
Sports programming in practice

(Programowanie sportowe w praktyce)

Bartosz Kostka

Praca magisterska

Promotor: dr hab. Jakub Radoszewski
Instytut Informatyki
Wydział Matematyki, Informatyki i Mechaniki
Uniwersytet Warszawski

Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

15 lutego 2021

Abstract

The topic of this paper is sports programming, which is a mind sport focusing on
solving algorithmic problems. The paper describes selected recent techniques and
methods used in this field, along with examples of applications in the form of problems
from selected competitions.

Tematem pracy jest programowanie sportowe – sport umysłowy skupiający się na roz-
wiązywaniu problemów algorytmicznych. Praca opisuje wybrane najnowsze techniki i
metody używane w tej dziedzinie, wraz z przykładowymi zastosowaniami w formie za-
dań z wybranych konkursów.

Contents

1 Introduction 7

1.1 Competitions and platforms . 9

2 Extensions of binary search 19

2.1 Parallel binary search . 20

2.2 Fractional cascading . 25

3 Segment trees rediscovered 31

3.1 Segment tree beats . 31

3.2 Historic information for sequences 36

3.3 Wavelet trees . 39

4 Tree decompositions 49

4.1 Centroid decomposition . 49

4.2 Heavy-light decomposition . 54

5 Palindromes 61

5.1 Manacher’s algorithm . 61

5.2 Eertree . 64

6 Dynamic programming optimizations 77

6.1 Sum over subsets (SOS) . 77

6.2 Monotone queue optimization . 83

6.3 Convex hull optimization . 89

6.3.1 Li Chao tree . 94

5

6 CONTENTS

6.4 Knuth optimization . 96

6.5 Divide and conquer optimization . 102

6.6 Lagrange optimization . 109

6.7 Summary . 112

7 Polynomials 119

7.1 Evaluation . 120

7.2 Interpolation . 121

7.3 Fast Fourier transform . 125

7.4 Applications of the polynomial multiplication 132

7.5 Bitwise convolutions . 138

8 Matroids 145

8.1 Optimization problems on matroids 150

8.2 Matroid intersection . 153

Bibliography 161

Chapter 1

Introduction

Nowadays, developers and engineers in high-tech companies have to solve many
difficult and interesting problems. You can think for example, how to find the shortest
way from one place to another in Google Maps, or how to suggest potential friends
in the enormous graph of relations between users on Facebook. Under the hood,
solving these problems resembles a bit of puzzle-solving, like a crossword or a sudoku
in a magazine. This problem-solving skill is what companies are looking for and what
potential employees have to develop.

As an indirect result of demand for such problem-solving skills, people started
specializing in this field and thus the sports programming (also known as competitive
programming) was formed. It is a mind sport focusing on solving these algorithmic
puzzles. Contestants are given a set of problems (sometimes directly extracted from
the real-life) which they need to solve in a limited time. They have to implement
the solution in a form of a programming code. Solutions are often checked (judged)
automatically. Organizers prepare a set of potential scenarios (commonly known as
testcases) on which the contestants solutions are checked – they are checking the be-
haviour of the program, i.e. if it produces a valid output and fits into other constraints,
such as time and memory limits.

Such programming competitions come in many different kinds. The first impor-
tant competition that a young contestant can participate in is International Olympiad
in Informatics for high school students. There is also a famous team competition
for university students called International Collegiate Programming Contest. In this
competition, teams of three students from the same university compete against each
other, using only one computer. Many companies also conduct yearly championships
branded with their name, for instance we have Google Code Jam, or Facebook Hacker
Cup. There are also special platforms hosting various competitions and companies that
were created just for this purpose. Some examples might include Atcoder, Codechef,
Codeforces, or Topcoder. Almost all of these platforms also have some kind of a rating
system, so contestants can compare themselves with their friends or people from all

7

8 CHAPTER 1. INTRODUCTION

over the world. Later in this chapter, we will describe in brief some of the most popular
platforms and competitions.

As the sports programming started to grow more popular, the problems also began
to become more complex. Some contestants even started to specialize in various
fields, such as geometry or text algorithms. They started to discover many interesting
algorithms and data structures which have their origin in competitive programming,
with some real-life applications. I want to briefly mention two examples. First, on
one of the Russian training camps, two students developed a problem about finding all
distinct palindromes in a given word. For the solution of this problem, they came up
with the data structure that is currently known as the “palindromic tree” or "eertree".
This approach not only solved this problem, but people started to use this data structure
to solve many different problems, even the ones that were thought that they cannot
be solved faster in the past. We will discuss this data structure and various problems
that can be solved in a better time complexity with it in chapter 5: Palindromes. The
second example comes from China. High school students who want to participate in
the International Olympiad in Informatics are asked to write a simple research report
about some chosen algorithm or data structure. One of these participants solved a
problem that was also causing a lot of problems for programmers for several years. He
came up with the data structure called “Segment tree beats” that allows fast operations
on integer sequences, such as adding some value over a continuous subsequence or
calculating the minimum value over other continuous sequences. We will discuss this
data structure in chapter 3: Segment trees rediscovered.

On the other hand, people also started digging up some older algorithms and
found their new applications. The wavelet tree and matrix were data structures used
in text processing since 2003. People rediscovered this data structure in 2016, when
a paper was published about how it can be used in competitive programming. This
structure allowed people to solve some of the problems in a clean, elegant manner,
which was also really quick and easy to implement. We mention this data structure in
chapter 3: Segment trees rediscovered.

The goal of this paper is to spread the awareness of sports programming and also
to document several of these new ideas and methods that were discovered in the last
decade. One of the problems that the sports programming community has is that only
some of these ideas are properly described in academic papers, while most of them
can be found only on some blogs and websites spread across the Internet in various
languages. This paper attempts to partially fill in this gap.

We also include various problems with solutions to show how these methods are
used in real-life problems. These problems come from old competitions and training
camps. All the problems have links to online judges, where one can test their solutions.

We should also mention how competitive programming differs from research in
algorithms. In research, people solve open-ended questions. In sports programming

1.1. COMPETITIONS AND PLATFORMS 9

contestants solve (in most cases) well-established problems with known solutions (pre-
pared beforehand). Sports programming in some way simulates the research process,
with many caveats: you are asked to write a solution to the problem in some program-
ming language (in a limited time), but you do not have to write a formal proof of your
solution.

Acknowledgements

I would like to thank my supervisor, Dr. Jakub Radoszewski, for his guidance
through each stage of the process of writing this thesis.

I would also like to acknowledge Prof. Krzysztof Loryś and Dr. Rafał Nowak for
inspiring my interest in algorithmics and sports programming.

Finally, I want to thank all my friends who helped me write this thesis by sharing
their knowledge and experience, and by providing their feedback: Kamil Dębowski,
Jarosław Kwiecień, Wojciech Nadara, Mateusz Radecki, Mateusz Rzepecki, Marek
Sokołowski, and Marcin Smulewicz.

1.1. Competitions and platforms

In this section, we discuss selected international programming competitions and
platforms.

International Olympiad in Informatics (IOI)

https://ioinformatics.org/

International Olympiad in Informatics is the most famous programming competi-
tion for high-school students. The competition started in 1989 in Bulgaria and is being
organized annually since then, each year in a different location. Each participating
country can send a representation consisting of up to four high school students, but
students still participate individually. Nowadays (as of 2020), 87 countries participate
in the IOI.

This competition consists of two sessions (in two different days). During each
session, contestants are solving 3 problems in 5 hours. For each problem, contestants
can get up to 100 points. Problems are also divided into subtasks with different scores.
IOI problems are famous for being non-standard, which includes open-input problems
(the contestants are given a set of inputs which they can examine, and their task
is to produce the output files during the competition), or communication problems

https://ioinformatics.org/

10 CHAPTER 1. INTRODUCTION

(contestants have to write two separate programs that communicate with each other
using a provided interface).

Country representations for IOI are selected through national competitions. Some
of these olympiads are well-known in the community and they often provide training
opportunities and materials available for everyone:

• Croatian Open Competition in Informatics (COCI) – series of monthly online
competitions available on https://hsin.hr/coci/,

• Japanese Olympiad in Informatics (JOI) – mirror contests from the final round
of the olympiad and the spring selection camp are open to everyone, https:
//www.ioi-jp.org/,

• Polish Olympiad in Informatics (POI) – after each edition, problems are trans-
lated into English and published on https://szkopul.edu.pl/,

• USA Computing Olympiad (USACO) – monthly contests in several divisions
(varying in difficulty) available on http://usaco.org/.

There are also various regional competitions for high school students with the IOI
format:

• Asia-Pacific Informatics Olympiad (APIO) – online contest for countries from
South Asia and Western Pacific, first held in 2007, http://apio-olympiad.
org/),

• Baltic Olympiad in Informatics (BOI) – onsite regional contest for Nordic and
Baltic countries, first held in 1995,

• Balkan Olympiad in Informatics (also abbreviated to BOI) – onsite regional con-
test for countries from Balkan region, first held in 1993,

• Central European Olympiad in Informatics (CEOI) – onsite regional contest for
Central European countries, first held in 1994, http://ceoi.inf.elte.hu/.

Contestants of the IOI are awarded medals similarly to other scientific olympiads:
1/12 participants with the highest score get the gold medal, next 1/6 get silver medal,
and next 1/4 get bronze medal. In total, top 50% of all participants are awarded
medals.

In chapter 6: Dynamic programming optimizations, we solve two problems from
the IOI: Batch scheduling from IOI 2012 and Aliens from IOI 2016. These problems
are the first known appearances of some techniques that were later frequently used in
various competitions.

https://hsin.hr/coci/
https://www.ioi-jp.org/
https://www.ioi-jp.org/
https://szkopul.edu.pl/
http://usaco.org/
http://apio-olympiad.org/
http://apio-olympiad.org/
http://ceoi.inf.elte.hu/

1.1. COMPETITIONS AND PLATFORMS 11

IOI Winners from the last 10 years

2019 Benjamin Qi United States of America
2018 Benjamin Qi United States of America
2017 Yuta Takaya Japan
2016 Ce Jin China
2015 Jeehak Yoon Republic of Korea
2014 Ishraq Huda Australia
2013 Lijie Chen China
2012 Johnny Ho United States of America
2011 Gennady Korotkevich Belarus
2010 Gennady Korotkevich Belarus

International Collegiate Programming Contest (ICPC)

https://icpc.baylor.edu/

International Collegiate Programming Contest is a team competition for university
students. Each team consists of three students from the same university.

Teams have to solve about a dozen of problems during a 5-hour window. Problems
are graded binary – the solution has to pass all the tests to be considered correct. The
members of one team have to share one computer.

ICPC is a multi-staged contest, starting with regional level competitions. The best
teams are invited to the World Finals, happening annually. In total, in 2019, almost
60 000 participants from 103 countries participated in over 400 regional competitions.
135 teams were invited to the 2019 World Finals.

Teams are ranked according to the number of problems solved. In case of ties,
the total time needed to solve these problems is used as a tie-breaker. The total time
is calculated as a sum of times needed to accept each solved problem, increased by
a 20 minute penalty for each incorrect submission for these problems. Usually, top 4
teams at the World Finals receive gold medals, next 4 teams get silver medals, and
next 4 teams – bronze medals, resulting in total of 12 teams getting awards.

In chapter 6 (Dynamic programming optimizations), we discuss problemMoney for
Nothing from ICPC World Finals 2017, and in chapter 8 (Matroids), we solve problem
Coin Collector from ICPC regional contest – 2011 Southwestern Europe Regional
Contest.

https://icpc.baylor.edu/

12 CHAPTER 1. INTRODUCTION

ICPC champions from the last 10 years

2019 Mikhail Ipatov Moscow State University
Vladislav Makeev
Grigory Reznikov

2018 Mikhail Ipatov Moscow State University
Vladislav Makeev
Grigory Reznikov

2017 Ivan Belonogov St. Petersburg ITMO University
Ilya Zban
Vladimir Smykalov

2016 Stanislav Ershov St. Petersburg State University
Alexey Gordeev
Igor Pyshkin

2015 Gennady Korotkevich St. Petersburg ITMO University
Artem Vasilyev
Borys Minaiev

2014 Dmitry Egorov St. Petersburg State University
Pavel Kunyavskiy
Egor Suvorov

2013 Mikhail Kever St. Petersburg ITMO University
Gennady Korotkevich
Niyaz Nigmatullin

2012 Eugeny Kapun St. Petersburg ITMO University
Mikhail Kever
Niyaz Nigmatullin

2011 Luyi Mo Zhejiang University
Zejun Wu
Jialin Ouyang

2010 Bin Jin Shanghai Jiaotong University
Zhao Zheng
Zhuojie Wu

AtCoder

https://atcoder.jp

AtCoder is a programming platform based in Japan. AtCoder as a company
and a platform existed since 2011, but they hosted mostly Japanese contests. They
transformed into an international platform in 2016, as they started marketing globally
and providing problem statements in English and Japanese. They host three types of
official contests:

https://atcoder.jp

1.1. COMPETITIONS AND PLATFORMS 13

• AtCoder Grand Contest (AGC) – the most difficult and challenging contests
on the platform. These contests don’t have a regular schedule, but they are
conducted mostly on a monthly basis. The results from these contests are
counted towards choosing the finalists of the onsite contest called AtCoder World
Tour Finals.

• AtCoder Regular Contest (ARC) – regular contests, similar to AGC, but slightly
easier. These contests are often sponsored by external companies to serve as a
recruiting opportunity.

• AtCoder Beginner Contest (ABC) – these contests contain easy and educational
problems, mostly for those who are new to competitive programming. They are
conducted more-or-less weekly.

In chapter 2 (Extensions of binary search), we discuss problem Stamp Rally from
AtCoder Grand Contest 002.

AtCoder World Tour Finals winners

2019 Yuhao Du China

Codechef

https://codechef.com

In 2009, the educative initiative Codechef was founded by Directi. The goal of
this initiative was to improve and expand the Indian programming community. In 2010,
Codechef launched the program with a goal to get an Indian college team to win the
ICPC contest. This program was later extended to Indian IOI participants.

Each month, Codechef hosts three types of competitions:

• Long Challenge – 10 days long individual competition with around 8 problems,
where usually one of the problems is focused on optimization (it serves as a kind
of a tie-breaker).

• Cookoff – individual competition with 5 questions, lasting 2.5 hours with medium
difficulty.

• Lunchtime – a contests targeted to beginners with 4 questions for 3 hours.

Snackdown is an annual competition by Codechef, first organized (as a local con-
test) in 2010. After a five-year break, Snackdown returned in 2015 as a global com-
petition. It is a team competition (each team consists of two contestants). In 2019,
over 27 000 teams (and 40 000 individuals) participated in Snackdown.

https://codechef.com

14 CHAPTER 1. INTRODUCTION

In chapter 3 (Segment trees rediscovered), we discuss problem Chef and Swaps
from Codechef September Challenge 2014.

Snackdown champions in the last 5 years

2019 Gennady Korotkevich Belarus
Borys Minaiev Russia

2017 Alex Danilyuk Russia
Oleg Merkurev Russia

2016 Gennady Korotkevich Belarus
Borys Minaiev Russia

2015 Apia Du China
Yinzhan Xu China

Codeforces

https://codeforces.com

Codeforces is a Russian-based platform, launched in 2009. The platform was
founded by a group of programmers from Saratov State University led by Mikhail
Mirzayanov and it is currently developed at ITMO University in Sankt Petersburg,
Russia.

Codeforces holds frequent regular rounds. Contestants are rated using ranking
system similar to Elo rating system (known from chess). Rounds are often targeted
to people from specific ranges of rating (called divisions).

Codeforces is famous for its frequent competitions, active community, and its
platform for developing problems and contests called „Polygon” (https://polygon.
codeforces.com/).

In chapter 3 (Segment trees rediscovered), we talk about two problems from
Codeforces: The Child and Sequence from CF round #250, and Destiny from CF
Round #429.

