that there seems to be an ambiguity concerning the choice of a characteris-
tic map for a simplex in Y whenever it is the image by 7 of more than one simplex.
An easy argument shows though, that any two such maps differ by a precomposi-
tion through an affine isomorphism of the underlying standard simplex, and in our
definition of a characteristic map we stated that we do not distinguish such maps.

Put S(Y) = {(n(0), 70 ¢s)}sey. We skip the details of checking that this family
gives a structure of a simplicial complex on Y.

O

Heading towards the end of this subsection, we will now describe a construction
useful in the upcoming part of the paper, concerning continuous maps, whose domain
is an A-quotient Y.

Lemma 1.8. Let A be an assembly system over some simplicial complex K, and let
Y be the A-quotient. Let Z be a topological space. Suppose that for every 7 € S(K)
there is a continuous map f. : Y, — Z and the following condition holds: for
p C 7€ S(K) we have f, = f- oi,. Then there is a unique continuous map
F Y — Z induced by the maps f. which makes the diagram below commute:
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l \_{ff (3)

———————— > Z

The proof is straightforward and we skip it.

1.2 Semi-barycentric maps

We now describe a type of mappings between simplicial complexes which is used in
the description of Markov compacta in [Paw15], and we derive its basic properties.

Definition 1.9. Let X,Y be simplicial complexes. A map f: X — Y is called
semi-barycentric if it satisfies the following conditions:

1. for every simplex o C X there is a simplex 7 C Y such that f(o) C 7 and f;,
is an affine map,

2. the vertices of X are mapped to the vertices of Y’ (the first barycentric sub-
division of Y),

3. for every simplex o C X there is a vertex v € Y such that f(o) C st(v,Y’),
that is, the image of o by f is contained in the closed star of v with respect
to Y’ as in Definition 0.4.

Remark 1.10. Let X, Y be simplicial complexes. Any simplicial map f: X — Y’
is semi-barycentric as a map X — Y.

Recall that a simplicial complex can be equipped with the standard piecewise
linear metric, see [BH99], section 7A.10. We refer to this metric when we speak of
the diameter of a set in the lemma below.

Lemma 1.11. Let T = (X, fi)i>o be an inverse system, where for each i > 0:
e the space X; is a simplicial complex;
e the map f;: Xiy1 — X; is semi-barycentric.

Moreover we assume that there is a global bound on the dimensions of the complexes
X;. Then I has mesh property in the sense of Definition 1.4 in [Pawl5], i.e. for
any v > 0 we have

lim max diamF = 0, (4)

n—o00 FEF},

where
={(fiofix10...0 fa10 fn)(0): 0 is a simplex in X} (5)



Proof. Let ¢+ > 0 and consider a simplex ¢ C X;,;. From Condition 1 of Definition
1.9 we get a simplex 7 C X; such that fi(0) C 7 and f;;, is an affine map. After
precomposing with the characteristic maps ¢, and ¢, of the simplices ¢ and 7 we
may interpret f;, as a map from AY™ to the barycentric subdivision (A%™7)" of

AY™T - Now, let the vertices vy, ..., v span o and let the vertices wy, ..., w,, span
7. We can identify setwise the subsets of {wy, ..., w,,} with the faces of 7. For
jg=1,....llet A; C {wq,...,w,} be the face whose barycenter coincides with

fi(v;). Then f;,, has the form

(O M) =2 S (6)

where a; = |A;| and p; = (0,...,1,...,0) with 1 in the i-th position. Notice that
Condition 3 of Definition 1.9 means exactly that A; N...N A; # 0. It follows now
from Lemma 1.13.1 in [Eng78] that

dimT

L, o dimr L
diamf;, (o) < p— 1d1ama (7)

Thus we see that for a fixed ¢ and n, for every simplex ¢ C X,, we have

kin e .
diam(f; o fiy10...0 fu_10 fn)(o) < (—> diamo (8)
ki,n + 1
for some k; ,,, since we assumed a global bound on the dimensions of the complexes
X;. It is now clear that
lim max diamF = 0. (9)

n—oo FeFt

]

2 Simplicial assembly system determined by re-
placement rules and labelling

We now turn to the first step towards constructing Markov compacta. Given a sim-
plicial complex K, we want to produce from it another (possibly more complicated)
complex L, and do so in a controlled manner, so that there is a simplicial map from
L to K. We will define a set of rules describing how to replace a simplex with a
simplicial complex, and then "label” K with this set of rules. This will result with
a simplicial assembly system over K, with an induced map from the A-quotient to
K.

2.1 A good family of simplices
Definition 2.1. A good family of simplices is a pair D = [Z, {z5}gep|, where

e Y is a set of simplices (not necessarily finite and not necessarily of pairwise
distinct dimensions);



e B is the set of all proper faces in all simplices o € ¥;

e For every ¢ € X and every proper face § C o, the map z3 : 05 — 0 is a
simplicial embedding onto /3 for some o5 € X.

For a fixed 8 € B the map 23 is unique, and we assume also that the family {z3}secp
is closed under composition. Notice that this means that for proper faces f§ C o and
a C op the equality zs 0 2z, = 2,4(s) holds.

Example 2.2. For a fixed n € N define a family of simplices D<,, in the following
way: let ¥ = {09, 01,...,0,} be aset consisting of one simplex per dimension from 0
up to n, where we assume that each simplex is equipped with an ordering of vertices.
The family {23} sep is defined as follows: for each k£ < n and a j-dimensional proper
face § C oy, set (ok)p = 0j; then for z5 : 05 — o} we choose the unique affine
isomorphism o; — B C oy, that respects the given orderings of vertices. It is clear
that the family D, is a good family of simplices.

Example 2.3. Let K be an arbitrary simplicial complex. We can consider a family
Dk, in which ¥ = S(K), and for 8,0 € S(K) such that § C o is a proper face of
o, we can set og = [ and 2z = idg. In this case it is also clear that this is a good
family of simplices.

2.2 Rules of replacement

Let D = [E, {25}563} be a good family of simplices.

Definition 2.4. A rule of replacement for o € ¥ is a pair (P,,7,), where
e P, is a finite simplicial complex,
e 0 &< P, is a semi-barycentric map.

A good family of rules of replacement for D is a pair Rp = [{(P,,m,) : 0 € £}, {P., :
B € B}], where {(P,,m,) : 0 € ¥} is a family of rules of replacement such that
every simplex from X is equipped with a single rule, and {P,, : § € B} is a family
of bonding maps such that for o € ¥ and a proper face 5 C o (equipped with a map
23 : 0g — o for some og € ¥) the map P, : P,;, — P, is a simplicial embedding.
We assume that the family {P,,} satisfies the following conditions:

1. For any 0 € ¥ and any proper face 8 C o, the equality 7, o P,, = 25 0 7,
holds, in other words the diagram below is commutative:

To
0'5 (75 P"B

{

o T Pg
We also demand that the equality 7, '(3) = P.,(P,,) holds.
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2. For proper faces § C 0 and a C g, the equality P,, o P,, = PZZB (o) Dolds.

If possible, and if it will not lead to ambiguities, we will skip the index and write
just R instead of Rp. Of course, a fixed good family D may admit more than one
good family of rules of replacement.

Example 2.5. In this example, and further in Examples 2.8, 2.12, 3.5 and 3.8
we will give a formal and precise description of the idea shown in Example 3.5 in
[BN17]. Consider a good family D, in which ¥ consists of one 0-simplex ¢y and two
1-simplices o] and o?. Denote the vertices of o] by s and ¢, and vertices of 02 by x
and y. For all 8 € B the map zg takes oy to 3.

Let us define a good family R of rules of replacement for the good family D,
which consists of the following rules:

o As P,, take a space consisting of two 0-simplices a and b, and set 7,, as the
map that takes a and b to oy;

e The space F,1 is the disjoint union of two barycentrically subdivided 1-simplices
7 and p, and the map 7,1 is a simplicial map induced by taking the vertices y
and ¢ of 7 to the vertices s and t respectively, while the vertices n and 6 of p
are taken to s and t respectively.

e the space F,2 and the map m,2 are defined similarly, this time with the 1-
simplices denoted by i and v, and their vertices by ¢, ¥ and (, & respectively.

Let us now describe bonding maps for R.

e For the map z; set P, as the embedding which takes a to v and b to n;
e for the map z; set P,, as the embedding which takes a to 6 and b to 0;

e for the map z, set P, as the embedding which takes a to ¢ and b to (;
e for the map z, set P, as the embedding which takes a to § and b to 1.

Example 2.6. Let K, L be simplicial complexes and let h : L. — K be a semi-
barycentric map. Let us define a good family of rules R, for the good family Dy from
Example 2.3: for a simplex 0 € ¥ = S(K) set P, := h™'(0), and set 7, := hyp-1(,).
Of course for § C o we set zg = idg and P, = idy-1(5 : h™'(8) — h™'(0).
Obviously, P, is a subcomplex of L, and 7, : P, — o is semi-barycentric.

2.3 Labelling

We now proceed to describe how to build an assembly system over a simplicial
complex X. Intuitively, we want to "label” simplices of X with a good family D
and use corresponding rules of replacement from a good family Rp, so as to create
an assembly system over X with the spaces Y, being the replacing complexes from
the family Rop.

Definition 2.7. Let D be a good family of simplices. A D-labelling of a simplicial
complex X is a pair A = [)\, {ug}aes(x)] where

11



e \: S(X) — X is a map between the sets of simplices such that for every
o € S(X) the equality dim(c) =dim(A(o)) holds,

e for every 0 € S(X) the map u, : 0 — A(0) is an isomorphism of simplices
(identification of o with its label A(0)), where we assume the following condi-
tion:

for pC 7 wehave A(p)= AT)u () (11)

(the symbol A(7)y,(p) is to be understood as the symbol o4z from Definition
2.1: u,(p) is a proper face of A(7) corresponding to the face p of 7). Moreover
we demand the diagram below to be commutative:

p ——

i
up luT (12)

Ap) w5 A7)

ZUT(P)

Example 2.8. Let X be a triangulation of the circle S with three 1-simplices
e1, €s, €3. Denote the vertices of this cycle by a, b and ¢ so that e; = [a, b], es = [b, ]
and ez = [c, al.

Consider a D-labelling of X with the good family D described in Example 2.5,
of the following form: for the O-simplices a, b, ¢ set A(a) = A(b) = A(c) = 0y, and
for the 1-simplices set A(e;) = A(ea) = of, A(ez) = of. For every o € S(X) set
Uy 1 0 — M o) as any simplicial isomorphism between o and A(o). It is clear that
conditions (11) and (12) are satisfied.

Example 2.9. (Tautological labelling) Let K be a simplicial complex and con-
sider the good family Dk as described in Example 2.3. Consider the pair A =
[ids(K), {ida}geg(m}. Of course this is a Dg-labelling of K.

Example 2.10. (Pullback labelling) Let K, L be simplicial complexes, A be a D-
labelling of the complex K for some good family of simplices D and let h : L — K
be a non-degenerate simplicial map. We can consider the following D-labelling A?
of the complex L: for o € S(L) set N’(0) := A(h(0)) and ub := up, (o) © hjo. It is
clear that this is a labelling in the sense of Definition 2.7.

2.4 Construction

In this section we show how to carry out the first step in the construction of an
inverse sequence associated with a Markov compactum. We form a simplicial as-
sembly system A over some complex X, an A-quotient Y and a semi-barycentric
map Y — Xy, out of the following data: a good family D, a family of rules of
replacement R for D and a D-labelling A of X,. This is an essential part of the
construction as having carried out one step we may hope to iterate it to create an
inverse system of simplicial complexes and maps between them in a unique way.

12



Let D = [¥,{z3}pen] be a good family of simplices, X, a simplicial complex,
R = [{(Py,7,) : 0 € },{P., : B € B}] be a good family of rules of replacement
for D and let A = [)\, {ug}geg(xo)] be a D-labelling of X,. We set a structure of an
assembly system A = A(Xo, D, R, ) over X in the following way.

For each simplex 7 C X set

Y, == Py (13)

where A(7) is the label of 7 with respect to the labelling A (for each 7 C X there
is a seperate copy of the complex Py(.)).

We now proceed to define the embeddings i,,. Let p,7 C X, be such that p C 7,
and let A(p), A(7) be their labels with respect to the labelling A. It follows from (10)
and (12) that the diagram below is commutative:

—— A(p) «—— Py

Up

P
|
Zur(p) qu (14)
\[ \l/p l 7(p)
T

— )\(7‘ ) +—— P ()
where P, _ - is the bonding map from the family R. For each pair of simplices
p C 7 in X, define i,, := qur(p)'

Let us check that so defined maps i,, satisfy the composition property. Let
p C 7 C v be simplices in X, such that p C 7 C v. It now follows from (14) that
the diagram below is commutative:

p > T < > v
Up Ur Uy
)\(p) Zuq—(p) )\(T) Zuy(T) )\(V) (15)
X (p) TIX(T) (@)
Py 57 Do 57 B
ur(p uy (T

Now condition 2 imposed on the family {P.,} in Definition 2.4 leads to the
following computation:

uy(p) T Pz, (r) (ur(p)) - qur(p) ©

P, =in 0. (16)