Facebook Hacker Cup

https://facebook.com/codingcompetitions/hacker-cup/

Facebook Hacker Cup is an annual algorithmic competition organized by Facebook,
which started in 2011. The competition consists of three online elimination rounds,
concluded by the onsite finals in one of the Facebook offices.

https://codeforces.com
https://polygon.codeforces.com/
https://polygon.codeforces.com/
https://facebook.com/codingcompetitions/hacker-cup/

1.1. COMPETITIONS AND PLATFORMS 15

A unique feature of the Facebook Hacker Cup is that during each round when a
contestant wants to submit their solution, they are given the input data and they have
to run the solution to produce the output file in a short time (a couple of minutes)
which is then submitted to the platform. Because of this, contestants can use any
programming language they wish.

Facebook Hacker Cup winners

2019 Gennady Korotkevich Belarus
2018 Mikhail Ipatov Russia
2017 Petr Mitrichev Russia
2016 Makoto Soejima Japan
2015 Gennady Korotkevich Belarus
2014 Gennady Korotkevich Belarus
2013 Petr Mitrichev Russia
2012 Roman Andreev Russia
2011 Petr Mitrichev Russia

Google Code Jam

https://g.co/codejam/

Google Code Jam is an annual competition organized by Google. First edition took
place in 2003, with prize pool of 20 000 USD. Up to 2007, Code Jam was conducted
on TopCoder platform (see below). After that, Google developed its own platform for
coding competitions. Up to 2017, contestants had to download the input file and run
the program locally to produce output that should be uploaded back. In 2019, a new
version of the platform was introduced, where contestants are submitting the source
code, which is run on the platform.

Between 2015 and 2018, a new competition format focused on distributed algo-
rithms was run in parallel to Code Jam, called Distributed Code Jam. Google is also
organizing two other algorithmic competitions:

• Google Hash Code (https://g.co/hashcode/) – team-based programming
competition focused on solving optimization problems,

• Google Kick Start (https://g.co/kickstart/) – individual competition with
slightly easier problems compared to the regular Code Jam. It consists of several
independent rounds (8 in 2019), and it serves mostly as a recruitment event.

In 2019, over 74 000 contestants participated in Google Code Jam.

https://g.co/codejam/
https://g.co/hashcode/
https://g.co/kickstart/

16 CHAPTER 1. INTRODUCTION

Some GCJ problems led to further academic research; for an example, see
[Dymchenko and Mykhailova, 2015].

Google Code Jam winners in the last 10 years

2019 Gennady Korotkevich Belarus
2018 Gennady Korotkevich Belarus
2017 Gennady Korotkevich Belarus
2016 Gennady Korotkevich Belarus
2015 Gennady Korotkevich Belarus
2014 Gennady Korotkevich Belarus
2013 Ivan Metelsky Belarus
2012 Jakub Pachocki Poland
2011 Makoto Soejima Japan
2010 Egor Kulikov Russia

Distributed Code Jam winners

2018 Mateusz Radecki Poland
2017 Andrew He United States of America
2016 Bruce Merry South Africa
2015 Bruce Merry South Africa

Topcoder

https://topcoder.com/

Topcoder (known to 2013 as TopCoder) is an American company founded in 2001
by Jack Hughes as a crowdsourcing company, selling community services to business
clients [Lakhani et al., 2010].

Topcoder organizes regular algorithmic challenges which are known as “Single
Round Matches” (SRMs). Each SRM has three problems in two divisions. Each round
concludes in a “challenge phase”, where contestants can “hack” other contestants’
solutions, i.e. provide a testcase on which the rival’s solution will fail (produce wrong
output, exceed limits, and so on).

Topcoder also holds Topcoder Open. The competition consists of several elimi-
nation rounds, with finals hosted in various cities across the US. Since 2015, Topcoder
started organizing regional events accompanying the finals.

Besides sports programming, Topcoder focuses on many different areas. As of
2019, Topcoder Open has 6 tracks: Algorithm, Development, First2Finish (quick chal-

https://topcoder.com/

1.1. COMPETITIONS AND PLATFORMS 17

lenge asking competitors to fix bugs or do a small task), Marathon (long optimization
problems), UI Design, and QA Competition.

TCO Algorithm Champions in the last 10 years

2019 Gennady Korotkevich Belarus
2018 Petr Mitrichev Russia
2017 Yuhao Du China
2016 Makoto Soejima Japan
2015 Petr Mitrichev Russia
2014 Gennady Korotkevich Belarus
2013 Petr Mitrichev Russia
2012 Egor Kulikov Russia
2011 Makoto Soejima Japan
2010 Makoto Soejima Japan

Yandex Algorithm

https://algorithm.contest.yandex.com/

Yandex is a Russian-based company specializing in Internet-related products and
services, including web search, translator, maps, and many others. In 2013, they
started organizing an algorithmic competition called “Yandex Algorithm”. The contest
consists of a qualification round, three elimination rounds and onsite finals.

Besides algorithms, they launched two other tracks in this competition: optimiza-
tion track and machine learning track.

YA winners

2018 Gennady Korotkevich Belarus
2017 Gennady Korotkevich Belarus
2016 Egor Kulikov Russia
2015 Gennady Korotkevich Belarus
2014 Gennady Korotkevich Belarus
2013 Gennady Korotkevich Belarus

https://algorithm.contest.yandex.com/

Chapter 2

Extensions of binary search

Binary search is one of the oldest known algorithms. It owes its fame to the fact
that the idea of sorting objects in order to decrease the amount of time needed to
search for given elements is natural and intuitive and it was known even in the ancient
times [Knuth, 1997], while the first implementation of this algorithm comes from 1962.
[Bottenbruch, 1962]

In this chapter, we will discuss various extensions and applications of this very
famous algorithm.

For clarity, we will always consider the binary search algorithm on intervals with
inclusive left end and exclusive right end, i.e. [P,Q). So our implementation of the
solution to the typical problem with a guessing game, where one of the players chooses
a number (let us say between 1 and 100) and the second one has to guess this number
by asking questions "Is the chosen number greater than or equal to x?", will look as
follows:

// in our example P = 1 and Q = 101

Function guessT heNumber(P,Q):
while Q − P > 1

mid ← b 12 (P +Q)c;
// ask about the number in the middle
if isGreaterOrEqual(mid)

Q← mid;
else

P← mid;

return P

19

20 CHAPTER 2. EXTENSIONS OF BINARY SEARCH

2.1. Parallel binary search

Imagine that we want to answer Z queries about the index of the largest value
less than or equal to some Xi (for i = 1, 2, . . . , Z) in some sorted 0-indexed array A.
Each query can be answered using binary search.

Let us consider the following array A:

A0 A1 A2 A3 A4 A5 A6 A7

1 3 5 7 9 9 13 15

with queries: X = [8, 11, 4, 5]. We can use binary search for each query sequentially.

query X1 = 8 X2 = 11 X3 = 4 X4 = 5

step 1 answer in [0, 8) answer in [0, 8) answer in [0, 8) answer in [0, 8)
check A4 check A4 check A4 check A4

X1 < A4 = 9 X2 ≥ A4 = 9 X3 < A4 = 9 X4 < A4 = 9

step 2 answer in [0, 4) answer in [4, 8) answer in [0, 4) answer in [0, 4)
check A2 check A6 check A2 check A2

X1 ≥ A2 = 5 X2 < A6 = 13 X3 < A2 = 5 X4 ≥ A2 = 5

step 3 answer in [2, 4) answer in [4, 6) answer in [0, 2) answer in [2, 4)
check A3 check A5 check A1 check A3

X1 ≥ A3 = 7 X2 ≥ A5 = 9 X3 ≥ A1 = 3 X4 < A3 = 7

step 4 answer in [3, 4) answer in [5, 6) answer in [1, 2) answer in [2, 3)
index = 3 index = 5 index = 1 index = 2

We processed this table by columns (queries), but notice that in each row we
often repeat access to certain values of our array. This does not make any difference
in our small example problem (as we can access all elements in O(1)), but in more
complex problems this might be essential to solve such problems efficiently (as we will
show in a moment). To limit access to the values, we can process the table by rows
(steps). Moreover, note that we can arbitrarily choose the order in which we answer

2.1. PARALLEL BINARY SEARCH 21

questions in a single row. Let us look at the pseudocode implementing this approach.

N ← len(A);
for i ← 0 to N − 1

P[i] ← 0;
Q[i] ← N;

for step← 1 to log N
// important_values will be a map from value to indices
// of queries asking for this value
important_values← map();
for i ← 0 to N − 1

mid[i] ← b 12 (P[i] +Q[i])c;
important_values[mid[i]].append(i);

for (value, queries) in important_values in some order
for query in queries

if value > Xquery

P[query] ← mid[query];
else

Q[query] ← mid[query];

We will show now how this approach can be useful in some real-life problems.

Problem Meteors

18th Polish Olympiad in Informatics.
Limits: 35s, 64MB.
https://kostka.dev/sp/met

Byteotian Interstellar Union (BIU) has recently discovered a new planet in a nearby
galaxy. The planet is unsuitable for colonisation due to strange meteor showers, which
on the other hand make it an exceptionally interesting object of study.

The member states of BIU have already placed space stations close to the planet’s
orbit. The stations’ goal is to take samples of the rocks flying by. The BIU Commission
has partitioned the orbit into m sectors, numbered from 1 to m, where the sectors 1

and m are adjacent. In each sector there is a single space station, belonging to one of
the n member states.

Each state has declared a number of meteor samples it intends to gather before
the mission ends. Your task is to determine, for each state, when it can stop taking
samples, based on the meter shower predictions for the years to come.

https://kostka.dev/sp/met

22 CHAPTER 2. EXTENSIONS OF BINARY SEARCH

Input

The first line of the standard input gives two integers, n and m (1 ≤ n,m ≤
300 000), separated by a single space, that denote, respectively, the number of BIU
member states and the number of sectors the orbit has been partitioned into.

In the second line there are m integers oi (1 ≤ oi ≤ n), separated by single spaces,
that denote the states owning stations in successive sectors.

In the third line there are n integers pi (1 ≤ pi ≤ 109), separated by single spaces,
that denote the numbers of meteor samples that the successive states intend to gather.

In the fourth line there is a single integer k (1 ≤ k ≤ 300 000) that denotes the
number of meteor showers predictions. The following k lines specify the (predicted)
meteor showers chronologically. The i-th of these lines holds three integers li, ri, ai
(separated by single spaces), which denote that a meteor shower is expected in sectors
li, li+1, . . . , ri (if li ≤ ri) or sectors li, li+1, . . . ,m, 1, . . . , ri (if li > ri), which should provide
each station in those sectors with ai meteor samples (1 ≤ ai ≤ 109).

In tests worth at least 20% of the points it additionally holds that n,m, k ≤ 1000.

Output

Your program should print n lines on the standard output. The i-th of them should
contain a single integer wi, denoting the number of shower after which the stations
belonging to the i-th state are expected to gather at least pi samples, or the word NIE
(Polish for no) if that state is not expected to gather enough samples in the foreseeable
future.

Example

For the input data:

3 5
1 3 2 1 3
10 5 7
3
4 2 4
1 3 1
3 5 2

the correct result is:

3
NIE
1

2.1. PARALLEL BINARY SEARCH 23

Solution

First let us focus of finding the number of showers satisfying one particular state.
A naive way to check this is to simulate all the showers sequentially and count the
number of meteor samples in owned sectors. This solution works in O(mk) and can
be sped up to O((m + k) log m) if we use the fact that the samples appear only in
continuous segments. We can use a standard segment tree to simulate the meteor
rains (add value to a segment) and check how many samples we have in each sector
owned by a state.

Instead of asking what is the minimal number of showers wi for each state, we will
check if w showers are enough, which can be done using binary search. Now instead
of sequentially trying to find the answer for each state, we can do it in parallel, as
mentioned above: in every step we iterate over sorted candidates for wi.

Let us consider the time complexity of this solution. Our binary search uses log k
phases. In each phase, we have to simulate the process as described above (which we
can do in O((m+ k) log m). In total, this solution works in O((m+ k) log m log k) time.

Problem Stamp Rally

AtCoder Grand Contest 002.
Limits: 2s, 256MB.
https://kostka.dev/sp/sta

We have an undirected graph with N vertices and M edges. The vertices are
numbered 1 through N, and the edges are numbered 1 through M. Edge i connects
vertices ai and bi. The graph is connected.

On this graph, Q pairs of brothers are participating in an activity called Stamp
Rally. The Stamp Rally for the i-th pair will be as follows:

• One brother starts from vertex xi, and the other starts from vertex yi.

• The two explore the graph along the edges to visit zi vertices in total, including
the starting vertices. Here, a vertex is counted only once, even if it is visited
multiple times, or visited by both brothers.

• The score is defined as the largest index of the edges traversed by either of them.
Their objective is to minimize this value.

Find the minimum possible score for each pair.

https://kostka.dev/sp/sta

24 CHAPTER 2. EXTENSIONS OF BINARY SEARCH

Constraints

• 3 ≤ N ≤ 105

• N − 1 ≤ M ≤ 105

• 1 ≤ ai < bi ≤ N

• The given graph is connected.

• 1 ≤ Q ≤ 105

• 1 ≤ xj < yj ≤ N

• 3 ≤ zj ≤ N

Input

The input is given in the following format:

N M
a1 b1
a2 b2
...

aM bM

Q
x1 y1 z1
x2 y2 z2
...

xQ yQ zQ

Output

Print Q lines. The i-th line should contain the minimum possible score for the i-th
pair of brothers.

2.2. FRACTIONAL CASCADING 25

Example

For the input data:

5 6
2 3
4 5
1 2
1 3
1 4
1 5
6
2 4 3
2 4 4
2 4 5
1 3 3
1 3 4
1 3 5

the correct result is:

1
2
3
1
5
5

Solution

We will find a way to answer all the queries simultaneously using parallel binary
search.

If we want to answer just one query, we can simply ask if score s is enough to
visit zi vertices. To do so, we can look at our original graph, considering only edges
with labels less than or equal to s, and determine connected components. The easiest
way to do it is to keep disjoint sets with vertices of components (aka union-find). If
number of vertices in all of components that brothers can visit (we will have at most
two components, depending if they end up in the same component) is at least zi, then
score is at most s. Therefore we can use binary search to minimize the score.

If we binary search independently for each query, we end up with a solution working
in O(QM log M lg∗ N) time. We can speed it up by parallelizing our binary search to
end up with O((Q + M) log M lg∗ N) time complexity.

2.2. Fractional cascading

Fractional cascading was first introduced in 1986 in [Chazelle and Guibas, 1986a]
and [Chazelle and Guibas, 1986b] as a technique used in computational geometry.

26 CHAPTER 2. EXTENSIONS OF BINARY SEARCH

To show how this method works, let us consider the following problem. We are
given k sorted lists of integers (catalogs) of lengths n1, n2, . . . , nk and we want to
answer the following queries: find the smallest number greater than or equal to some
x in each of these lists.

For example, let us consider four lists:

• A1 = [3, 7, 8, 10],

• A2 = [4, 7, 11],

• A3 = [2, 3],

• A4 = [1, 6, 7, 9].

For x = 8, we should return that 8, 11, 9 are answers in A1, A2, and A4, respec-
tively, and for A3 there is no such integer.

The first solution is to simply use binary search on each of the input lists. Then
the time complexity will be (in the worst case when all the lists have similar lengths):
O(k log N

k) where N =
∑k

i=1 ni. In search for a better solution, we can think of merging
all the lists into one large list and perform only one binary search on this new list. In
our example, we will consider the following list denoted by A.

A 1 2 3 3 4 6 7 7 7 8 9 10 11

A1 3 7 8 10

A2 4 7 11

A3 2 3

A4 1 6 7 9

Note that this list can be constructed in O(N +N log k) time by using a method similar
to the one used in merging two halves in the merge sort algorithm.

Now we still need to get answers for all the lists. We binary search over A trying
to find an integer greater than or equal to x. This takes O(log N). Now we notice that
we need to find the first element from each list equal or to the right of this element. It
is easy to notice that the index of the answer for each list is how many elements from
this list are to the left plus one. To answer quickly, we can construct an additional list
with all the indices of the answers for each element in our new list. For instance, in
our case for x = 8, we can store [2, 2,⊥, 3].

2.2. FRACTIONAL CASCADING 27

A 1 2 3 3 4 6 7 7 7 8 9 10 11

A1 3 7 8 10

A2 4 7 11

A3 2 3

A4 1 6 7 9

This allows us to answer queries in total O(log N + k) time, but using additional
O(Nk) memory, as we need to store the answer for each element in A.