ZpV = PZ uy (1)

which proves that maps i,, satisfy the composition property. Let us now check
that the intersection property is satisfied. Let 7, 5,0 C Xy be such that 7, C 0.
We want to show that ir,,(Yr) Nire (Yry) = trynme (Yrnm ). 1t follows from condition
1 stated in Definition 2.4 that

iTla(K'l) N iTQU(K'z) = quo—(7'1>(P)\(T1)) N PZuU(TQ)(P)\(TQ)) = W;({;)()‘(Tl)) N 7-[-;(10)()‘(7-2)) =
= Ty oy A1) NA(72)) = P

Zug (T1NT3) (P)\(TIQTQ)) = iTlr‘ITQU(KlﬂTQ)-

(17)

13



This way we have shown that we can truly speak of an assembly system

A= ({YT}TGS(Xo)’ {ipf}pcf) (18)
over Xy, as described above.
Put
x o= H Y (19)
7CXo

to be the A-quotient for the above described assembly system A(Xy, D, R,A). It
follows from Lemma 1.7 that X7 is a simplicial complex.

Accordingly to the framework presented in Lemma 1.8 we will now describe a
semi-barycentric map whose domain is the A-quotient X7, and whose image is Xj.
For every 7 € S(Xo) set f; : Y. — Xo as fr := u;' omy). Let us check that the
maps f, satisfy the compatibility condition stated in Lemma 1.8. Let p € S(X) be
a simplex such that p C 7. We have

(14) (14)

frotp =urtomm o P, ) = U7 02, 0T = U, 0T = fp (20)

Since A is a simplicial assembly system, X, is a simplicial complex and each
of the maps f. is a semi-barycentric map, an easy argument shows that the map
Ty : X1 — Xo (induced by the maps f;) is then semi-barycentric.

Definition 2.11. Given a simplicial complex X, equipped with a D-labelling A
and a good family R of rules of replacement for D, the simplicial complex X;
constructed above is called the (A, D, R)-quotient over Xy, and the map Il is called
the (A, D, R)-map from X; to X,.

Example 2.12. Consider a simplicial complex X equipped with a D-labelling as in
Example 2.8. Carry out the construction described above in this section. As a result
the A-quotient Y is a barycentrically subdivided cycle of length 6. Notice that had
we labelled all the 1-simplices of X with the simplex o}, the resulting A-quotient
Y5 would be the union of two disjoint and barycentrically subdivided copies of X.
The reason for Y being connected lies in the ”twist” carried out by the map P, (as
compared with the map P,,).

Example 2.13. Let K, L be simplicial complexes and let h : L — K be a semi-
barycentric map. Consider a tautological Dg-labelling A of the complex K as in
Example 2.9 and a family Rj of rules of replacement for Dy as in Example 2.6.
Then the (A, Dk, Ryp)-quotient over K for the assembly system A(K, Dy, Ry, A)
can be identified with the complex L and the (A, D, R)-map Il coincides with h.

3 Constructive Markov compacta

Let Dy = [Sa, {28} seB. ) Dy = [Z0, {25} sen,| be good families of simplices and let
R be a good family of rules of replacement for D,.
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Definition 3.1. A Dy-labelling of the family R is a Dy-labelling

Ar = [Mz, {Uf}reS(L{gcza P (21)

of the complex [ [, s, P, such that for simplices 05,0 € %, such that 2§ : 05 — o is
the embedding from the good family D, and for any two simplices p; C Py, p2 C Py
such that P, (p1) = p2 we have Az(p1) = Ar(p2) and the diagram

P1 2 P2

commutes.

Remark 3.2. When D, = D, = D we will simply say that Ag is a D-labelling of
the family R.

Lemma 3.3. Let Xy be a simplicial complex equipped with a D-labelling A and let
R be a good family of rules of replacement for D. Then a D-labelling Ar of the
family R induces a D-labelling of the (A, D, R)-quotient.

Proof. Let X; be the (A, D,R)-quotient, and let 7 : [ -y, Y- — Xi be the
quotient map. We will show that on X; there exists a unique D-labelling A; =
[)\1, {u}f}geg(xl)} such that if for any simplices o7 C [] Y. and ¢ C Y we have
m(o1) = o, then A\ (0) = Ag(01) and u} o7 = ul%.

By the above conditions the uniqueness of such a map is clear, but the well-
definedness of A; needs checking.

First notice that a D-labelling Ax of the family R induces in a natural way a
D-labelling of the complex [ - x, Y7, which we will also denote by Az. Let us begin
by checking that if for simplices oy, 09 C ]_[Tcxo Y, we have m(01) = m(03) = o, then
Ar(01) = Ag(02). Let 01 C Y,,00 C Y, for some p,7 C Xo, 01 = ipnrp(S), 00 =
ionr () where ¢ C Yy, glues together o7 and o,. By (22) we have

TCXo

Ar(01) = Ar(ipnr () = Ar(S) = A (ipnr~(s)) = Ar(02). (23)

Thus there exists a unique map A; : S(X;) — X such that \; o m = Ag.
Now let us check that the maps {u} },es(x,) are well-defined. For simplices oy, 05 as
above this means that the equality uf}l = uZ}Q should hold. Indeed, by (22) we get

R _ . R . _, R _ . R . _ . R
ual - u01 O lrnmrn = ug - ual OlrNmm = uo’g (24>

It remains to check conditions (11) and (12) stated in Definition 2.7, but they follow
easily from (22), (23) and (24) above, and we skip the details. O

A more general version of the above Lemma is used later in this paper, and we
formulate it as a remark.
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Remark 3.4. Let D,, D, be good families of simplices. Let Xy be a simplicial
complex equipped with a D,-labelling A and let R be a good family of rules of
replacement for D,. Then a Dy-labelling of the family R induces a Dj-labelling of
the (A, D,, R)-quotient.

Proof. The proof is almost identical to the proof of Lemma 3.3 and we skip it. [

Example 3.5. Consider the good family D and the family R of rules of replacement
for D from Example 2.5 and the complex X equipped with the D-labelling from
Example 2.8. Define a D-labelling Az of [], s P, in the following way: for any
seven of the 1-simplices 7 € S(]], .5 P») set Ax(7) = of, and for the only remaining
l-simplex p set Ag(p) = o%; further for all O-simplices o set A(c) = og. Then for
every 0 € S([], s P») set u, : 0 — A(0) as any simplicial isomorphism between o
and A(0). Let A = A(X,D,R,A) be the simplicial assembly system, let X; be the
(A, D, R)-quotient and let 7 : [] - Y; — X; be the quotient map as described in
Section 2.1. It follows from Lemma 3.3 that Az induces a D-labelling A; of X; such
that for the distinguished 1-simplex p above, its image by the map 7 is labelled with
0%, images of the remaining 1-simplices are labelled with o}, and all O-simplices are
labelled with o, with the appropriate family of isomorphisms {u!} identifying them

with elements of the good family D of the form described in the Lemma

Definition 3.6. Let D be a finite good family of simplices, R be a family of rules
of replacement for D, X, be a finite simplicial complex equipped with a D-labelling
A, and finally let Az be a D-labelling of the family R. Consider the inverse system

T =7I(Xo,D,R, A, Ag) = ({X; : i > 0}, {IL; : i > 0}), (25)

in which the complexes X; (equipped with auxiliary D-labellings A;) and maps II;
are defined recursively in the following manner:

o for i =0 set X; := Xy, and set A; := A;

e assuming we have already defined the complex X; equipped with its D-labelling
A;, define X; ;1 as the (A;, D, R)-quotient over X;, along with the D-labelling
A; 11 induced by the D-labelling of the family R as shown in Lemma 3.3;

e for each ¢ > 0 we also obtain a (A;,D,R)-map II; : X;,;; — X; (which is
semi-barycentric).

A constructive Markov system is any inverse system Z(Xy, D, R, A, Ag) of the form
described above.

Definition 3.7. A constructive Markov compactum is the inverse limit of any con-
structive Markov system.

Example 3.8. Consider the good family D and the family R of rules of replacement
for D as in Example 2.5, the complex X equipped with the D-labelling as in Example
2.8 and the D-labelling Ax of R as in Example 3.5. It can be shown that for
each i > 0 the space Xj is a circle subdivided into 3 - 4° 1-simplices, and the map
I;: X;41 — X] is topologically a 2-fold covering. It follows that the constructive
Markov compactum obtained as the limit of the Markov system Z(X,D, R, A, Ag)
is a solenoid.
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4 Comparison with earlier definitions of Markov
compacta

In this section we study the relationship of the concept of constructive Markov
compactum, as described above in this paper, to some previously described in the
literature concept of Markov compacta.

4.1 Earlier definitions describe constructive Markov com-
pacta
In this subsection we discuss the earlier definitions of Markov compacta and make

an important observation about their relationship to constructive Markov compacta
as defined in this paper, see Proposition 4.10.

Definition 4.1. [Pawl5] A Markov system is an inverse system (K;, f;)i>0, where

e for every ¢ > 0, the space K; is a finite simplicial complex, and we have
sup, dim K; < oo;

e for every simplex o € K, its image f;(0) is contained in some simplex be-
longing to K; and the restriction f;, is an affine map;

e simplices in [[ K; can be assigned finitely many types so that for any simplices
o C K; and 7 C K of the same type there exist type-preserving isomorphisms
of subcomplexes i” : (fit*)7L (o) — (f/**)7Y(7) for k > 0 such that the
following diagram commutes:

fitk

o L 7o) 4 4 (FitR)=1(o) 125 (fRD 1)
T o) e e () ()

(26)
where by f¢ (for a > b) we denote the composition f,o fyi10---0 foo1 1 Ky — Kp.

Definition 4.2. [Paw15] A topological space M is a Markov compactum if it is the
limit of a Markov system.

Definition 4.3. [Pawl5] A Markov system (K, f;) is called barycentric if, for any
i > 0, the vertices of K;,; are mapped by f; to the vertices of the first barycentric
subdivision K of K.

Definition 4.4. [Pawl5] A Markov system (K, f;) has the distinct types property
if for any 4 > 0 and any simplex o € K; all simplices in the pre-image f; '(c) have
pairwise distinct types.

We summarize the series of the above definitions in the following.
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Definition 4.5. A topological space M is a finitistic Markov compactum if it is the
limit of a Markov system which is barycentric and satisfies distinct types property.

The justification for the term ”finitistic” comes from Remark 1.8 in [Pawl5],
that the associated Markov system is then determined by some finite initial data.
The significance of this concept of a Markov compactum comes from the following
result, Theorem 0.1, the main theorem of [Paw15].

Theorem 4.6. [Pawl15] Let G be a hyperbolic group. Then, the Gromov boundary
0G of G is homeomorphic to a Markov compactum @Ki defined by a Markov
system (K, fi)i0. Moreover, we can require (simultaneously) that:

o the system (K, fi)i>0 is barycentric and satisfies distinct types property and
mesh property;

e the dimensions of the complexes K; are bounded from above by the topological
dimension dimOG.

Remark 4.7. The maps in the Markov system (K, f;)i>o appearing in the Paw-
lik’s proof of Theorem 4.6 in [Pawl15] are actually semi-barycentric in the sense of
Definition 1.9. This can be checked upon inspecting Definition 4.5 and Remark 4.6
in [Paw15], where the maps f; are defined. One can see that conditions labeled (i7)
and (i7i) in Definition 4.5 there coincide with Conditions 1 and 2 from Definition
1.9. Remark 4.6 in [Paw15] discusses what we call Condition 3.

In light of the above remark, we reformulate Definitions 4.1 - 4.5 and Theorem
4.6 to make a record of its slightly stronger version (Theorem 4.8) actually proved
in [Pawl5].

Definition 4.8. A semi-barycentric Markov system is an inverse system (K;, fi)i>o0,
where

e for every ¢ > 0, the space K; is a finite simplicial complex, and we have
sup, dim K; < o0o;

e for every ¢ > 0 the map f;: X;.1 — X, is semi-barycentric;

e simplices in [[ K; can be assigned finitely many types so that for any simplices
o C K; and 7 C K of the same type there exist type-preserving isomorphisms
of subcomplexes iy” : (fit*)7L (o) — (f/**)7Y(7) for k > 0 such that the
following diagram commutes:

o+l 7o) (FH) "1 (o) T (fihy 1)
i li‘{‘ liZ’T liifl
Tl f o) e () I ()
(27)
where by f{ (for a > b) we denote the composition f,o fyi10---0 fo1 : Ky —
K.
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A semi-barycentric Markov system as above satisfies the distinct types property if
for any 4 > 0 and any simplex o € K; all simplices in the pre-image f; '(0) have
pairwise distinct types.

Theorem 4.6 can be now reformulated in the following, more precise form (and it
holds by the same argument given in [Paw15] due to the comment in Remark 4.7).

Theorem 4.9. Let G be a hyperbolic group. Then, the Gromov boundary OG of G
is homeomorphic to the limit of a semi-barycentric Markov system with the distinct

types property.
Our aim in this subsection is to prove the following.