Let us try to improve this idea. Instead of keeping all the answers for all the
elements, let us just add pointers where we can deduct answer from the answer of the
previous list. For example, if we know that 8 is the answer in A1, then answer in A2

has to be 11, as this is the smallest element greater than 8.

A1 3 7 8 10

A2 4 7 11

Unfortunately, in some cases these pointers will not help us that much, especially
when we have long segments with elements only from one catalog, for example:

Ai 1 2 9

Ai+1 4 5 5 5 7 8 8 8 10 11

It turns out that can we merge these two ideas and come up with a decent
solution. Let us create a new set of lists A′1, A′2, . . . , A′

k
, where A′

k
= Ak , and for every

i = k − 1, k − 2, . . . , 1: A′i will be equal to the union of Ai and every other element of
A′i+1 (in gray on the picture below). This way our pointers will always be useful, as
they will be pointing either to the element itself, or to the proper successor in the next
catalog.

A′i 1 2 5 5 8 8 9 11

A′i+1 4 5 5 5 7 8 8 8 10 11

Now, we can use binary search only on the first catalog (A′1) and then use our
pointers to check the answers in other arrays. The answer for each following catalog
will be approximately an element pointed by our pointer, i.e. either the element being
pointed to, or its predecessor (in the example above, if we look for x = 7, the answer
for Ai is 8, while the answer for Ai+1 is equal to 7). Well, almost. We might end up

28 CHAPTER 2. EXTENSIONS OF BINARY SEARCH

with elements not being a member of our original list. To fix this, while we build A′i
we can add pointers to the next element which originally comes from Ai.

We just have to estimate how many new elements we will create. In general,
we can see that |A′1 | = |A1 | +

1
2 |A2 | +

1
4 |A3 | + . . ., and in total: |A′1 | + |A

′
2 | + . . . =∑k

i=1 |Ai |(1 +
1
2 +

1
4 + . . .) ≤ 2N, so we will have at most N new elements! In the end,

we end up with time complexity for each query is O(log N + k), with additional O(N)
memory.

We often use this technique in segment trees. Imagine that in each node in a
segment tree we store a sorted list of elements and every node contains a list which
was constructed by merging two lists belonging to its children. Here, if we want to do
binary search on these lists, normally we perform binary search on each list separately.
We can speed it up by storing two pointers for each element. One pointer will point to
the corresponding answer (smallest index greater than or equal to the current element)
in the left child, while the second will point to the answer in the right child. This way,
we just need to perform one binary search in the root and then use these pointers for
finding answers in every other node that we need to check.

0 3 5 7

0 7 3 5

7 0 3 5

These pointers can be easily computed while we merge our lists without any
additional burden. In general, when we need to touch around O(log N) nodes in our
tree, this speeds up our queries from O((log N)2) time to simply O(log N) time, but we
pay with extra O(N) memory.

Problem Subtree Minimum Query

Educational Codeforces Round 33.
Limits: 6s, 512MB.
https://kostka.dev/sp/smq

You are given a rooted tree consisting of n vertices. Each vertex has a number
written on it; number ai is written on vertex i.

Let’s denote d(i, j) as the distance between vertices i and j in the tree (that is,

https://kostka.dev/sp/smq

2.2. FRACTIONAL CASCADING 29

the number of edges in the shortest path from i to j). Also let’s call the k-blocked
subtree of vertex x the set of vertices y such that both these conditions are met:

• x is an ancestor of y (every vertex is an ancestor of itself);

• d(x, y) ≤ k.

You are given m queries to the tree. i-th query is represented by two numbers xi
and ki, and the answer to this query is the minimum value of aj among such vertices
j such that j belongs to ki-blocked subtree of xi.

Write a program that would process these queries quickly!

Input

The first line contains two integers n and r (1 ≤ r ≤ n ≤ 100 000) – the number
of vertices in the tree and the index of the root, respectively.

The second line contains n integers a1, a2, . . . , an (1 ≤ ai ≤ 109) – the numbers
written on the vertices.

Then n − 1 lines follow, each containing two integers x and y (1 ≤ x, y ≤ n) and
representing an edge between vertices x and y. It is guaranteed that these edges form
a tree.

Next line contains one integer m (1 ≤ m ≤ 106) – the number of queries to
process. Note that the queries are given in a modified way.

Then m lines follow, i-th line containing two numbers pi and qi, which can be used
to restore i-th query (1 ≤ pi, qi ≤ n).

i-th query can be restored as follows. Let last be the answer to the previous query
(or 0 if i = 1). Then xi = ((pi + last) mod n) + 1, and ki = (qi + last) mod n.

Output

Print m integers. The i-th of them has to be equal to the answer to the i-th
query.

30 CHAPTER 2. EXTENSIONS OF BINARY SEARCH

Example

For the input data:

5 2
1 3 2 3 5
2 3
5 1
3 4
4 1
2
1 2
2 3

the correct result is:

2
5

Solution

First, we use DFS to calculate depth of each vertex and the size of its subtree.
Then we build a segment tree on these values (depths and sizes) in the order generated
by an Eulerian path, in which each node will store the list of numbers written on vertices
of some contiguous subsequence from our path. We can sort these lists by depth of
the corresponding vertices (we sort in linear time by merging sorted lists). As we will
be always looking for the minimum value restricted by some depth, we can just store
prefix minimums.

Now, for each query, we just need to find all the nodes related to the vertices in our
subtree (it will be a contiguous subsequence) and then perform binary search on each
of the nodes to find the deepest vertex that we can take and get the corresponding
minimum (of the prefix up to this vertex). To perform these binary searches, we can
use fractional cascading, so we can answer each query in O(log n) time, so the total
time complexity of this solution ends up being O(n + q log n).

Dynamic Fractional Cascading

Fractional Cascading can also be used on dynamic queries, i.e. for lists (catalogs)
that can change in time (we can add/delete/modify elements). This version
of the problem is a little bit more complex, as we need to both update the
augmented catalogs and the pointers between them, but it is still possible to
perform in the same complexity as the static version. For more details, see
[Mehlhorn and Näher, 1990].

Chapter 3

Segment trees rediscovered

3.1. Segment tree beats

Segment tree is a really powerful data structure that should be in the repertoire
of every sports programmer. The very basic problem that is solvable by this structure
can be defined as follows. We are given a sequence of integers (a1, a2, . . . , an). On this
sequence we define two operations:

1. update(i, j, p) – update all values between indices i and j (inclusive) using some
parameter p,

2. query(i, j) – return the aggregated value for a continuous subsequence between
indices i and j.

The most common update variants are:

1. + variant: for each value ai, ai+1, . . . , aj , add p,

2. max variant: for each value ai, ai+1, . . . , aj , change value ak to max(ak, p). In
other words: if the value ak was less than p, change it to p.

Similarly, we define two query variants:

1. + variant: return the sum ai + ai+1 + . . . + aj ,

2. max variant: return max(ai, ai+1, . . . , aj).

Therefore, we have four different variants of the whole problem: (+,+), (+,max),
(max,max), and (max,+), where the first operation in the pair is the variant of the
updates, while second one is the variant of the queries. Three of these problems
(except for (max,+)) had an easy solution using segment trees with the time complexity

31

32 CHAPTER 3. SEGMENT TREES REDISCOVERED

O(n + m log n), where m is the number of operations (updates and queries). The last
variant was causing a lot of problems, until in 2016, a solution was proposed by Ryui Ji,
in form of a research report required from the candidates of the Chinese national team
for the International Olympiad in Informatics1. Below we will describe this approach.

We assume here that the reader has some basic knowledge of the general segment
tree with lazy propagation.

Let us once again define the problem. We want to have a structure over the
integer sequence (a1, a2, . . . , an) that allows us to do the following operations:

1. update(i, j, p), for every k between indices i and j, change ak to max(ak, p),

2. query(i, j), return the sum ai + ai+1 + . . . + aj .

Let us recollect that each node in the segment tree contains some aggregated
values about the segment it covers. In our node, we will keep the following values:

• min - the minimum value in the segment,

• count_min - how many such minimum values we have in this segment,

• second_min - second minimum value in this segment (or infinity, if all elements
are equal, and the second minimum does not exist),

• sum - the sum of all elements in the segment,

• lazy - a variable used for lazy propagation – if we want to go deeper into this
subtree, we have to first update (maximize) the children of the current node with
the value lazy (if it is not empty).

Please note that all these values (except the last one) can be modified by lazy
tags in their ancestors.

You can check that from all these values given for two children, we can easily
compute values for the parent.

How we can update these values? We have three possible cases:

• p ≤ min. In this case, nothing will be changed, as even the smallest value in the
segment is greater than the parameter p.

• min < p < second_min. In this case only values equal to min will change to p.
We have to update min to p and change sum to sum′ + (p − min′) · count_min,
where sum′ and min′ represent values before the update. We also should update
the value lazy to p, if it was not set, or was smaller than p.

1https://codeforces.com/blog/entry/57319

https://codeforces.com/blog/entry/57319

3.1. SEGMENT TREE BEATS 33

• p ≥ second_min. This is the only case that we cannot solve in this node, and
we have to call the update recursively in both of our children. After that, we
update the values in our node in O(1) time.

If the values are updated properly, sum over all O(log n) nodes covering the seg-
ment in the query will be the answer for this query. Please note that sometimes we
also have to propagate lazy values further down, like in the typical segment tree.

Now, the correctness of all the operations on this data structure should not be
hard to see, but what about the time complexity? To calculate this complexity, we
would like to count how many times we have to call update recursively, i.e. be in
the third case mentioned above (p ≥ second_min). To estimate the complexity, we
will introduce a potential function for the nodes in the tree. Let us say that the
potential P(a) of the node a is the number of distinct integers in the segment covered
by this node (without considering lazy updates). In the beginning, the total potential∑

a∈nodes P(a) = O(n log n), as in the worst case every element is different and is
covered by O(log n) nodes. Now, every update can increase the potential by at most
O(log n), as we can add a new value in at most O(log n) nodes.

Finally, let us notice that every time we fall into the third case and call our update
recursively, we will change at least two values in this node (min and second_min) to
p (as p ≥ second_min), therefore the number of distinct integers in this node (and
its subtree) will decrease. We can see now that we can decrease our potential at
most O((n+ q) log n) times. Therefore the overall amortized time complexity is indeed
O((n + q) log n), which was a pretty surprising result.

Problem The Child and Sequence

Codeforces Round #250.
Limits: 4s, 256MB.
https://kostka.dev/sp/chi

At the children’s day, the child came to Picks’s house and messed his house up.
Picks was angry at him. A lot of important things were lost, in particular the favorite
sequence of Picks.

Fortunately, Picks remembers how to repair the sequence. Initially he should
create an integer array a[1], a[2], . . . , a[n]. Then he should perform a sequence of m
operations. An operation can be one of the following:

1. Print operation l, r. Picks should write down the value of
∑r

i=l a[i].

2. Modulo operation l, r, x. Picks should perform assignment a[i] = a[i] mod x
for each i (l ≤ i ≤ r).

https://kostka.dev/sp/chi

34 CHAPTER 3. SEGMENT TREES REDISCOVERED

3. Set operation k, x. Picks should set the value of a[k] to x (in other words
perform an assignment a[k] = x).

Can you help Picks to perform the whole sequence of operations?

Input

The first line of input contains two integers: n, m (1 ≤ n,m ≤ 105). The second
line contains n integers, separated by spaces: a[1], a[2], . . . , a[n] (1 ≤ a[i] ≤ 109) –
initial values of array elements.

Each of the next m lines begins with a number type (type ∈ {1, 2, 3}).

• If type = 1, there will be two integers more in the line: l, r (1 ≤ l ≤ r ≤ n). This
means that we consider the first operation (print) with values l and r.

• If type = 2, there will be three integers more in the line: l, r, x (1 ≤ l ≤ r ≤
n; 1 ≤ x ≤ 109), which correspond to the second operation.

• If type = 3, there will be two integers more in the line: k, x (1 ≤ k ≤ n; 1 ≤ x ≤
109), which correspond the third operation.

Output

For each operation 1, please print a line containing the answer. Notice that the
answer may exceed the 32-bit integer.

Examples

For the input data:

5 5
1 2 3 4 5
2 3 5 4
3 3 5
1 2 5
2 1 3 3
1 1 3

the correct result is:

8
5

Note:

• At first, a = {1, 2, 3, 4, 5}.

• After operation 1, a = {1, 2, 3, 0, 1}.

3.1. SEGMENT TREE BEATS 35

• After operation 2, a = {1, 2, 5, 0, 1}.

• At operation 3, 2 + 5 + 0 + 1 = 8.

• After operation 4, a = {1, 2, 2, 0, 1}.

• At operation 5, 1 + 2 + 2 = 5.

And for the input data:

10 10
6 9 6 7 6 1 10 10 9 5
1 3 9
2 7 10 9
2 5 10 8
1 4 7
3 3 7
2 7 9 9
1 2 4
1 6 6
1 5 9
3 1 10

the correct result is:

49
15
23
1
9

Solution

We will show how we can use the general segment tree to solve this problem. We
can see that the first and the last operation are "standard", so let us focus on the
modulo operations. The key observation is a fact that if we use the operation and some
value a[i] will change, it will be at least halved, i.e. the new a[i] is at most a[i]

2 . Because
of that, we can change value of a[i] at most log2 a[i] times. Let us now introduce
the potential function for this problem: P(i) for value a[i] will be exactly log2 a[i].
Therefore, every time we have to update some value, its potential will decrease by
at least one. The total potential at the beginning is, of course, O(n log A), where A
denotes the maximum value of ai.

Let us not forget about the third operation, that might increase the potential.
Fortunately, if we set the value of some element to x, we increase its potential by at
most log2 x.

Therefore, we will keep a traditional segment tree and store sum and max in the
nodes. If we try to apply modulo operation on some node, we will check if the maximum
value is smaller than the parameter of the operation. If that is the case, then we will
change the value, and we know that we will do this not very often.

36 CHAPTER 3. SEGMENT TREES REDISCOVERED

The total time complexity will be O(n log n log A).

Moreover, we can modify the last operation (assign value) to also work on inter-
vals, i.e. we can set a[k] = x for l ≤ k ≤ r. We will leave solving this extended problem
for the reader as an exercise.

3.2. Historic information for sequences

In this section, we will take a look at another problem that is quite difficult to
solve by the typical segment tree, but we will show another technique that will help us
to solve it simply and efficiently.

Problem The Resistor

Tsinghua Training 2015.
Limits: 2s, 128MB.
https://kostka.dev/sp/res

Note: The statement of this problem was slightly simplified.

Dr. Picks designed a complex resistor. The resistor consists of n independent
water tanks numbered from 1 to n. Each water tank is cylindrical and has a value
at the top and at the bottom which allows the water to flow at the rate of 1m3

s per
second. The upper valve of each water tank is connected to the faucet, which can
supply water indefinitely, and the lower valve is not connected to anything, allowing
water to flow out. In the beginning, in ith water tank, there is ai cubic meters of
water.

Dr. Picks will then need to debug this complex resistor. He will perform the
following five operations:

1. Open upper valves of all the water tanks between l and r (inclusive) and let the
water flow in for x seconds.

2. Open lower valves of all the water tanks between l and r (inclusive) and let the
water flow out for x seconds.

3. Set the amount of water of all the water tanks between l and r to exactly x m3

s .

4. Measure the amount of water in some chosen water tank k.

5. Measure what was the maximum amount of water in some chosen water tank k
(as the water-soaked places will leave obvious water stains).

https://kostka.dev/sp/res

3.2. HISTORIC INFORMATION FOR SEQUENCES 37

Now, he performed all these operations several times, but he lost his notes. Can
you help him determine all the water levels he measured?

Input

The first line of the standard input contains two integers n and m (1 ≤ n,m ≤
500 000) – the number of water tanks and the number of operations that Dr. Picks
performed. The next line contains n integers a1, a2, . . . , an (0 ≤ ai ≤ 109) – the initial
amount of water in the water tanks. Last m lines contain a description of operations,
in one of the following forms:

• 1 li ri xi (1 ≤ li ≤ ri ≤ n, 0 ≤ xi ≤ 109) – this operation indicates opening of all
the upper valves of water tanks between li and ri for xi seconds,

• 2 li ri xi (1 ≤ li ≤ ri ≤ n, 0 ≤ xi ≤ 109) – this operation indicates opening of all
the lower valves of water tanks between li and ri for xi seconds,

• 3 li ri xi (1 ≤ li ≤ ri ≤ n, 0 ≤ xi ≤ 109) – this operation indicates that we set the
amount of water in all the water tanks between li and ri to exactly x m3

s .

• 4 yi (1 ≤ yi ≤ n) – this operation indicates measuring the amount of water in
yith water tank,

• 5 yi (1 ≤ yi ≤ n) – this operation indicates measuring the maximum amount of
water that was in yith water tank so far.

Output

For each measuring operation, output the measured amount in a separate line.

Example

For the input data:

5 6
1 2 3 4 5
2 1 3 2
4 1
1 1 4 1
5 3
3 1 5 4
4 2

the correct result is:

0
3
4

38 CHAPTER 3. SEGMENT TREES REDISCOVERED

Solution

We have the following operations that change our initial sequence:

1. change ai to ai + x for l ≤ i ≤ r,

2. change ai to max(0, ai − x) for l ≤ i ≤ r,

3. change ai to x for l ≤ i ≤ r.

Moreover, after every operation, we have to keep track of the maximum value for
every ai (we are calling this information the historic information). We will say that
after every operation, we will update some auxiliary value mi = max(mi, ai). Then, we
have queries about ai and mi.

Let us observe that every operation changing the sequence ai is of the form
"change ai to max(C, ai +D)", where C and D are some constants. We will represent
these operations as functions fC,D. For example, the first operation can be represented
as f0,x, while the third one fx,−∞. Let us think for a moment how this general function
fC,D looks like:

C
x + D max(C, x + D)

These functions have an interesting property that if we apply one such function
to another, we still get a function of the same kind. Let us take: f = fC1,D1 and
g = fC2,D2 , then:

g(f (x)) = max(C2,max(C1, x + D1) + D2) = max(max(C2,C1 + D2), x + D1 + D2).

If we take C ′ = max(C2,C1+D2) and D′ = D1+D2, we have two constants, so we
can say that g(f (x)) = max(C ′, x + D′). Therefore, if we forget about the fifth query
(print the maximum), we can simply store two constants C and D for each node in the
segment tree to perform all the operations.

What about the last query, the historic information that we have to keep? We
cannot do it simply using lazy propagation, as we would have to store many updates,
as the values might change several times before we will have to push down a lazy tag.

3.3. WAVELET TREES 39

In this particular problem, we are lucky enough, because it turns out that if we apply
maximum to these functions, then we still have a function of the form fC,D:

max(f (x), g(x)) = max(max(C1, x + D1),max(C2, x + D2)) =

= max(C1,C2, x + D1, x + D2) = max(max(C1,C2), x +max(D1,D2))

f (x)
g(x) max(f (x), g(x))

Therefore, we can also keep a similar function that will represent the maximum
value for each possible argument. Let us say that we will keep four values in each node
C, D, and their equivalents for historical values Cmax and Dmax. Function fCmax,Dmax

will represent the historical values. If we want to push historical values Amax and Bmax

to the node with values (C,D,Cmax,Dmax), then we have:

fCmax,Dmax = max
(
fCmax,Dmax , fAmax,Bmax (fCD)

)
Meaning that either the historical value does not change (is greater), or we fold

the propagated historical value function with the current value. We have shown that
both folding and maximum still results in the same type of function.

To conclude, we just need to use a segment tree with lazy propagation. In each
node we store four values symbolizing two functions, one for actual value and one for
the historical values. For each operation changing the sequence, we lazily update the
functions, using the formulas above. When we need to print an answer to some query,
we traverse to the leaf, and we apply the corresponding function in this node to the
value given at the beginning. Please note that the value itself doesn’t matter at all, in
particular, we can also answer the following queries: what would be the value of this
element if the value at the beginning was different.

3.3. Wavelet trees

A wavelet tree is a relatively new data structure that was introduced by Grossi,
Gupta, and Vitter in 2003 [Grossi et al., 2003] to represent compressed suffix arrays.
Since then, this data structure has found many applications, from string processing to
geometry [Navarro, 2014]. Its applications in sports programming were also mentioned

40 CHAPTER 3. SEGMENT TREES REDISCOVERED

in [Castro et al., 2016]. In this section, we will first introduce the data structure and
then quickly move to its applications in real problems.

Wavelet tree

Let us consider the following word: aabcdabcacb. For clarification, we will add
the position of each letter as its index, so our word will be represented as

a1a2b3c4d5a6b7c8a9c10b11.

Now we will build a segment tree, but with a slight twist. Each inner node will divide
letters into two groups: one group less than or equal to some chosen letter in the
alphabetic order, and the second one: all letters greater than this chosen letter. It is
really important that we still keep the relative order in these groups. Therefore our
tree will look as follows:

a1a2b3c4d5a6b7c8a9c10b11

a1a2b3a6b7a9b11 c4d5c8c10

a1a2a6a9 b3b7b11 c4c8c10 d5

Please note that we will have exactly |Σ | leaves, where Σ is the alphabet. Almost
always we can compress the alphabet first (i.e. map all letters to numbers from 1 to
|Σ |), so we will have at most p = min(|Σ |, n) different elements, where n is the length
of the sequence. Then, the height of such a tree will be at most log p, if we always
choose a letter "in the middle” as the pivot.

Now, we will try to answer the following queries: given integers l, r, and k, what
is the k-th smallest (alphabetically) letter from all letters between indices l and r. In
other words, if we will take all letters between l and r and sort them, which letter will
be in the k-th place in the sorted sequence (numbered from 1).

To do so, let us change our representation a little bit. Instead of keeping words,
we will just remember if each letter is going to the left child (and represent it as 1), or
to the right child (0). Now the whole tree can be represented in the following array:

3.3. WAVELET TREES 41

a1 a2 b3 c4 d5 a6 b7 c8 a9 c10 b11

1 1 1 0 0 1 1 0 1 0 1

a1 a2 b3 a6 b7 a9 b11 c4 d5 c8 c10

1 1 0 1 0 1 0 1 0 1 1

a1 a2 a6 a9 b3 b7 b11 c4 c8 c10 d5

Black vertical lines show the division between words. Please note that we do not
need them, and we also do not need the letters in grey cells, but they are shown just
for clarity.

Now let us go back to our query. At each level, we have to decide if we want
to go to the left child, or to the right child. To do so, we have to know how many
letters from the given segment fall into each of the children. It is pretty easy, given
our representation above, because we just need to count all the ones in this segment.
Moreover, we can precalculate the prefix sums in each level to check the number of
ones in any given segment in O(1) time. Let the number of ones be c1. Then we have
two options:

• c1 ≤ k. Then we know that we have to look for k-th smallest letter in the left
child (in the same segment),

• c1 > k. Then we are looking for the c1 − k-th smallest letter in the right child
(still in the same segment).

Now the only problem left is how to determine the segment in each child. Once
again, we will use the prefix sums: we just need to know how many zeroes or ones
already appeared in our word so far and move to this index. In the following picture,
the red line symbolizes some possible segment border. We can just look at the prefix
sum that immediately precedes it to figure out where exactly will it be in the left child,
and subtract it from the number of all letters up to this point, to have the position of
this border in the right child.

42 CHAPTER 3. SEGMENT TREES REDISCOVERED

a1 a2 b3 c4 d5 a6 b7 c8 a9 c10 b11

1 2 3 3 3 4 5 5 6 6 7

a1 a2 b3 a6 b7 a9 b11 c4 d5 c8 c10

1 2 2 3 3 4 4 1 1 2 3

a1 a2 a6 a9 b3 b7 b11 c4 c8 c10 d5

So let us try to recollect everything and write the code to answer our queries:

Function Query(l, r, k):
return QueryOnLevel(0, l, r, k)

Function QueryOnLevel(level, l, r, k):
if node is a leaf

return corresponding letter

c1← pre f ix_sums[level][r] − pre f ix_sums[level][l − 1];
if c1 ≤ k

return QueryOnLevel(level +
1, pre f ix_sums[level][l], pre f ix_sums[level][r], k)

else
new_l ← (l − pre f ix_sums[level][l]) + pre f ix_sums[level][n];
// We are padding here all letters from the left child to

move to the right side of the table.
new_r ← (r − pre f ix_sums[level][r]) + pre f ix_sums[level][n];
return QueryOnLevel(level + 1, new_l, new_r, k − c1)

Now let us also notice that some updates might be pretty easy. For example
swapping two neighbouring letters in our initial word should be relatively easy. We just
need to swap these letters, and change at most two values in our prefix sums on each
level.

If we want to swap any two letters, we can do that as well, but we need to have
some additional data structure, for example a segment tree. Then we can add/remove
values from it and quickly get answer how many zeroes/ones are in some queried
segment. Then the time complexity of queries and updates rises to O(log n · log |Σ |).

Now let us move to some real problems from algorithmic competitions.

3.3. WAVELET TREES 43

Problem Destiny

Codeforces Round #429.
Limits: 2.5s, 512MB.
https://kostka.dev/sp/des

Once, Leha found in the left pocket an array consisting of n integers, and in the
right pocket q queries of the form (l, r, k). If there are queries, then they must be
answered. Answer for the query is minimal x such that x occurs in the interval [l, r]
strictly more than r−l+1

k times or −1 if there is no such number. Help Leha with such
a difficult task.

Input

First line of input data contains two integers n and q (1 ≤ n, q ≤ 3 ·105) – number
of elements in the array and number of queries respectively.

Next line contains n integers a1, a2, . . . , an (1 ≤ ai ≤ n) – Leha’s array.

Each of next q lines contains three integers l, r and k (1 ≤ l ≤ r ≤ n, 2 ≤ k ≤ 5)
– description of the queries.

Output

Output answer for each query in the new line.

Examples

For the input data:

4 2
1 1 2 2
1 3 2
1 4 2

the correct result is:

1
-1

Whereas for the input data:

5 3
1 2 1 3 2
2 5 3
1 2 3
5 5 2

the correct result is:

2
1
2

https://kostka.dev/sp/des

44 CHAPTER 3. SEGMENT TREES REDISCOVERED

Solution

Of course we will start by building the wavelet tree on the sequence given in
the input. To answer a query, we will start from the root, mark it and move down
recursively. In each step, we will take all marked nodes at a given level and look at
their children. If the child has at least r−l+1

k numbers from the given interval, we mark
it (as it might contain our answer). Please note that on each level we will mark at
most k nodes. Therefore we can answer each query in O(k log n) time.

Problem Chef and Swaps

Codechef September Challenge 2014.
Limits: 1s, 64MB.
https://kostka.dev/sp/swa

This time, Chef has given you an array A containing N elements.

He has also asked you to answer M of his questions. Each question sounds like:
"How many inversions will the array A contain, if we swap the elements at the i-th and
the j-th positions?".

An inversion is such a pair of integers (i, j) that i < j and Ai > Aj .

Input

The first line contains two integers N and M (1 ≤ N, M ≤ 2 · 105) - the number
of integers in the array A and the number of questions respectively.

The second line contains N space-separated integers - A1, A2, . . . , AN , respectively
(1 ≤ Ai ≤ 109).

Each of next M lines describes a question by two integers i and j (1 ≤ i, j ≤ N) -
the 1-based indices of the numbers we’d like to swap in this question.

Mind that we don’t actually swap the elements, we only answer "what if" ques-
tions, so the array doesn’t change after the question.

Output

Output M lines. Output the answer to the i-th question of the i-th line.

https://kostka.dev/sp/swa

3.3. WAVELET TREES 45

Examples

For the input data:

6 3
1 4 3 3 2 5
1 1
1 3
2 5

the correct result is:

5
6
0

Note:

Inversions for the first case: (2, 3), (2, 4), (2, 5), (3, 5), (4, 5).

Inversions for the second case: (1, 3), (1, 5), (2, 3), (2, 4), (2, 5), (4, 5).

In the third case the array is [1, 2, 3, 3, 4, 5] and there are no inversions.

Solution

This is a really cool problem with inversions. First, let us represent the array from
the input in the geometric manner. The following points represent elements of the
array [1, 4, 5, 3, 2, 3], where y axis represents values and x axis represents indices:

1 2 3 4 5 6

1

2

3

4

5

Now every inversion is a pair of two different points, where the left one is higher
than the right one. We can count inversions in the original table pretty easy in O(n log n)
time, using the count tree or merge sort algorithm. Please note that we can renumber
the values, as there will be at most n different values and only the relative order matters.

Now let us think what will happen if we swap a pair of points. Let us say we will
swap the second element with the fifth one. Then our array will look as follows:

46 CHAPTER 3. SEGMENT TREES REDISCOVERED

1 2 3 4 5 6

1

2

3

4

5

Please note that for every point outside of the rectangle in the picture above, the
number of inversions that this element generates stays the same (either we still have
inversion with our element, or we exchange this inversion for the inversion with the
swapped element).

That is not the case for all points inside the rectangle. If we had the inversion
with our swapped elements, now we lose both of them. Otherwise, if we didn’t have
the inversions, now we have two new. Therefore we just need to find the number of
points in some rectangle on the plane. The difference in inversions will be exactly twice
the number of points inside this rectangle.

This query can be done pretty easy offline, using the inclusion-exclusion principle.
We can create events in the corners of every rectangle and then offline sweep all
elements and count the number of points inside each rectangle starting at the origin.
From these rectangles, we can recover all the results.

But we can use the wavelet tree to realize these queries online. First, let us create
a Wavelet tree on the array from the input. Now we want to count elements between
values a and b, between indices l and r. We will do this in a recursive manner. We
have three possible cases.

• Node in the wavelet tree has no values between a and b, then the answer is 0.

• Node has all values between a and b, then the answer is the number of elements
in this node.

• Node has some values between a and b. Then we have to recursively call our
function in both children, mapping our intervals properly in them.

One might check that we just need at most O(log |Σ |) recursive calls (the argu-
ment is similar as in the regular interval tree), so the total time complexity is exactly
O(log |Σ |).

3.3. WAVELET TREES 47

Wavelet matrix

In [Claude et al., 2015], another representation of the wavelet tree was intro-
duced, called the wavelet matrix.
The idea is pretty simple, instead of keeping overall structure that each child is
aligned with its parent, in each level we put all left children to the left and all
right children to the right. This bit-vector can be further compressed, with a
slightly worse performance. The whole data structure to be constructed directly
(and on-the-fly) over larger alphabets.

Chapter 4

Tree decompositions

In this chapter, we will focus on two techniques that will allow us to efficiently
solve various problems on trees.

4.1. Centroid decomposition

First, we will explain how we can use the divide and conquer technique on trees.
Normally, when we use this technique, we split a problem into smaller subproblems. In
the case of trees, we would like to divide the tree into a set of subtrees. Ideally, we
would like to have two subtrees of size N

2 , where N denotes the number of nodes in
the original tree, but quite often it is almost impossible to find such a division (as an
example, consider a star, i.e. one vertex connected to every other vertex).

To help with this problem, we will use the notion of a centroid (hence the name
centroid decomposition). A centroid is a vertex in our tree which we can remove and
get subtrees of sizes at most N

2 . Note that there can be at most one subtree of exactly
that size.

In each tree we can find a centroid (you can prove that in a given tree there can
be at most two centroids, and in the case of two centroids they have to be connected
by an edge) and we can do it quite easily. We can start from an arbitrary node in the
tree and calculate the sizes of each subtree originating from the children of this node.
If every subtree has size at most N

2 , then we are done, we have found the centroid.
Otherwise, there is exactly one subtree with more than N

2 vertices. We can move to
this subtree by changing the node to the corresponding neighbour and continue the
process. We can implement it by running DFS two times. With the first one, we
calculate the sizes of the subtrees with the root in the arbitrary node. Then, in the
second DFS, we check the sizes of the subtrees and move towards the centroid. Note
that we can update the sizes of subtrees in constant time (or even simpler, we do not
have to consider a new subtree that is formed “above” our moving root).

49

50 CHAPTER 4. TREE DECOMPOSITIONS

In the picture below, we are given an example. The root of this tree is 1. Inside
small rectangles on the right hand size of each vertex, we can see the size of the subtree
rooted at each vertex. We start at the root and we check if all of our subtrees have
size at most N

2 . If that is not the case, we enter the subtree violating this condition,
until we reach the centroid. In our example, we reach 6. Then, we remove the centroid
from the tree, and then recursively we can find the centroids in each of the remaining
components. We find 3 and 7 and we are left with just single nodes and edges.