Proposition 4.10. For any semi-barycentric Markov system (K, fi)i>o with the
distinct types property, its subsequence (K;, fi)i>1 obtained by omitting the first term
Ky is isomorphic to some constructive Markov system.

In view of Theorem 4.9 the above proposition yields the following.

Corollary 4.11. The Gromov boundary 0G of any hyperbolic group G is homeo-
morphic to some constructive Markov compactum.

Proof. (of Proposition 4.10)
We describe a constructive Markov system Z = Z(Xy, D, R, A, Ar) as in the
assertion in the following way.

1. Set D = (3,{25}), where ¥ consists of one representative of each type of
simplices in [[ K;,7 > 1, and the family {z3} is of the following form. Let
B C o € X be a proper face; set oz as the representative of the type of §.
Since o and 3 have the same type, there is an isomorphism iy : 05 — 3 as
in the last part of Definition 4.1 (where the notation " is used), and it is
unique, because it is type preserving, and the types of faces of both o and 3
are pairwise distinct. It’s here that we use the fact that o and 3 are simplices
in [ [ K;, where ¢ > 1, and that the distinct types property holds in (K, fi)i>o-
Put 23 = iy and view it as an embedding of o3 into o. Define the maps z3
analogously for all proper faces of all simplices in Y. It follows easily that for
a fixed B the map 23 is unique. Moreover, from the distinct types property it
follows that the family {z3}sep is closed under composition.

2. Set XO = Kl-

3. We proceed to define a D-labelling A on X,. For every simplex 7 € S(Xj) set
A(T) to be the representative of the type of 7 in the family D. Further set u,
to be the unique isomorphism iy : 7 — A(7) as in the last part of Definition
4.1. Using the uniqueness of the maps u, and the fact that ¥ consist of exactly
one representative of each type of simplices, it is fairly easy to check that this
definition of A satisfies the conditions stated in Definition 2.7, and we skip the
details.
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4. The family R for D has the following form. Consider a simplex ¢ € 3.
Then o C K, for some n. Define P, := f,'(0), and 7, := f,;-1(,). Define
the rules of replacement analogously for all ¢ € . It remains to describe
bonding maps for such rules. Let 03,0 € X be such that there is an embedding
zg : 05 — 0. Then o5 C Kj,0 C K, for some b,s € N. Set P, as the
respective isomorphism i; : f, '(05) — f71(8) as in the last part of Definition
4.1, viewed as a simplicial embedding of f, ' (o) into f; (o). It is again easy
to see that this satisfies conditions 1 and 2 of Definition 2.4.

5. It remains to define a D-labelling Az of R. Notice that in our setting [[ P,
ceEY

is a family of sets of the form f, (o) for various n and o. The labelling Ar
is defined analogously to what we have done in point 3. For every simplex

TesS ( 1T Pa> set Ax(7) to be the representative of the type of 7 in the
oc€EY

family D. Further set «® to be the unique isomorphism iy : 7 — Ag(7) as in
the last part of Definition 4.1. It is straightforward to check that the conditions
of Definition 3.1 are satisfied.

Thus we have described a constructive Markov system

T =1I(Xo, D, R, A, Ag) = ({Xi : i > 0}, {IL; : i > 0}). (28)

An easy inductive argument shows that for every n the (A,, D, R)-quotient X, 4,
can be canonically identified with K, s and every (A,,, D, R)-map II,,: X1 — X,
in the above system can be canonically identified with f,, 1, so the inverse systems
7 and (K, fi)i>1 are isomorphic. We skip the details for this argument. O

4.2 A step towards the equivalence of definitions

In this last subsection of the paper we make the following observations. In the
previous subsection we showed that the class of spaces which can be described as
constructive Markov compacta may be broader than the analogous class related to
finitistic Markov compacta. A natural question is whether the two classes coincide.
This question obviously reduces to the following one: given a constructive Markov
system Z, does there exist a semi-barycentric Markov system which is isomorphic
to Z (as an inverse system), or a subsequence of Z and which satisfies the distinct
types property?

It is not hard to see that a constructive Markov system Z = Z(X,, D, R, A, Ag)
in the sense of Definition 3.6 is a semi-barycentric Markov system in the sense of
Definition 4.8, if we interpret the type of a simplex as its label from the family D.
We will refer to types associated in this way as the natural types for a constructive
Markov system. In this subsection we aim to show that under some additional
condition on D we can associate with Z another constructive Markov system, which,
after associating natural types as above, satisfies the distinct types property, and
which, as an inverse system, is isomorphic to a subsequence of Z, see Proposition
4.14 below.
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Definition 4.12. Let D be a good family of simplices. We say that D has the
distinct label property if for any simplex o € ¥ and any proper faces 8,7 C o if

B # v then og # o,.

Example 4.13. Consider the good families from Examples 2.2 and 2.3. Clearly the
good family from Example 2.3 has the distinct label property, while the good family
from Example 2.2 fails to have it.

Our main result in this subsection is the following.

Proposition 4.14. Let T = Z(Xy, D, R, A, Ar) be a constructive Markov system,
where the family D has the distinct label property. Then there exists another con-
structive Markov system ZT such that T, with its natural types, has the distinct
types property, and the limits of T and I+ are homeomorphic. Actually, T* can be
chosen to coincide, as an inverse system, with a subsequence of I.

The proof of this proposition requires some preparation. We begin by describing
a property of a labelling of a family of rules of replacement and, in the next comment,
the importance of it in the reasoning leading to the result above.

Definition 4.15. Let D be a good family of simplices, and let R be a good family
of rules of replacement for D. We say that a D-labelling Ar of the family R has the
distinct label property if for every simplex o € X the map Az p, is injective.

Fact 4.16. Let T =Z(X,, D, R, A, Ar) be a constructive Markov system. If the D-
labelling A of the family R has the distinct label property, then I, with its natural
types, has the distinct types property in the sense of Definition 4.4.

Proof. For every simplex o in every complex of Z set its type as its label A\(o) given
by the labelling with the family D. From Lemma 3.3 we see that for each i > 0,
the quotient map from the assembly system over X; to the (A, D, R)-quotient is
type-preserving. Thus it is enough to see that for every o € X, simplices in P, from
the family R can be assigned pairwise distinct types. This is exactly the condition
that R has the distinct label property. O

We now show how to describe the initial data for a constructive Markov system
Z7" as required in the assertion of Proposition 4.14. In short, the idea is to ignore
the first term of Z and treat the second term as the base level. This way we provide
"enough” labels/types to meet the distinct types property of the Markov system.
It turns out that in this approach the distinct label property of the family D used
in the construction of Z is crucial in describing some labelling of Z*, which has the
distinct label property.