1

2

3

4 5

6

7

8 9 10

11

11

10

9

1 7

6

5

1 1 2

1

1

2

3

4 5

7

8 9 10

11

5

4

3

1 1

5

1 1 2

1

1

2

4 5

8 9 10

11

Using this decomposition, we are finally ready to use divide and conquer on trees.
Let us say that we want to calculate the number of paths fulfilling some properties. We
can find the centroid and consider all the paths going through it. Then we can remove
our centroid from the tree and we are left with a forest, where every component has at
most half the number of vertices from the original tree. We can continue the process
in each of the components (finding the centroid, removing it, and continuing solving
subproblems). If we can compute the answer for one instance of a problem in linear
time, then it is easy to conclude that the total runtime will be O(N log N), as we will
have log N layers of problems (as we divide the size by at least two, each time we go
into subproblems), and the total number of vertices in each layer is at most N.

This technique might seem rather trivial, but it is quite powerful and can be used
in many difficult problems.

4.1. CENTROID DECOMPOSITION 51

Problem Race

International Olympiad in Informatics 2011, first day.
Limits: 3 s, 256 MB.
https://kostka.dev/sp/rac

In conjunction with the IOI, Pattaya City will host a race: the International
Olympiad in Racing (IOR) 2011. As the host, we have to find the best possible
course for the race.

In the Pattaya-Chonburi metropolitan area, there are N cities connected by a
network of N −1 highways. Each highway is bidirectional, connects two different cities,
and has an integer length in kilometers. Furthermore, there is exactly one possible
path connecting any pair of cities. That is, there is exactly one way to travel from one
city to another city by a sequence of highways without visiting any city twice.

The IOR has specific regulations that require the course to be a path whose
total length is exactly K kilometers, starting and ending in different cities. Obviously,
no highway (and therefore also no city) may be used twice on the course to prevent
collisions. To minimize traffic disruption, the course must contain as few highways as
possible.

Implementation

Write a procedure best_path(N,K,H,L) that takes the following parameters:

• N - the number of cities. The cities are numbered 0 through N − 1.

• K – the required distance for the race course.

• H – a two-dimensional array representing highways. For 0 ≤ i < N − 1, highway
i connects the cities H[i][0] and H[i][1].

• L – a one-dimensional array representing the lengths of the highways. For 0 ≤
i < N − 1, the length of highway i is L[i].

You may assume that all values in the array H are between 0 and N − 1, inclusive, and
that the highways described by this array connect all cities as described above. You
may also assume that all values in the array L are integers between 0 and 1 000 000,
inclusive. Your procedure must return the minimum number of highways on a valid
race course of length exactly K. If there is no such course, your procedure must return
−1.

https://kostka.dev/sp/rac

52 CHAPTER 4. TREE DECOMPOSITIONS

Examples

Example 1.
Consider the case shown in the figure below, where N = 4, K = 3,

H =

0 1

1 2

1 3

 , L =

1

2

4

The course can start in city 0, go to city 1,
and terminate in city 2. Its length will be ex-
actly 1 km + 2 km = 3 km, and it consists
of two highways. This is the best possi-
ble course; therefore best_path(N,K,H,L)
must return 2.

Example 2.
Consider the case shown in the figure on
the right, where N = 3, K = 3,

H =

[
0 1

1 2

]
, L =

[
1

1

]
There is no valid course. In this case,
best_path(N,K,H,L) must return −1.

Example 3.
Consider the case shown in Figure 3, where
N = 11, K = 12,

H =

0 1

0 2

2 3

3 4

4 5

0 6

6 7

6 8

8 9

8 10

L =

3

4

5

4

6

3

2

5

6

7

One possible course consists of 3 highways: from city 6 via city 0 and city 2 to

city 3. Another course starts in city 10 and goes via city 8 to city 6. Both of these
courses have length exactly 12 km, as required. The second one is optimal, as there
is no valid course with a single highway. Hence, best_path(N,K,H,L) must return 2.

4.1. CENTROID DECOMPOSITION 53

Subtasks

Subtask 1 (9 points)

• 1 ≤ N ≤ 100

• 1 ≤ K ≤ 100

• The network of highways forms the simplest possible line: For 0 ≤ i < N − 1,
highway i connects cities i and i + 1.

Subtask 2 (12 points)

• 1 ≤ N ≤ 1 000

• 1 ≤ K ≤ 1 000 000

Subtask 3 (22 points)

• 1 ≤ N ≤ 200 000

• 1 ≤ K ≤ 100

Subtask 4 (57 points)

• 1 ≤ N ≤ 200 000

• 1 ≤ K ≤ 1 000 000

Solution

We are given a weighted tree and we are asked to find a simple path of length K,
minimizing the number of edges on this path.

We will use centroid decomposition to solve this problem. First, we need to think
about how to solve the problem if we know that the path goes through some vertex
v. We will run some graph traversal algorithm (such as DFS or BFS) to compute
the distance from v to every other vertex and depth of vertices when we root the
tree in v. Now, we just need to check if there exist two vertices a and b such that
dist(a) + dist(b) = K and then later we will try to minimize depth(a) + depth(b), the
number of edges on this path.

When we have a list of all the distances and depths, we can simply check for each
i if K − dist(i) can be found in the list of distances. Minimizing the number of edges is

54 CHAPTER 4. TREE DECOMPOSITIONS

pretty straightforward as we can always choose the minimum depth of corresponding
vertices (if there are many vertices with the same distance from v). The only tricky
part is to make sure that we will not take two vertices from the same subtree, as the
path has to go through v. To do this, we can either compute all values for a subtree,
check them with values from the preceding subtrees, and then add values from the
currently considered subtree; or keep the identifiers of subtrees for each calculated
distance. Note that we just need to keep information about two different subtrees for
each distance.

This technique allows us to solve this problem in O(N log N + K) time.

4.2. Heavy-light decomposition

The second technique will allow us to quickly perform queries on a tree. The key
idea is to split the tree into several non-intersecting paths, in a way that we can reach
each vertex using at most log N of such paths.

We will once again start by calculating the size of all the subtrees in a given tree
(let denote them as subtree_size), rooting our tree in some arbitrary vertex. We will
call an edge from parent a to child b heavy, if

1
2 subtree_size(a) ≤ subtree_size(b).

All other edges will be called light.

Similarly as we argued earlier that only one subtree can violate centroid conditions,
we can see that from each node there can be at most one heavy edge going down
(otherwise the sum over all subtree sizes would be larger than the size of the whole
subtree rooted in some node).

Now we are ready to define paths. Consider a vertex that does not have any heavy
edges going down from it. Now start going up until you reach a light edge (which will
end the path) or until you reach the root of the tree. This way every path will consist
of one light edge at the top (except for the paths ending at the root) and some number
of heavy edges. We will call these paths heavy.

Below we can see the division into heavy paths. Heavy edges are in bold, light
edges are thin and dashed. Different colours denote different paths in our division.

4.2. HEAVY-LIGHT DECOMPOSITION 55

1

2

3

4 5

6

7 8

9

10 11

12 13 14

14

13

12

5 6

4

1 2

1

2 3

1 1 1

It is easy to see that the paths will not intersect with each other. We can also
notice that every time we traverse through a light edge, the size of the subtree de-
creases at least by half, ergo every vertex in our tree can be reached by using at most
log N paths.

Heavy-light decomposition on vertices

In some problems, it is easier to think about the division into sets of vertices,
not edges. In this case, we can remove light edges and we are left with a similar
division, but every vertex belongs only to one set.

We would like to answer some queries on our tree. Let us say that our tree was
weighted and we would like to answer queries about the maximum value on given paths
from a to b.

First, we will divide our path into two parts, splitting it in the lowest common
ancestor of a and b (note that finding LCA can be a part of answering the query).
Now every part can be divided further into at most log N heavy paths. Then for every
heavy path, we can store a segment tree (or more commonly we keep one segment
tree, where every path has its own segment) with the maximum over intervals, so we
can query an interval that belongs to the path. Note that every path can be queried
in O(log N), so the total time complexity of one query is O(log2 N). We can speed it
up slightly by noticing that for every heavy path (except two: one at the top and the
bottom of each part), we will ask about just the prefix of some heavy path, not the
whole path. Moreover, we can say that for every heavy path except one we will ask
about the prefix of some heavy path. Therefore we can often precompute answers for

56 CHAPTER 4. TREE DECOMPOSITIONS

each prefix and end up with O(log N) time complexity, as we can get answers for all
heavy paths in O(1), except for at most one heavy path (the one at the very top).

Problem Synchronization

Japanese Olympiad in Informatics Open Contest 2013.
Limits: 8 s, 256 MB.
https://kostka.dev/sp/syn

The JOI Co., Ltd. has N servers in total around the world. Each server contains
an important piece of information. Different servers contain different pieces of infor-
mation. The JOI Co., Ltd. is now building digital lines between the servers so that
the pieces of information will be shared with the servers. When a line is built between
two servers, pieces of information can be exchanged between them. It is possible to
exchange pieces of information from one server to another server which is reachable
through the lines which are already built.

Each server has a high-performance synchronization system. When two servers
can exchange pieces of information each other and they contain different pieces of
information, they automatically synchronize the pieces of information. After a syn-
chronization between the server A and the server B, both of the servers A and B will
contain all the pieces of information which are contained in at least one of the servers
A and B before the synchronization.

In order to reduce the cost, only N − 1 lines can be built. After the N − 1 lines are
built, there will be a unique route to exchange pieces of information from one server
to another server without passing through the same server more than once.

In the beginning (at time 0), no lines are built. Sometimes, lines are built in a
harsh condition (e.g. in a desert, in the bottom of a sea). Some of the lines become
unavailable at some point. Once a line becomes unavailable, it is not possible to use
it until it is rebuilt.

It is known that, at time j (1 ≤ j ≤ M), the state of exactly one line is changed.

We need to know the number of different pieces of information contained in some
of the servers at time M + 1.

Write a program which, given information of the lines to be built and the state of
the lines, determines the number of different pieces of information contained in some
of the servers.

Input

Read the following data from the standard input.

https://kostka.dev/sp/syn

4.2. HEAVY-LIGHT DECOMPOSITION 57

• The first line of input contains three space separated integers N, M,Q. This
means the number of the servers is N, a list of M changes of the state of the
lines is given, and we need to know the number of different pieces of information
contained in Q servers.

• The i-th line (1 ≤ i ≤ N −1) of the following N −1 lines contains space separated
integers Xi, Yi. This means the line i, when it is built, connects the server Xi

and the server Yi.

• The j-th line (1 ≤ j ≤ M) of the following M lines contains an integer Dj . This
means the state of the line Dj is changed at time j. Namely, if the line Dj is
unavailable just before time j, this line is built at time j. If the line Dj is available
just before time j, this line becomes unavailable at time j. When the state is
changed at time j, all the synchronization processes will be finished before time
j + 1.

• The k (1 ≤ k ≤ Q) of the following Q lines contains an integer Ck . This means
we need to know the number of different pieces of information contained in the
server Ck in the end.

Output

Write Q lines to the standard output. The k-th line (1 ≤ k ≤ Q) should contain
an integer, the number of different pieces of information contained in the server Ck in
the end.

Constraints

All input data satisfy the following conditions.

• 2 ≤ N ≤ 100 000.

• 1 ≤ M ≤ 200 000.

• 1 ≤ Q ≤ N.

• 1 ≤ Xi ≤ N, 1 ≤ Yi ≤ N, (f or1 ≤ i ≤ N − 1).

• 1 ≤ Dj ≤ N − 1 (1 ≤ j ≤ M).

• 1 ≤ Ck ≤ N (1 ≤ k ≤ Q).

• The values of Ck are distinct.

• If all of the lines are built, there will be a route from each server to every other
server through the lines.

58 CHAPTER 4. TREE DECOMPOSITIONS

Subtasks

Subtask 1 [30 points]: Q = 1 is satisfied.

Subtask 2 [30 points]: Xi = i, Yi = i + 1 (1 ≤ i ≤ N − 1) are satisfied.

Subtask 3 [40 points]: There are no additional constraints.

Example

For the input data:

5 6 3
1 2
1 3
2 4
2 5
1
2
1
4
4
3
1
4
5

the correct result is:

3
5
4

Note:

In the beginning, we assume the server i (1 ≤ i ≤ 5) contains the piece i of
information.

• At time 1, the line 1 is built and the servers 1, 2 become connected. Then, both
of the servers 1, 2 contain the pieces 1, 2 of information.

• At time 2, the line 2 is built, and the servers 1, 3 become connected. Including
the line 1, the servers 1, 2, 3 are connected. The servers 1, 2, 3 contain the
pieces 1, 2, 3 of information.

• At time 3, the line 1 becomes unavailable because it was available just before
this moment.

• At time 4, the line 4 is built and the servers 2, 5 become connected. Both of the
servers 2, 5 contain the pieces 1, 2, 3, 5 of information. Note that the servers 1,
2 cannot exchange pieces of information each other because the line 1 became
unavailable.

4.2. HEAVY-LIGHT DECOMPOSITION 59

• At time 5, the line 4 becomes unavailable.

• At time 6, the line 3 is built and the servers 2, 4 become connected. Then, both
of the servers 2, 4 contain the pieces 1, 2, 3, 4, 5 of information.

As explained above, in the end, the servers 1, 4, 5 have 3, 5, 4 different pieces of
information, respectively.

Solution

We are given a tree and each vertex contains some parts of data. We will activate
and deactivate edges, and each time some vertices are connected, they are syncing all
data with each other. Our task is to find how many parts of data each vertex contains
in the end.

Let us root the tree. First, let us notice that every connected component shares
the same parts of data. In particular, we can store all the data in the topmost node
of this component (we will call this vertex a representative of this component). Now
when we activate a new edge, we merge two components (top and bottom one), so
we just need to find the representative of the top component and share all the data
from the representative from the bottom component. To find the top representative
we can store the number of active connections between the root and every other node
in a segment tree spanned on the flatten tree (generated from the Euler tour). Then
we can find the representative of a top component in a similar fashion as finding the
LCA – we can apply binary lifting, which we can do in O(log2 N) time.

Now we want to make sure that we will not share duplicate information when
we re-activate some edge. To do so, we can keep for each edge the amount of data
that was shared last time we activated this edge. Then we can simply update the
amount of data stored in the top representative by adding data stored in the bottom
representative decreased by the amount of data shared in the last sync.

Finally, the answer for each vertex is simply the amount of data stored in its
representative.

Now we can notice that we can update the number of connections and find the
representative even faster if we decide to use the heavy-light decomposition on our
tree. The total time complexity of this solution is O(N log N).

Chapter 5

Palindromes

Let us recollect that palindromes are words (or sequences) that read the same
forwards as backwards, like kayak, or (1, 2, 2, 2, 2, 1). These objects are mostly purely
theoretical, as they do not have any real life applications. We just like symmetrical
things. But it turns out that palindromes are pretty regular and have many interesting
properties that make them intriguing objects to include in programming problems.

It turns out that the nature also likes palindromes. In genetics, palindromes have
a slightly different meaning (for clarity, to distinguish these objects, we will call them
„genetic palindromes”). Deoxyribonucleic acid (DNA) is formed out of two strings of
nucleotides which are always paired in the same way: adenine (A) with thymine (T),
and cytosine (C) with guanine (G). A sequence is called a genetic palindrome, when
it is equal to its reverse, but nucleotides are replaced with their complements. For
example, TGCA is a genetic palindrome, because its complement is equal to ACGT, which
is TGCA in reverse. In 2004, it was discovered that many bases of the Y-chromosome
have genetic palindromes. If one side is damaged, a palindrome structure allows the
chromosome to repair itself by bending over to match with the non-damaged side with
itself [Bellott et al., 2014].

In this chapter, we will discuss two results: the first one by Manacher from 1975,
who introduced an algorithm to find all maximal palindromic substrings of a string in
linear time, while the second one (by Rubinchik and Shur, from 2015, 40 years after
Manacher’s) will introduce the eertree – a data structure that will allow us to store
and process all distinct palindromes in a given string.

5.1. Manacher’s algorithm

We will discuss the algorithm first introduced in [Manacher, 1975], and then ex-
tended in [Apostolico et al., 1993]. For a given string S (of length N) we will find a
number of palindromic substrings of S, i.e. several pairs (i, j), such that SiSi+1 . . . Sj

61

62 CHAPTER 5. PALINDROMES

is a palindrome. First of all, we will consider two classes of palindromes: palindromes
of odd length (which we will call "odd palindromes") and palindromes of even length
("even palindromes"). On the picture below, we highlighted some odd (blue) and even
(red) palindromes.

a a b a a a a b b a a a

Note that the structure of palindromes is extremely organized. If SlSl+1 . . . Sr is
a palindrome, then Sl+1 . . . Sr−1 has to be a palindrome as well (if such a word exists).
We can also notice that each palindrome has a center. For odd palindromes this is a
letter in the middle of the palindrome. For even palindromes, we will consider that the
center is between the two letters in the middle. So now, to find all the palindromic
substrings, we can start from every possible center (every letter or each space between
letters for odd and even palindromes respectively), and check how far we can go in
each direction till we find a mismatch (i.e. the letter on the left side will be different
from the letter on the right side) or reach the end of the string. The number of steps
we can make in this naive algorithm will be equal to the number of palindromes with
this center. We will call this number a radius originating from this center.

Below we calculated the radii for our example string (odd in blue, and even in
red). Note that for odd palindromes, the radius is always at least 1, as a single letter
itself is always a palindrome.

1 1 3 1 2 2 1 1 1 1 2 1

a a b a a a a b b a a a

1 0 0 1 3 1 0 3 0 1 1

Now if we calculate these radii, we can easily compute the number of all palin-
dromic substrings, it will be simply a sum of all these radii. So how can we compute
these radii?

We will focus only on odd palindromes, as the algorithm will be almost the same
both for odd and even palindromes. The idea that we will use is similar to the idea
from the KMP algorithm. We will compute the radii from left to right, but we will
always keep a palindrome that ends on the rightmost position among those we have
found so far (we will call this palindrome the rightmost palindrome). We will denote
the bounds of this palindrome by [l, r]. Let us say we have calculated all the radii up
to i, and we now want to calculate odd_radius[i]. There are two cases we need to
consider:

5.1. MANACHER’S ALGORITHM 63

• i ≤ r. Here we want to use some data we gathered before. Note that we are
inside the rightmost palindrome, ergo we can use some information from the left
side of this palindrome. We can find the mirrored value i′ on the left side and
check the value odd_radius[i′].

c

ii′

l r

a

ii′

l r

b

ii′

l r

c

ii′

l r

w

ii′

l r

b

ii′

l r

a

ii′

l r

f

ii′

l r

c

ii′

l r

f

ii′

l r

c

ii′

l r

f

ii′

l r

a

ii′

l r

f

ii′

l r

c

ii′

l r

In many cases, we can assign odd_radius[i] ← odd_radius[i′], as we already
checked where is the first mismatch. The only problem is when we hit the border
of the rightmost palindrome, e.g. in the following case:

c

ii′

l r

a

ii′

l r

b

ii′

l r

c

ii′

l r

w

ii′

l r

b

ii′

l r

a

ii′

l r

f

ii′

l r

c

ii′

l r

f

ii′

l r

c

ii′

l r

f

ii′

l r

a

ii′

l r

f

ii′

l r

c

ii′

l r

Note that previously we used the information from inside the palindrome. Beyond
it, on the right side, we are not sure about the structure of the word, so the
radius originating from i can be much larger than odd_radius[i′]. What we can
do is to assign odd_radius[i] ← min(odd_radius[i′], r − i + 1) and then try to
increase the radius naively.

• i > r. In this case, we use our naive algorithm, i.e. we try to expand the radius
until we find a mismatch or we hit the bounds of the word.

What is the complexity of this algorithm? We need to consider how many steps
our naive algorithm makes. We can run it for every position (N times), but every
time we use it and we do not have a mismatch, the right border of the rightmost
palindrome also moves to the right. We can do it at most N times, ergo the
total amortized time complexity of this algorithm is simply O(N).

64 CHAPTER 5. PALINDROMES

Note that in both cases we might need to update the rightmost palindrome.

// We set up the bounds of the rightmost palindrome.
(l, r) ← (0,−1);
for i ← 0 to N − 1

if i > r
odd_radius[i] ← 1;

else
i′← l + r − i;
odd_radius[i] ← min(odd_radius[i′], r − i + 1);

// We check the bounds and if letters match.
while i − odd_radius[i] ≥ 0 and i + odd_radius[i] < N and

Si−odd_radius[i] == Si+odd_radius[i]

odd_radius[i] ← odd_radius[i] + 1;

// Update the bounds of the rightmost palindrome.
if r < i + odd_radius[i]
(l, r) ← (i − odd_radius[i] + 1, i + odd_radius[i] − 1);

5.2. Eertree

In this section, we will describe a relatively new data structure for storing and
processing all palindromes in a given word. Eertree (also known as a palindromic
tree) was first introduced during the summer training camp in Petrozavodsk and later
described in [Rubinchik and Shur, 2015, Rubinchik and Shur, 2018].

The problem we will solve in this section is how to count all the distinct palindromes
in a given word. For example, in the string eertree we have 7 distinct palindromes:
e, t, r, ee, rtr, ertre, eertree.

We will start with a small, but a very important observation.

Observation 1. A word of length n can have at most n distinct non-empty palindromes.

Proof. We will prove this fact by induction. For an empty word, the statement above is
of course true. Now let us say that we want to add a new character c to the word. All
new palindromes are within the suffixes of the word Sc; let us denote the palindromic
suffixes of Sc by P1, P2, . . . , Pi, in the order of decreasing length, i.e. |P1 | > |P2 | > . . . >

|Pi |. Note that at least one such suffix exists, as the single letter is also a palindrome.
We claim that the only palindrome that can be new (did not appear earlier in the word)
is P1. For all other, shorter, palindromes (Pk for k > 1) we claim that they appeared
earlier in our word, as they are proper suffixes of P1, but as P1 is a palindrome, then
they are also prefixes of P1, so they appear in S.

5.2. EERTREE 65

S

P1

Pk Pk

c

�

Therefore, we have proven that if we want to store all palindromes, a linear struc-
ture should be enough, as we will have at most n palindromes for a word of length n.
Moreover, we have shown that if we process this word from left to right, every new
letter will add at most one new palindrome.

Now let us introduce the data structure. The eertree will consist of:

• Nodes that will represent all distinct non-empty palindromes and two special
artificial palindromes:

– an empty palindrome (denoted by 0),

– a palindrome of length −1 (denoted by −1).

We will discuss these special nodes in more detail below.

• Directed edges (A, B, c) from palindrome A to palindrome B labeled by a letter c,
in a way that B = cAc, i.e. B can be obtained from A by adding a letter c on the
left and on the right of the palindrome B. Node 0 has edges to all palindromes
of length 2 (as we add letters to the empty palindrome), while the node −1 has
edges to all palindromes of length 1 (as we start with palindrome of length −1,
we skip one letter).

bab

cbabc pp x

0 −1

c p x

• Suffix links between nodes, in a way that the suffix link goes from palindrome
P to the longest palindrome that is a proper suffix of P. Please note that this
suffix is exactly P2 from the observation above.

66 CHAPTER 5. PALINDROMES

babbab bab b 0 −1

We assume here that all palindromes of length 1 have a suffix link to node 0,
and both artificial palindromes (0 and −1) have suffix links to −1.

Below we present the full eertree for word aababaab. Please note that the eertree
is, in fact, two trees – one for the even palindromes (on the left hand side in the picture
below), and one for odd palindromes (on the right hand side). Suffix links are not
limited to nodes within one tree.

0 −1

aa

baab

a b

bab aba

ababa

aababaa

a

b

a b

b a

a

a

Constructing the eertree

We will build the eertree incrementally. We will parse the letters in a given word S
from left to right and update the eertree for prefixes of the word S. We will also keep
a pointer pointing at the longest palindrome which is a suffix of a currently processed
prefix.

Initialization is simple: we create two artificial nodes −1 and 0 with their respective
suffix links. The pointer initially points at 0.

Now imagine that we already constructed eertree for the prefix aababaab (as in
the previous picture). We want to add a letter a to expand the prefix to aababaaba.

5.2. EERTREE 67

Now notice that our pointer of the longest suffix palindrome is pointing at baab.
Moreover, if we walk through our eertree via suffix links, we will visit every suffix
palindrome in the decreasing order of their length, ending at node −1. Let us denote
these suffix palindromes by (Q1,Q2, . . . ,Qi), in our example we have the following suffix
palindromes: (baab, b, 0, −1). Now based on the proof of our initial observation, we
know that the only new palindrome that can be added to our eertree is one of the
palindromic suffixes which can be expanded with the new letter (in our case a) added to
both sides of Qk , i.e. aQka. Therefore, we can check every palindrome Q1,Q2, . . . ,Qi

and check if the letter before this palindrome is equal to the letter we are currently
processing. If that is true, then we check if we already have an edge with that letter.
If that is the case, we just move our pointer there. Otherwise, we create a new node
with the edge labeled with a letter a. In our example, we are quite lucky, as baab can
be already expanded to abaaba, therefore we just create the new node.

Now the only thing left is to find the suffix link for this newly created node. Note
that we can do this in the very same way as before – after finding Qk , we continue
our travel through suffix links to find Q′

k
, where |Qk | > |Q′k | and Q′

k
can be expanded

with letter a. This node already exists in our eertree (as we cannot add new two
palindromes with one letter), and this will be a new destination of our suffix link. In
our example, we just move to the next palindrome using the suffix link from baab,
which is b, and b can be expanded with letter a, and the node aba already exists (as
we mentioned), therefore we just create the suffix link from abaaba pointing to aba.
Our pointer of the longest palindromic suffix now points at aQka (the node that we
possibly just created). In the picture below, we show exactly how we have to modify
the tree after processing the new letter in our word.

0 −1

aa

baab

a b

bab aba

ababa

aababaa

abaaba

a

a

b

a b

b a

a

a

↖ longest palindrome suffix of aababaab

↖ longest palindrome suffix of aababaaba

Now, let us try to figure out the complexity of constructing this data structure.
First, we know that we will have at most n distinct palindromes (where n is the length

68 CHAPTER 5. PALINDROMES

of the word that we are constructing the eertree for), therefore we will have at most
n+2 nodes in our tree (2 additional nodes are for the special "empty" palindromes). As
we mentioned, we can just keep the edges with labels, length of the palindrome, and
a suffix link, so we keep O(1) information in one node, giving total memory complexity
of O(n).

Now when it comes to the time complexity, we will focus on the amortized time.
To do so, let us introduce a potential function equal to the sum of lengths of two
words:

1. longest palindromic suffix of the already considered prefix (the node where the
pointer is pointing out),

2. palindrome corresponding to the node that the suffix link of that palindrome is
pointing at.

Every time we process a new letter, we add 4 to our potential (as we add 2 letters
to both the longest palindromic suffix and its suffix link). That is also the only time
when we increase our potential. Every time we use suffix links to find the palindrome
that we can expand, we decrease our potential by some positive value. The minimum
value of the potential is −1 (in the worst case when both words are the special empty
palindromes), therefore we will use suffix links at most 4n + 1 times, which yields to
the total amortized time complexity of O(n).

Note that we assumed here that the size of our alphabet (Σ) is constant. If that
is not the case, we can still use our data structure with O(n) memory and O(n log |Σ |)
time, using some kind of a dictionary with logarithmic queries.

Problem Palindromes

Asia-Pacific Olympiad in Informatics 2014.
Limits: 1 s, 128 MB.
https://kostka.dev/sp/pal

You are given a string of lower-case Latin letters. Let us define substring’s “oc-
currence value” as the number of the substring occurrences in the string multiplied by
the length of the substring. For a given string find the largest occurrence value of a
palindromic substring.

Input

The only line of input contains a non-empty string s of lower-case Latin letters
(a-z).

https://kostka.dev/sp/pal

5.2. EERTREE 69

Output

Output one integer – the largest occurrence value of a palindromic substring.

Examples

For the input data:

abacaba

the correct result is:

7

For the input data:

www

the correct result is:

4

Note: In the first sample there are seven palindromic substrings:
{a, b, c, aba, aca, bacab, abacaba}.

• a has 4 occurrences in the given string, its occurrence value is 4 · 1 = 4,

• b has 2 occurrences in the given string, its occurrence value is 2 · 1 = 2,

• c has 1 occurrence in the given string, its occurrence value is 1 · 1 = 1,

• aba has 2 occurrences in the given string, its occurrence value is 2 · 3 = 6,

• aca has 1 occurrence in the given string, its occurrence value is 1 · 3 = 3,

• bacab has 1 occurrence in the given string, its occurrence value is 1 · 5 = 5,

• abacaba has 1 occurrence in the given string, its occurrence value is 1 · 7 = 7.

So, the largest occurrence value of palindromic substrings is 7.

Subtasks

1. (8 points) |s | ≤ 100,

2. (15 points) |s | ≤ 1000,

3. (24 points) |s | ≤ 10 000,

4. (26 points) |s | ≤ 100 000,

5. (27 points) |s | ≤ 300 000.

70 CHAPTER 5. PALINDROMES

Solution

We will build an eertree to find all the palindromes that occur in a given word. We
need to find the number of occurrences of each palindrome in s. During the construc-
tion of the tree, we will keep for each node how many times this palindrome occurred
as the longest suffix of some prefix of s, let us denote that value by counter(word).
After that, we can conclude that the number of occurrences of palindrome p is the
sum of counter(q) from all the palindromes q that can be reached from p via the suffix
links. It turns out that the suffix links form a tree (with the root in −1), so we can use
a dynamic programming on that tree to calculate these values.

Then, we can iterate over all palindromes and multiply the number of occurrences
by their lengths and find the maximum product.

The total time and space complexity is O(|s |).

In the next problem, we will show an interesting property based on lengths of
palindromes, and how we can use it.

Problem Even palindromes

2nd Polish Olympiad in Informatics.
Limits: 0.1 s, 32 MB.
https://kostka.dev/sp/eve

Please note that the limits were increased in comparison to the original
problem.

The factorization of a word into even (of even length) palindromes is its division
into separable words, each of which is an even palindrome. For example, the word
bbaabbaabbbaaaaaaaaaaaabbbaa can be divided into two even palindromes

bbaabb|aabbbaaaaaaaaaaaabbbaa,

or into eight even palindromes:

bb|aa|bb|aa|bb|baaaaaaaaaaaab|bb|aa.

The first factorization contains the smallest possible number of palindromes, the second
is the factorization into the maximum possible number of even palindromes. Note that
a word may have many different distributions into even palindromes, or none.

Write a program that for a given word examines whether it can be broken down
into even palindromes. If not, it writes only one word NO, and if it can be decomposed,
it writes its factorizations into a minimum and a maximum number of even palindromes.

https://kostka.dev/sp/eve

5.2. EERTREE 71

Input

The standard input contains one word S consisting of at least 1 and at most
200 000 small letters of the English alphabet.

Output

If the word can be divided into even palindromes, output two lines. In the first
line output a sequence of words separated by spaces – the factorization of a given
word into the minimum number of even palindromes. In the second line, output the
factorization of a given word into the maximum number of even palindromes.

Otherwise, output a single line containing a single word NO.

Examples

For the input data:

bbaabbaabbbaaaaaaaaaaaabbbaa

the correct result is:

bbaabb aabbbaaaaaaaaaaaabbbaa
bb aa bb aa bb baaaaaaaaaaaab bb aa

For the input data:

abcde

the correct result is:

NO

For the input data:

abaaba

the correct result is:

abaaba
abaaba

72 CHAPTER 5. PALINDROMES

Solution

This solution is heavily inspired by an article from [Diks et al., 2018].

Let us first focus on finding the factorization into a maximum number of even
palindromes. We will use a greedy approach: we will find the shortest prefix of the word
that is an even palindrome, cut it from the original word and then continue the process.
We claim that this approach will find a correct factorization into a maximum number
of even palindromes (if such a factorization exists) or determine that we cannot divide
our word into even palindromes.

Theorem 1. The greedy algorithm stated above works in the case of finding the optimal
factorization into a maximum number of even palindromes.