Definition 4.17. Let D be a good family of simplices with the distinct label prop-
erty and let R be a good family of rules of replacement for D. The extended family
Dy, = [¥%, {25 }] associated with R is defined as follows: Consider § = S(U, ey Fo)-
Let ~ be the smallest equivalence relation on S generated by the relation ~:

TRp <> TCFP,,pC FP,and P, (1) =p (29)
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for some 0,05 € X. Let 7 consist of one representative from each equivalence class
of ~. The embeddings {z;} are of the following form: pick a simplex ¢ € ¥* and
a face § C 0. Then there is a representative 8. of § with respect to the relation ~.
We have two cases:

o if 3. = [, set o = 3 and z;; as the natural inclusion;

e if 5. # [, then, by definition of ~, there is a sequence of inclusions ¢y, ..., ¢,
such that ¢y o...0u,(8~) = 8, where for i = 1,...,n we have ¢; = szr for
i o

some face f;, o1 := . and for i > 1 we set 0; = 11 0...0¢;_1(5~). In this case
set 05 = . and Z;:LIO...OLn.

Lemma 4.18. Let D be a good family of simplices with the distinct label property,
R be a good family of rules of replacement for D and D3, be the extended family
associated with R. Then D is a good family of simplices.

Proof. Since the family D has the distinct label property, the maps ZE are unique.
It is clear that the family {23} is closed under composition. O

Definition 4.19. Let D be a good family of simplices with the distinct label prop-
erty, R be a good family of rules of replacement for D, D, be the extended family
(with respect to R), and let Az be a D-labelling of R. The extended family

RY = |{(Bf,7}):0eXt}, {PEH (30)

of rules of replacement for D, is defined as follows. Let o € X*. Then there is a
label A\(¢) € D from the labelling Az and a rule of replacement (o) L Py
Set PF = Py\(») and 7 = 7y(,). Define the rules analogously for all o € ¥*. The

family {P:;} of bonding maps has the following form: pick a simplex o € Xt and a
5

face § C 0. Then there are labels A(0), A(0g) € D and an embedding zz such that
25(M(0g)) = M0)u,(s)- Set P, as P,
“s

Fact 4.20. Let D, R, D}, Axr, R* be as in the above definition. Then the extended
family R is a good family of rules of replacement.

Definition 4.21. Let D, R, D%, R, Ar be as in Definition 4.19. We define the
D -labelling

A = Moo {ut)] (31)
of the family R* in the following way. Pick a complex P € {P, : 0 € X},
Then Pt = P, for some o € ¥. Thus every simplex ¢ € P has its representative
s~ € D%. We have two cases:

o if ¢. =g, set A5, (¢) =¢ and u} as the identity;

e if ¢ # ¢, then, there is a sequence tq,...,t, as in Definition 4.17 such that
110...00,(¢) =co. Set Ao (¢) =¢o and ul =10... 04,
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Extend this definition to all simplices in S(|J, s+ P,7). It remains to check the two

conditions of Definition 3.1. Pick simplices 04,0 € ¥t where § C o is a proper face.

Then for any two simplices 7, € P;;, Ty € P such that P, (1) = 7, we have that
8

71 ~ Ty, so from the definition we have A}, (1) = 7. = 72. = A5, (72). Condition
(22) is also easily met.

Fact 4.22. Let D, R, D, R", Ar,AL be as in the above definition. The D -
labelling Ay, has the distinct label property.

The proof of this fact will become immediate if we give a characterization of the
relation ~, which is the subject of the following.

Lemma 4.23. Let S = S(] [, .5, P,) and let ~ be the smallest equivalence relation on

cex " o0

S generated by the relation (29). Then for any 01,02 € S such that oy C Py,09 C P,
we have

01~ 0y = 01 =0y 0701 R0y 07 0y R0y or oy C 7wy (B), 02 C 7N (y) and
dJoeX3do C P, o0=130=py,P.,0)=01,P. (0) =0,

(32)
where B and v are proper faces of the simplices T and p respectively.
Proof. (of Lemma 4.23)
The proof is very similar to the proof of Lemma 1.3 and we skip it. ]

Proof. (of Fact 4.22)

Pick a complex P € {P, : 0 € ¥*}. Then P+ = P, for some 7 € ¥. Suppose
that there are simplices pi, po € Pt such that py # py but A, (1) = Ao (p2).
Then p; ~ ps. Since p; # p2, we have the situation as in the fourth term in the
disjunction (32). But this contradicts the fact that D is a family with the distinct
type property. ]

Finally we can prove the main result of this subsection, Proposition 4.14, in the
following way:.

Proof. (of Proposition 4.14)
Consider the system Z+ = Z(X,", D%, RT, At A}), where

° XS_ =X, €1,
e D} is the extended family associated with R;
e R is the extended family of rules of replacement for D ;

e AT has the following description. Notice that there is an obvious Dj-labelling
of R — it is defined in the same way as the labelling presented in Definition 4.21,
since U, cxr Py = U, ex Pr. We then apply Remark 3.4 to D, = D, D, = D,
and obtain a unique D%-labelling of the (A, D, R)-quotient X; = X, which
we call AT;

e A} is the Df-labelling of R™ as in Definition 4.21;
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We will show that Z can be canonically identified, as an inverse system, with the
inverse system (X, fi);>1. This will conclude the proof, as Z*, with its natural
types, has the distinct types property — this follows from Fact 4.22 and Fact 4.16.
Suppose we have already constructed the complex X; € Z. Similarly to the
framework presented in Section 2.4 we consider two assembly systems over X;: one
built using the data from Z, the other one using the data from Z*. Notice that in

this case we have
IT 2o = 1[I P (33)

TCXq TCX1

We proceed by showing that the embeddings ¢,, defined using the family R generate
the same equivalence relation on [ x, Pa(r) as those defined using the family RT.
This is immediate, since for both constructions we use the same bonding maps.

Indeed, let p, 7 C X; be such that p C 7, and let A(p), A(c), AT (p), AT (o) be their
labels with respect to the labellings A;, AT™. We have the commutative diagrams

P = AMp) < Pa) p = Ap) Pl
| v + P

Zujp) lp Zur (p) j . lzuv*(m l Z:i (») (34
T —— A7) «— Pyn) T XE() Bo

By definition we have that Py, Py, P;(T) = P\(») and PZJQ =P

() —
This way we see that the (A1, D, R)-quotient over X; can be canonically identified
with the (AT, D}, RT)-quotient. Moreover, by definition of the replacement maps
for the family R, the (A;,D,R)-map and the (A*, D}, R")-map coincide. The
statement of the theorem now follows from an easy inductive argument. O

In this last subsection we relied on an additional property assumed for a good
family of simplices — the distinct label property. A further line of research can
be dedicated to determining whether for any constructive Markov system Z =
Z(Xo,D, R, A, Ar) (where D need not have the distinct label property), there exists
another constructive Markov system Z’ such that Z’ has the distinct types property
(as a Markov system) and the limits of Z and Z’ are homeomorphic. This way we
would achieve full equivalence of the definition of constructive Markov compactum
as presented in this paper with the definition of a finitistic Markov compactum.