Proof. We will prove this by induction over the length of the word. Of course, for
a word of length 2 (or even 0), the thesis is satisfied. Now let us assume that the
greedy algorithm finds the optimal solution for all words of length at most n. Now
let us choose a word S of length n + 2 that can be divided into even palindromes.
Let us take an optimal factorization into the maximum number of such palindromes
A = (A1, A2, . . .) and the factorization found by our algorithm B = (B1, B2, . . .). If
A1 = B1, then by induction, we know that the shorter word can be optimally divided
by our greedy algorithm. So let us assume that A1 , B1. Then |A1 | > |B1 |, so B1 is a
proper prefix of A1. Now we will use the following lemma:

Lemma 1. If K and L are even palindromes and K is a proper prefix of L, then L can
be divided into at least two even shorter palindromes.

Proof. We will consider two cases. If |K | ≤ 1
2 |L |, then we have the following situation:

L

K KR = KM

As L is a palindrome, then K is a border of L. If we cut K from the beginning and
the end, an even palindrome M (maybe empty) will remain, so we can divide L into
(K, M,K).

When |K | > 1
2 |L |, let us denote the overlapping segment by P. P has to be an

even palindrome (as P = PR in the middle). Then if we cut P from the beginning and
from the end of K, then we are once again left with another even palindrome – Q.

L

K

KR

PRP

P PRQ

Q

5.2. EERTREE 73

Then we can divide L into (P,Q, P,Q, P), which concludes our lemma. �

Thus we have shown that A is not an optimal factorization into the maximum
number of even palindromes. �

Now how we can implement this algorithm in linear time? We will compute for
each suffix what is the shortest even palindrome which is a prefix of this suffix, i.e. we
will compute the following array

skip(i) = min
k>0

S[i . . . i + k] is an even palindrome.

Then we can use this array to cut shortest palindromes greedily. To compute skip,
we will use the radius array from Manacher’s algorithm (compare with the previous
section). Let us say that index i influences index j if

i − radius[i] + 1 ≤ j ≤ i.

We can notice that for given j, skip[j] is determined by the closest i ≥ j, where i
influences j. Then

skip[j] = 2 · (i + 1 − j).

We will process the word from right to left, keeping positions that influence the
currently processed index on a stack. We can easily update the stack, keeping the
closest index that influences the current position, based on the formula above. Finally,
based on the index that influences the current position, we can calculate the skip array
in linear time.

Now, let us go back to the second part of the problem, i.e. finding a factorization
into a minimum number of even palindromes. It turns out that the greedy approach
does not work in this case. Indeed, let us consider the word aaaaaabbaa. A greedy
approach will divide this word into aaaaaa|bb|aa (three even palindromes), but it can
be divided into just two even palindromes: aaaa|aabbaa. We need to find another
method.

From now on, we will assume that we are just looking for a factorization into a
minimum number of palindromes, without consideration for the parity of their length.
The general solution which we will describe can be easily modified to consider only
even palindromes.

To solve this problem, we will use dynamic programming. Let dp(i) denote the
minimum number of palindromes that we can divide the prefix S[1..i] into, and dp(0) =
0. Then we can say that:

dp(i) = min
p – palindrome ending at i

(dp(i − |p|) + 1)

Then the minimum number of palindromes will be kept in dp(|S |). During our
calculations, we can store how we can get this factorization. We already know how

74 CHAPTER 5. PALINDROMES

we can iterate over all palindromes being suffixes of some prefix. We can go through
all the suffix links to check every palindrome fitting this condition. Unfortunately,
this solution still works in O(|S |2) time, as every prefix can have a linear number of
palindromes which are its suffixes.

We can speed up this solution by finding a better way to iterate over these suffix
palindromes.

Observation 2. Let Q1,Q2, . . . ,Qk be the sequence of all palindromes which are suffixes
of some word S in the order of decreasing length. Then the sequence (Q1,Q2, . . . ,Qk)

can be divided into log |S | groups in a way that the lengths of palindromes in every
group form an arithmetic progression.

Proof. Let us construct such a division. For the first group, we will take Q1 (we will
call this element a leader of the first group) and every Qi with length at least half of
the length of the leader, i.e. |Qi | ≥

1
2 |Q1 |. Then the rest of the palindromes that will

remain can be divided recursively, and we will have at most log |S | groups, as every
time we half the length of the leader in the group.

Now we just need to prove that every group indeed contains palindromes which
lengths form an arithmetic progression. Let us take two palindromes Q j and Qi from
one group, where Qi is a leader. Q j is a suffix of Qi, and as Qi is a palindrome, then
Q j is also its prefix, hence Q j is a border of Qi. Therefore Qi has a period |Qi | − |Q j |.

Moreover, as |Qi |−|Q j | ≤
1
2 |Q j | for every Q j in the group, using periodicity lemma,

we can conclude that Qi has a period of length d:

d = gcd
Q j,Qi

{
|Qi | − |Q j |

}
.

As d divides |Qi | − |Q j |, |Q j | is an element of the sequence where the initial term
is equal to |Qi | and the common difference is equal to −d. We just need to reason
why there are no ”holes” in our arithmetic progression, that is, we want to determine
that every suffix of length z = |Qi | − td for 1

2 |Qi | ≤ z ≤ |Qi | is indeed a palindrome.
This can be proven with an observation that every border of a palindrome also has to
be a palindrome. �

We will construct this division for all nodes in our palindromic tree. In every node
we will additionally store:

• the difference of the arithmetic progression starting at this node,

• the number of palindromes that follow p in this progression,

• pointer to the next progression (with a different difference).

5.2. EERTREE 75

All this information can be computed during the creation of the suffix link – we
can calculate the difference between the length of these palindromes and check this
difference with the difference in the node where the suffix link points to.

Note that this division into progressions does not have to be the same division
as described in the proof of our observation, but it is the division into maximal (not
extendable) progressions, therefore it will have O(log |S |) progressions.

Now, let us denote the maximum length of a palindrome belonging to the arith-
metic progression defined by a palindrome a by rep(a). Below we will also often identify
the palindrome with its length, depending on the context. Then we can define the fol-
lowing array: dparithm(i, rep(a)) – the minimum number of palindromes in the division
of prefix of length i into palindromes, where the division ends by a palindrome repre-
sented by rep(a). Note that this array has only O(n log n) values, based on the previous
observation.

Now let us assume that we calculated all values dparithm(j, ∗) and dp(j) for j < i
and now we want to calculate dparithm(i, ∗) and dp(i).

Let us recall the formula from before:

dp(i) = min
p – palindrome ending at i

(dp(i − |p|) + 1)

Now instead of iterating over all the suffix palindromes (ending at i), we will iterate
only over all the arithmetic progressions of these suffix palindromes.

period period period period period

ii − d

s

a

a − d

a − d

a − 2d

a − 2d

Note that we cannot have a suffix palindrome ending at i − d of length a, where
d is the difference of the arithmetic progression containing palindrome a. If that was
the case, it would mean that we can have a palindrome of length a+ d ending at i, but
we already established that a is the longest suffix palindrome from this progression.

Finally, we can conclude that we do not have to iterate over all the palindromes
from every arithmetic progression, we just need to check two values for each progres-
sion:

dp(i) = min
arithmetic progression (a,d)

(dparithm(i − d, rep(a − d)), dp(i − (a − k · d)) + 1).

76 CHAPTER 5. PALINDROMES

In a similar fashion we can update dparithm(i, ∗).

This leads us to an O(n log n) solution with O(n log n) memory. We can shave off
this memory down to O(n), but it was not required in this problem.

Chapter 6

Dynamic programming
optimizations

Dynamic programming is a problem-solving method used widely in many problems.
In this section, we will talk about various general and problem-specific optimizations
and tricks that allow us to speed up the dynamic programming solutions.

6.1. Sum over subsets (SOS)

We will start with a slightly different problem. We want to calculate the prefix
sums on some 2D array A, i.e.:

pre f [i][j] =
i∑

a=1

j∑
b=1

Aa,b

For simplicity, we are assuming here that the array is indexed from 1.

There are two easy methods to solve this problem. The first uses the inclusion-
exclusion principle with dynamic programming. If we want to calculate pre f [i][j], to
Ai, j we just need to add pre f [i][j −1] and pre f [i−1][j] and subtract pre f [i−1][j −1]
which we counted twice:

pre f [i][j] = Ai, j + pref[i][j-1] + pref[i-1][j] − pref[i-1][j-1]

77

78 CHAPTER 6. DYNAMIC PROGRAMMING OPTIMIZATIONS

A1,1

A1,2

A1,3

A1,4

A2,1

A2,2

A2,3

A2,4

A3,1

A3,2

A3,3

A3,4

A4,1

A4,2

A4,3

A4,4

A5,1

A5,2

A5,3

A5,4

Therefore we can calculate all the prefix sums in O(nm) time. There is another
method that solves the same problem. We can calculate the prefix sums in rows (or
columns) and then switch dimensions and calculate the prefix sums again:

// calculate the prefix sums for rows
for i ← 1 to n

for j ← 1 to m
a[i][j] += a[i][j − 1];

// calculate the prefix sums for columns
for j ← 1 to m

for i ← 1 to n
a[i][j] += a[i − 1][j];

Below we can see how this algorithm works on a simple array of size 3 × 2.

A1,1

A1,2

A1,3

A2,1

A2,2

A2,3

→

A1,1 A1,1 + A2,1

A1,2 A1,2 + A2,2

A1,3 A1,3 + A2,3

→

A1,1 A1,1 + A2,1

A1,1 + A1,2

A1,1 +

A1,2 + A1,3

A1,1 + A2,1 +

A1,2 + A2,2

A1,1 + A2,1 +

A1,2 + A2,2 +

A1,3 + A2,3

We will use the approach with prefix sums to solve a similar problem on bitmasks.
Imagine we have 2n bitmasks and each bitmask b has some corresponding value A(b).

We would like to compute the following function for each mask b:

F(b) =
∑
a⊆b

A(a).

The brute-force solution works in O(4n) time: for each mask b, we iterate over
all other masks a, checking if a ⊆ b, and if that is the case, we add A(a) to F(b).

6.1. SUM OVER SUBSETS (SOS) 79

Iterating over submasks

There is a method that allows us to iterate only over submasks of a given mask
b.

s← b;
do

f oo(s);
s← (s − 1) & b; // & denotes bitwise-AND here

while s , 0;

In every step of this loop, we decrease s by one, ergo we change the rightmost
1 to 0 followed by ones, for example . . . 10000 → . . . 01111. Then we remove
all bits that are not set in b by ANDing it with b. We can see that (s − 1)&b
will be the next submask in the decreasing order of submasks of b.
In many cases, we need to iterate over all submasks for every bitmask. What
is the time complexity of this approach? To answer this question we have to
determine how many submasks of all bitmasks there are. We can easily show
that for every bit, the bit either has to be in mask and submask, only in mask,
or neither in mask nor submask. Therefore, as we have n bits, the number of
all submasks is 3n.

Now, these bitmasks will correspond to an n-dimensional array of size 2×2× . . .×2.
We can imagine this array as an n-dimensional hypercube where each vertex corresponds
to some bitmask.

000

001

010

011

100

101

110

111

We can use the very same algorithm that we used for two-dimensional prefix sums,
but extended to n dimensions. We iterate over dimensions and when we consider the
i-th dimension, we add the values from all vertices with 0 in the i-th position to their
counterparts with a bit set to 1 in that dimension. Below we can see how we will
propagate the value from 010 to all bitmasks that contain 010 as a submask. Note
that we consider dimensions from right to left.

80 CHAPTER 6. DYNAMIC PROGRAMMING OPTIMIZATIONS

dimension 0

000

001

010

011

100

101

110

111

dimension 1

000

001

010

011

100

101

110

111

dimension 2

000

001

010

011

100

101

110

111

// for each dimension
for i ← 0 to n − 1

// iterate over all masks
for mask ← 0 to 2n − 1

// if the i-th bit in mask is equal to 0

if mask & 2i == 0

// then add value to its counterpart
A[mask | 2i] += A[mask]; // | denotes bitwise OR

Please note that this method can be also interpreted differently. We are trying to
divide the submasks of every bitmask into some non-intersecting sets, depending on
the prefix. In the picture below, whenever our initial mask has 1 in i-th place, we can
divide all the bitmask from the current group into two subsets: one containing all the
masks with 0 in i-th place and one containing all the mask with 1 in i-th place. In this
way, we will end up with sets with only one bitmask. Now, our solution is basically a
dynamic programming on the tree created by this division. For example, let us take a
look at the division of some bitmask: 1011.

0000, 0001, 0010, 0011, 1000, 1001, 1010, 1011

0000, 0001, 0010, 0011 1000, 1001, 1010, 1011

0000, 0001, 0010, 0011 1000, 1001, 1010, 1011

0000, 0001 0010, 0011 1000, 1001 1010, 1011

0000 0001 0010 0011 1000 1001 1010 1011

le
ng
th

of
th
e
co
m
m
on

pr
efi
x

0

1

2

3

4

This solution works in O(n2n) time and O(2n) memory and it is really easy to
implement (just a few lines, as we can see in the pseudocode).

6.1. SUM OVER SUBSETS (SOS) 81

Problem Shifts

Google Kick Start 2019, round G.
Limits: 40s, 1GB.
https://kostka.dev/sp/shi

Aninda and Boon-Nam are security guards at a small art museum. Their job
consists of N shifts. During each shift, at least one of the two guards must work.

The two guards have different preferences for each shift. For the i-th shift, Aninda
will gain Ai happiness points if he works, while Boon-Nam will gain Bi happiness points
if she works.

The two guards will be happy if both of them receive at least H happiness points.
How many different assignments of shifts are there where the guards will be happy?

Two assignments are considered different if there is a shift where Aninda works in
one assignment but not in the other, or there is a shift where Boon-Nam works in one
assignment but not in the other.

Input

The first line of the input gives the number of test cases, T (1 ≤ T ≤ 100). T
test cases follow. Each test case begins with a line containing the two integers N and
H (1 ≤ N ≤ 20, 0 ≤ H ≤ 109), the number of shifts and the minimum happiness points
required, respectively. The second line contains N integers. The i-th of these integers
is Ai (0 ≤ Ai ≤ 109), the amount of happiness points Aninda gets if he works during
the i-th shift. The third line contains N integers. The i-th of these integers is Bi

(0 ≤ Bi ≤ 109), the amount of happiness points Boon-Nam gets if she works during
the i-th shift.

Output

For each test case, output one line containing Case #x: y, where x is the test
case number (starting from 1) and y is the number of different assignments of shifts
where the guards will be happy.

https://kostka.dev/sp/shi

82 CHAPTER 6. DYNAMIC PROGRAMMING OPTIMIZATIONS

Example

For the input data:

2
2 3
1 2
3 3
2 5
2 2
10 30

the correct result is:

Case #1: 3
Case #2: 0

Note: In Sample Case #1, there are N = 2 shifts and H = 3. There are three possible
ways for both Aninda and Boon-Nam to be happy:

• Only Aninda works on the first shift, while both Aninda and Boon-Nam work on
the second shift.

• Aninda and Boon-Nam work on the first shift, while only Aninda works on the
second shift.

• Both security guards work on both shifts.

In Sample Case #2, there are N = 2 shifts and H = 5. It is impossible for both
Aninda and Boon-Nam to be happy, so the answer is 0.

Solution

Let us iterate over all bitmasks for both guards and calculate how many hap-
piness points they receive for this mask. For guard X ∈ {A, B}, let us denote that
by hapinessX(mask). We can pick one guard, say A, and for every mask A with
hapinessA(mask A) ≥ H, we just need to know how many maskBs, such that

maskB | mask A = 2N − 1,

have hapinessB(maskB) ≥ H. Let us denote that by count(mask A).

This can be calculated using Sum over Subsets (SOS) optimization. Let good(maskB) =
1 if hapinessB(maskB) ≥ H, otherwise good(maskB) = 0. Then

count(mask A) =
∑

maskA′⊆maskB

good(maskB).

where mask A′ denotes the mask obtained from mask A by flipping all its bits.

The total time and memory complexity is O(N2N).