5 Example - reflection trees of graphs as construc-
tive Markov compacta

In this section we aim to express certain topological spaces, called reflection trees of
graphs (as described in Section 2 of [Swil9]), as Markov compacta. We adopt the
conventions used in Section 2 of [Swil9]. In particular, by a graph (or topological
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graph) we mean the underlying topological space X = |I'| of a finite simplicial graph
I'. The natural cell structure of a graph X is the coarsest cell structure on X. The
vertices of this structure (also called the essential vertices of X) are these points
x € X which locally split X into different than 2 number of connected components.

5.1 Good family of simplices for a reflection tree of graphs

We begin by describing a good family of simplices associated to a finite simplicial
graph T'. Denote by S°(T") the set of vertices of T, and by S*(T) the set of edges of
.

Definition 5.1. The good family of simplices D = D(T") for a graph T is a family

D) = [{oyus’ MU (J Vi(e) {zs}pen] (35)

ecS1(T)

where o is some extra 0-simplex and where for each 1-simplex e of T', the set V(e)
consists of four copies of e, and we write V' (e) = {e1, €2, es3,e4}. The family {z3}sep
of embeddings has the following description. Let e be a 1-simplex. The proper faces
of copies e; = [v;, w;] of e = [v,w] in V (e) are equipped with the following inclusions:

o (e1)y, = v,(€1)w, = w, and set z,, : (€1)y, = V1, 2w, : (€1)w, — Wy to be the
maps v — v, w — w; respectively;

o (e2)y, = v, (€2)w, = 0 and set z,, : (€2),, — v2 to be the map v — vy and z,,
to be the map o +— ws;

e (e3)y; = 0,(€3)w; = w and set z,, to be the map o +— v3 and zy, : (€3)w; — W3
to be the map w — ws;

o (e4)y, = 0,(€4)w, = 0 and set z,,, z,, to be the maps o — wvg, 0 — wy respec-
tively.

Fact 5.2. The family D(T") as above is a good family of simplices.

5.2 Rules of replacement for D(I")

We begin by describing certain simplicial complexes that will appear in the descrip-
tion of the rules of replacement for D(T").

Definition 5.3. Let I' be a simplicial graph, let X = |I'| and let « be a point in
X. The blow-up of I' at z, denoted by I'#(z) is the simplicial graph obtained in the
following way. Attach to X \ {z} as many points as the number of components into
which z locally splits X (which will become vertices of valence 1 in I'#(x)). Denote
the set of these attached vertices by P,. To describe the simplicial structure, we
consider two cases:

e 1 is a vertex of I'. Denote by [vy, 2], [va, x], . . ., [un, 2] the edges of I adjacent to
x. In the blow-up they are replaced with n distinct edges [v1, ., |, [V2, Ty, - - - [Un, To,]-
The simplicial structure on the remaining part of I' remains unchanged;
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e 1 is an interior point of an edge [v,w]. In this case [v, w] splits into two edges
[v, z,] and [z, w]. The simplicial structure on the remaining part of I' remains
unchanged.

For any finite subset J C X, denote by I'#(.J) the simplicial graph obtained by
performing blow-ups at all points = € J (the result does not depend on the order).

Remark 5.4. Topologically T#(z) coincides with X#(z) as described in [Swil9],
page 4. In other words, the geometric realization |['#(x)| of I'#(x) is X#(z).

Definition 5.5. Let D(I") be the good family of simplices from Definition 5.1. The
family R = Ropr) of rules of replacement for D(I') is a family of rules of replacement
with the following description:

e for the O-simplex o set P, = a,m,: a — o, where a is some 0-simplex;
e for any other O-simplex v set P, = I'#(v), 7, P, — v;

and for any 1-simplex e = [v,w], the copies of e in V(e) are equipped with the
following rules. Let B; = [v;, %] U [bY7, w;] where 1 < < 4, be the disjoint union of
1-simplices obtained by performing a blow-up of e; at its barycenter.

e for the edge e; set

p, —bBiU I#(v) UT#(w) L F#(be)/N (36)

where ~ is the equivalence relation induced by the following equivalences:
identify the vertex v; with the vertex v, in the edge [w,v,] of I'#(v); the
vertex w; with the vertex w, in the edge [v, w,] of I'#(w); the vertex b2! with
the vertex (b.), in the edge [v, (be).] of I'#(b,) and finally the vertex b%* with
the vertex (b.), in the edge [w, (b.),] of T#(b.). The map m,: P, — e’ is
the unique simplicial map with the following properties:

Ter 1% () ° #(v) = v
Ter 1% () % (w) + wy
7T€1 “—x#(be) . F#(be) —> bel
7T€1 {Bl - 901
where ¢1: By — €1’ is the simplicial map taking v; € By to v1 € e/, wy € By
to w; € e;” and both b7, byt to be,.
e for the edge e set
P62 — BQ (] F#(U> LJ F#<be)/N (37>

where ~ is defined similarly as above. The map 7.,: P., — e’ is the unique
simplicial map with the following properties:

7T62 “-—‘#('U) F#(U> —> U2
ey [F#(bEQ): F#(b@) = bez

Tea1B, = P2
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where @y: By — €5’ is the simplicial map taking v, € By to vg € €5/, wy € Bs
to wy € ey’ and both b%2,b¥2 to b, .

ez’ e

for the edge e3 set
# #
P63 Bg ur (w> ur (be>/rv (38)

where ~ is defined similarly as above. The map m.,: P., — e3’ is the unique
simplicial map with the following properties:

Teairt oy * T (Be) > e,

Tes1By — ¥3

where ¢3: B3 — e3 is the simplicial map taking vs € Bz to v3 € e3’, w3 € Bs
to ws € ez’ and both b¥3, 0% to b,,.

ez ) e

for the edge ey set
#

€4

where ~ is defined similarly as above. The map 7, : P., — e, is the unique
simplicial map with the following properties:

{M iy T#(be) > be,

Tey By — P4

where @4: By — e4 is the simplicial map taking vy € By to vy € €4, wy € By
to wy € ey and both b%4 b to b, .

eq ? 7eq

The bonding maps have the following description (we present the bonding maps

only for ey, and the rest of them is defined in an analogous way):

o for z,, : (e3)s, = v set P, : Py, — Pe, to be the inclusion of I'#(v) to the
copy of I'#(v) in P.,;

e for zy,: 0> wset P, : Py, = e, as the map taking a to wy.

Fact 5.6. The family R = Rpr) as above is a good family of rules of replacement.

5.3 Labelling of Rpr) with the family D(I")

Definition 5.7. Let R be a good family of rules of replacement as in Definition 5.5.
The D(I')- labelling A, of Rpr) is defined in the following way. Let P, be one
of the summand complexes of [] ., P-. We carry out the labelling in the following

1. if P, = a, which happens when o = o set

AMa) =0, u, =a+ o (40)
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2. if P, = I'#(v) for some vertex v, which happens when ¢ = v we have the
following rules. Let e € P, be an edge. If e is of the form [w;,v,,] (so e
was adjacent to the vertex at which the blow-up was made), set A(e) = e3
and u. to be the simplicial map taking w; to w and v, to v. Moreover set
AMw;) = w, Uy, = id,, and A(vy,) = o, Uy,,, = Vy,; +> 0. For all other edges e set

Ae) = ey, ue = id,,.

3. if P, = P., for some edge e of I, and some i € {1,2,3,4}, then we have the
following rules. Let us assume ¢ = 2 (cases i = 1,3, 4 are done analogously).
Let us denote e; = [vy, w]. For the 1-simplices 71 = [vg, b.2], 72 = [b2, wo] in
B set

)\(Tl) = €4, )\(’7'2) = €4, (41)

and further set u,, to be the isomoprhism induced by extending linearly the
map vy — vg, b2 — w, to the map 7 — e4, and analogously set u,, to be the
isomoprhism induced by extending linearly the map wq — wy, b%? — v4 to the
map T, — e4. For the simplices 73 = [v,b%], 74 = [b¥, w] in T#(b,) set

A(T3) = €9, A(14) = e, (42)

and further set u,, to be the isomoprhism induced by extending linearly the
map v — vq, b — wy to the map 7 — ey, and analogously set u,, to be the
isomoprhism induced by extending linearly the map w — ws, b¥ — v3 to the
map 7, + es. The labelling of I'#(v) is done in the same way that what is
done in Point 2 above. For all other edges e set A(e) = ey, ue = id,,.

5.4 Construction

In this subsection we give a description of a specific subsequence Sy in the reflection
system Sy (as denoted in the comment below Lemma 2.2 of [Swil9]) for some graph
X and show that it can be identified with the constructive Markov system

({X’L : 7/ 2 O}? {H’L . Z 2 O} = I<F7 D(F)7 RD(F)) AFa AR@(p))? (43)

where I is such that X = |I'|, and D(I'), Rp(r), Ar, ., are described in sections
5.1 — 5.3 and Ar is the tautological labelling of I' as in Example 2.9. We begin by
describing a certain dense subset of X. Consider the set

=5 (44)
=1

where the sets B;,7 > 1 are the sets of vertices of the i-th barycentric subdivision
of I'. We also consider the partition of D, into the sets D; = B; \ i Bj, each of
which is obviously finite.

Fact 5.8. The set D, is a countable dense subset of X containing all essential
vertices of X.
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Let us recall some of the notation from [Swil9], Section 2, subsection titled ”The
spaces Xr”. Let T be a tree each vertex of which has valence equal to the cardinality
of the subset Dj;,. Denote by Vi, Er the sets of vertices and (unoriented) edges of T,
respectively. To each vertex t € Vi associate a copy of the graph X, and denote it
X;. Equip also T with a labelling A : F(T') — D, such that for any ¢ € V , denoting
by A;T the set of edges in T" adjacent to t, the restriction of A to A, 7" is a bijection
on Dy. Such a labelling clearly exists, and is unique up to an automorphism of 7.
Let F be the poset of all finite subtrees of T', ordered by inclusion.

Consider the chain {F, },,>¢ in F, defined recursively as follows. Pick any ¢y € V7.

e Set Fj to be the subtree of T' coinciding with the single vertex to;
e The tree F, 1 is the unique subtree of T satisfying the following 3 conditions:

L. Fn - FnJrl;
2. any vertex of Fj,,; is adjacent to some vertex of F;

3. for any vertex t € F), (so that t € Fj,\|J,, F}j for some k < n), the closed
star of ¢ in [, consists of edges e € A,T such that A(e) € U;<,1 11 Dy
and vertices adjacent to those edges.

Observe that the chain {F,},>¢ is cofinal in F.
We now recall the notion of the standard reflection system for a graph X, which
is an inverse system of the form

S(X,Dy) = ({Xp:FeF} {npr:FCF'}), (45)

where the spaces Xy and the maps mp g : F' C F' are described in [Swi19], Section
2, subsections titled "The spaces Xp” and "The maps mp p”. Recall also that the
reflection tree of graphs of X, denoted by X"(X), is, by definition, the inverse limit
of the system S(X, Dy).

Consider now the subsequence Sy of S(X, Dy), where

So = ({XFn }nzo, {7TFn+1,Fn}n20)7 (46)

and where the sequence {F},} is described above. Recall that the spaces X, have
the following description:

L] FT(A(AtFn))/N (47)

teVg,

Xp =

n

where A is the labelling described below Fact 5.8 and the relation ~ is induced by
the following equivalences: for each edge e = [t1,t2] € Ep, and each p € Py,

identify p € Pre) C T (M(A Fy)) with p € Py C TE (AN AL F)).

Proposition 5.9. The system Sy can be canonically identified with the constructive
Markov system (43).
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Proof. We proceed by showing that both systems consist of the same spaces and
the same maps. Indeed, let X,, € Z. We note that X,, is, in our setting, the
(A, D, R)-quotient of the set

|| v (48)

G'ES(anl)

where Y, = Py and A is the labelling from the system (45) (for each o there is a
seperate copy of the complex Py(,)). Upon inspection of the definitions of the spaces
Y, and the spaces ' (\(A,F,)) apprearing in (47) we see that this (A, D, R)-quotient
is precisely Xp .

Finally, it is an easy observation that the maps {7, , r : F; C Fij1} in Sy
coincide with the maps {II; : i > 0} in Z. O

Corollary 5.10. Every reflection tree of graphs, as described in Definition 2.3 in
[Swil9], is a constructive Markov compactum.

Proof. In the above Proposition, we proved that every reflection inverse system can
be canonically identified with some constructive Markov system, and furthermore,
since {F),}n>0 is cofinal in F, the inverse limit of Sy is A7 (X). In other words, we
see that

XT(X) = @l S(Xa Db) = @1 SO = MI(Fu D(F)a RD(F)a AF; ARD(F))’ (49)
which yields the Corollary. O
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