6.2. MONOTONE QUEUE OPTIMIZATION 83

6.2. Monotone queue optimization

We will start by reminding a classical problem. We are given a sequence
(a0, a1, a2, . . . , an−1) and we want to calculate the minimum for each subsequence of
k consecutive elements, i.e. we want to calculate the sequence (m0,m1, . . . ,mn−k−1),
where mi = mini≤ j<i+k aj .

This problem is easily solvable in O(n) time using a monotone queue. We will
maintain a deque of indices of suffix minimums in order of increasing values in the
proper range (last k values). Below we can find an example for a window of size k = 5

after considering the element with index 8. The elements that will be in the deque are
highlighted.

3

0

4

1

5

2

2

3

5

4

3

5

8

6

4

7

6

8

10

95 7 8

// in D we will keep the indices of increasing elements
D← deque();
for i ← 0 to n − 1

// pop at most one element out of bounds from the front
while not D.empty() and i − D.front() ≥ k

D.pop_front();

// pop elements larger than ai from the back
while not D.empty() and aD.back() ≥ ai

D.pop_back();

// insert i at the back
D.push_back(i);
// produce the result
if i − k + 1 ≥ 0

mi−k+1 ← aD.front();

How we can use this algorithm in dynamic programming? Quite often our dynamic
programming formula looks like this:

dp(i) = min
k(i)<=j<i

(dp(j) + cost(i))

84 CHAPTER 6. DYNAMIC PROGRAMMING OPTIMIZATIONS

where k(i) is some increasing, and cost(i) is some other function depending on i. We
can generalize it even more, by replacing dp(j) with some other function f (j) depending
on j (for example f (j) = dp(j) + j2), so we can have the following formula:

dp(i) = min
k(i)<=j<i

(f (j) + cost(i))

The typical solution is as follows:

dp[0] ← 0;
for i ← 1 to n

dp[i] ← INF;
for j ← k(i) to i − 1

dp[i] ← min(dp[i], f (j) + cost(i));

We may notice that the transitions are similar to the problem above. We are
looking for some minimum value for values of function f on some consecutive elements
and we can optimize the typical dynamic programming.

We will use a similar algorithm as above, but we will maintain the deque D of
indices such that Dj < Dj+1 and cost(Dj) ≤ cost(Dj+1).

for i ← 0 to n
// pop elements out of the bounds from the front
while not D.empty() and D.front() < k(i)

D.pop_front();

// calculate result using the front of the deque
if not D.empty()

dp[i] ← cost(i) + f (D.front());

// pop elements from the back with larger values
while not D.empty() and f (D.back()) > f (i)

D.pop_back();

// insert i at the back
D.push_back(i);

This algorithm works in O(n) time (each index can be inserted and removed at
most once from the deque).

Let us try to use this observation in some problems.

Problem Watching Fireworks is Fun

Codeforces Round #219.
Limits: 4s, 256MB.
https://kostka.dev/sp/fir

https://kostka.dev/sp/fir

6.2. MONOTONE QUEUE OPTIMIZATION 85

A festival will be held in a town’s main street. There are n sections in the main
street. The sections are numbered 1 through n from left to right. The distance
between each adjacent sections is 1.

In the festival m fireworks will be launched. The i-th (1 ≤ i ≤ m) launching is on
time ti at section ai. If you are at section x (1 ≤ x ≤ n) at the time of i-th launching,
you’ll gain happiness value bi − |ai − x | (note that the happiness value might be a
negative value).

You can move up to d length units in a unit time interval, but it’s prohibited to go
out of the main street. Also you can be in an arbitrary section at initial time moment
(time equals to 1), and want to maximize the sum of happiness that can be gained
from watching fireworks. Find the maximum total happiness.

Note that two or more fireworks can be launched at the same time.

Input

The first line contains three integers n, m, d (1 ≤ n ≤ 150 000; 1 ≤ m ≤ 300; 1 ≤

d ≤ n).

Each of the next m lines contains integers ai, bi, ti (1 ≤ ai ≤ n; 1 ≤ bi ≤ 109; 1 ≤

ti ≤ 109). The i-th line contains description of the i-th launching.

It is guaranteed that the condition ti ≤ ti+1 (1 ≤ i < m) will be satisfied.

Output

Print a single integer – the maximum sum of happiness that you can gain from
watching all the fireworks.

Examples

For the input data:

50 3 1
49 1 1
26 1 4
6 1 10

the correct result is:

-31

For the input data:

10 2 1
1 1000 4
9 1000 4

the correct result is:

1992

86 CHAPTER 6. DYNAMIC PROGRAMMING OPTIMIZATIONS

Solution

Of course we will try to come up with a dynamic programming solution. Let
dp(i, j) denote the maximum sum of happiness you can gain from watching first i
fireworks and standing in section j in the moment of i-th launch. Then we have the
following transitions:

dp(i, j) = max
−td≤k≤td

(dp(i − 1, j + k) + bi − |ai − j |)

where t is the time after the previous launch, i.e. t = ti − ti−1.

We have O(nm) states, each transition can be done in O(n) time, therefore the
total time complexity is O(n2m). The space complexity is O(nm), which is also too
much for the constrains in this problem.

We can speed it up, by using our monotone queue optimization. First let us note
that the second part in the formula (bi − |ai − j |) does not depend on k, therefore we
need to focus on maximizing the first part. We can use here a segment tree (which will
result in O(nm log n) time), but we can also use the monotone queue, as the interval
[j − td, j + td] is independent for all the fireworks. This allows us to speed up the
solution to O(nm).

We should also use the rolling array technique (keeping only previous row for the
dp array), to reduce the space complexity to O(n).

This problem can be also solved in O(m logm) time if we consider the fireworks
as functions and their slopes.

Problem Eggs

7th Polish Olympiad in Informatics.
Limits: 1s, 32MB.
https://kostka.dev/sp/egg

It is known that an egg dropped from a sufficiently high height breaks. Formerly
one floor was enough, but genetically modified chickens lay eggs that are unbreakable
even after being dropped from 100 000 000 floors. Egg strength tests are carried out
using skyscrapers.

A special egg strength scale has been developed: the egg has a strength of k
floors if dropped from k-th floor does not crash, but dropped from k + 1, it crashes.
In case when we use the skyscraper with n floors we assume that the egg breaks when

https://kostka.dev/sp/egg

6.2. MONOTONE QUEUE OPTIMIZATION 87

we drop it from (n + 1)-th floor. We also assume that every egg dropped from floor
number 0 never crashes.

The head of the laboratory decided to introduce savings in the research process.
They limited the number of eggs that can be broken during an experiment to determine
egg strength of a given species. In addition, the number of egg drops should be
minimized. This means that having a certain number of eggs of a given species and a
skyscraper with n floors, you should determine in as few attempts as possible what is
the strength of eggs of a given species.

Communication

Your task is to write the following function:

• void perform_experiment(int n, int m) – this function will be called at
the beginning of each new experiment (there might be more than one experiment
in one test case), meaning that we are supposed to find the strength of eggs of
some species, using a skyscraper with n floors (1 ≤ n ≤ 100 000 000) and using
m eggs (1 ≤ m ≤ 1000).

Your function can call the following functions:

• bool ask_query(int x) – this function is used to ask a question, returns
whether the egg dropped from a certain floor x withstands or breaks down;

• void answer(int k) – this function should be called only once, when you deter-
mined the strength of this egg species k. After using this function your function
should finish (but do not finish the whole program!).

Note: Do not assume that the judge actually sets some egg strength before
starting a given experiment. The judge can choose the strength during the experiment
in a way to match all previously given answers and to force your program to ask as
many questions as possible. You should strive to get the number of questions asked
by your program in the worst case as small as possible.

Solution

Let us focus on how to calculate the necessary number of drops. Let us use the
dynamic programming approach. Let dp(n,m) denote the minimum number of drops
needed to determine the strength of the eggs for a skyscraper with n floors, using m
eggs. The first observation is as follows: if we know already that the egg crashes

88 CHAPTER 6. DYNAMIC PROGRAMMING OPTIMIZATIONS

from floor l and does not crash from floor r, we can think about it as a problem for a
skyscraper with r − l floors.

Therefore we can come up with the following formulas:
dp(0,m) = 0

dp(n,m) = 1 +min1≤ j≤n−1max(dp(j,m − 1), dp(n − j,m)) for n > 0

The second equation checks all possible j where we can drop an egg and then
checks two possibilities: either the egg crashed (and we have to check j floors with
m − 1 eggs) or it didn’t crash (and we have to check n − j floors with m eggs).

Using these transitions, we can implement a solution working in O(n2m) time. We
need to resolve one detail: how to find the optimal drops, but we will leave this as an
exercise for the reader.

Let us use try to optimize this solution. In the second equation, let us denote
cost1(j) = dp(j,m − 1) and cost2(j) = dp(n − j,m). cost1 is a non-increasing function,
while cost2 is a non-decreasing function, therefore max(cost1, cost2) is bitonic and
we can find an optimum opt(i) of function max(cost1, cost2) as a root of a function
cost1 − cost2 using binary search. This results in O(nk log n) solution.

To speed it up even further, let us notice that if we move from n to n+1, cost1(j)
stays the same, while cost2(j) does not decrease, hence opt(n+1) ≥ opt(n). Therefore,
when we want to calculate opt(n+1), we can start from opt(n) and increase it gradually
until cost1 becomes smaller than cost2. This results in O(nk) time solution.

This particular problem can be solved even faster, by changing the dimensions of
the dynamic programming. Let dp2(k,m) denote the number of consecutive floors we
can check using k drops and m eggs. Then:

dp2(k, 0) = dp2(0,m) = 0

dp2(k,m) = dp2(k − 1,m) + dp2(k − 1,m − 1) + 1 for k,m > 1

We may notice that the second formula resembles the formula for calculating the
Newton binomial symbol:

(
k
m

)
=

(
k − 1

m

)
+

(
k − 1
m − 1

)
And that is the right clue, as we can prove that:

dp2(k,m) =
m∑
i=1

(
k
i

)
Total time complexity of this solution is O(mk), where k is the number of drops we

need to perform in the given experiment, i.e. the smallest integer for which dp2(k,m) ≥

6.3. CONVEX HULL OPTIMIZATION 89

n. How we can estimate k? If m = 1, then in the worst case we need exactly k = n
drops. If m = 2, we have:

dp2(k, 2) =
(
k
1

)
+

(
k
2

)
= k +

k(k − 1)
2

>
k2

2

So we need at most k <
√
2n < 15 000 drops in the worst case. Larger m give

even better estimates.

Logarithmic ideas

Please note that in the problems above, other optimizations were possible. In the
first problem, we could use the segment tree to get O(nm log n) complexity. In
the second problem, we mentioned the binary search solution, with an additional
log-factor. In these problems, logarithmic optimizations were too slow, as we
were able to reduce complexity by the linear order, but in other problems, using
an additional log from adding binary/ternary search or a segment tree might be
the only way to go.

6.3. Convex hull optimization

In this section, we will discuss the convex hull trick, which was first described in
[Brucker, 1995], but the first well-known occurrence in sports programming was the
problem “Batch Scheduling” from IOI 2002 (which we will describe below).

We will focus on the dynamic programming solutions with the following form:

dp(i) = min
j<i
(f (i) · cost(j) + dp(j))

where cost is a monotone function. The naive solution works in O(n2), but we can
speed it up to O(n log n) or even to O(n) in some cases. The key observation is that
the function that we are trying to minimize resembles a line in R2. In particular, the
whole problem can be reduced to simply two operations:

• inserting a linear function mx+c to a set of linear functions (in the formula above
m = cost(j) and c = dp(j)),

• finding the minimum value from all the functions in the set for some argument
x (in the formula above x = f (i)).

We will try to maintain a lower convex hull of the linear functions. In the picture
below, we show how the convex hull (denoted by the red line) changes as we add more
functions. We may notice that every line corresponds to at most one segment in the
convex hull.

90 CHAPTER 6. DYNAMIC PROGRAMMING OPTIMIZATIONS

Dual problem

Instead of keeping linear functions y = mx + c, we can keep only points (m, c).
Therefore we will try to minimize the dot product of points (m, c) with (x, 1),
which will be the same as minimizing the value of the function. Then we need
to keep the convex hull on points, instead of lines.

First, we will try to solve an even simpler problem, where f (i) is also a monotone
function (here we do not care if it has the same monotonicity as cost, but notice that if
both of these functions are, let us say, increasing, then the problem is not interesting).

Problem Batch scheduling

International Olympiad in Informatics 2002, second day.
Limits: 1s, 64MB.
https://kostka.dev/sp/bat

There is a sequence of N jobs to be processed on one machine. The jobs are
numbered from 1 to N, so that the sequence is 1, 2, . . . , N. The sequence of jobs must

https://kostka.dev/sp/bat

6.3. CONVEX HULL OPTIMIZATION 91

be partitioned into one or more batches, where each batch consists of consecutive jobs
in the sequence. The processing starts at time 0. The batches are handled one by
one starting from the first batch as follows. If a batch b contains jobs with smaller
numbers than batch c, then batch b is handled before batch c. The jobs in a batch are
processed successively on the machine. Immediately after all the jobs in a batch are
processed, the machine outputs the results of all the jobs in that batch. The output
time of a job j is the time when the batch containing j finishes.

A setup time S is needed to set up the machine for each batch. For each job i,
we know its cost factor Fi and the time Ti required to process it. If a batch contains
the jobs x,x + 1, . . . , x + k, and starts at time t, then the output time of every job
in that batch is t + S + (Tx + Tx+1 + . . . + Tx+k). Note that the machine outputs
the results of all jobs in a batch at the same time. If the output time of job i is
Oi, its cost is Oi × Fi. For example, assume that there are 5 jobs, the setup time
S = 1, (T1,T2,T3,T4,T5) = (1, 3, 4, 2, 1), and (F1, F2, F3, F4, F5) = (3, 2, 3, 3, 4). If the
jobs are partitioned into three batches {1, 2}, {3}, {4, 5}, then the output times are
(O1,O2,O3,O4,O5) = (5, 5, 10, 14, 14) and the costs of the jobs are (15, 10, 30, 42, 56),
respectively. The total cost for a partitioning is the sum of the costs of all jobs. The
total cost for the example partitioning above is 153.

You are to write a program which, given the batch setup time and a sequence
of jobs with their processing times and cost factors, computes the minimum possible
total cost.

Input

Your program reads from standard input. The first line contains the number of
jobs N, 1 ≤ N ≤ 10 000. The second line contains the batch setup time S which
is an integer, 0 ≤ S ≤ 50. The following N lines contain information about the
jobs 1, 2, . . . , N in that order as follows. First on each of these lines is an integer Ti,
1 ≤ Ti ≤ 100, the processing time of the job. Following that, there is an integer Fi,
1 ≤ Fi ≤ 100, the cost factor of the job.

Output

Your program writes to standard output. The output contains one line, which
contains one integer: the minimum possible total cost.

92 CHAPTER 6. DYNAMIC PROGRAMMING OPTIMIZATIONS

Examples

For the input data:

2
50
100 100
100 100

the correct result is:

45000

For the input data:

5
1
1 3
3 2
4 3
2 3
1 4

the correct result is:

153

Solution

Of course we will use dynamic programming to solve this problem. For simplicity
of calculating the cost, we will construct batches from right to left. Let dp(i) denote
the minimum total cost of partitioning jobs (i, i + 1, . . . , N) into batches. Then:

dp(i) = min
j>i
(dp(j) + f (i) · costi(j)) .

where:

• f (i) = Fi + Fi+1 + . . . + FN ,

• costi(j) = Ti + Ti+1 + . . . + Tj−1.

Let us notice that both f and costi are monotone.

We want to minimize dp(j)+ f (i) · costi(j) with regard of j. When will we choose
some j1 over j2 (where j1 > j2)?

f (i) · costi(j1) + dp(j1) < f (i) · costi(j2) + dp(j2)

f (i) <
dp(j2) − dp(j1)

costi(j1) − costi(j2)

6.3. CONVEX HULL OPTIMIZATION 93

Let us denote the expression on the right by cmp(j1, j2), i.e.: cmp(j1, j2) =
(dp(j2)− dp(j1))/(costi(j1)− costi(j2)). Note that the denominator does not depend on
i anymore. Then we will say that j1 is better than j2 if cmp(j1, j2) > f (i).

Observation 1. For i < j3 < j2 < j1, if cmp(j1, j2) > cmp(j2, j3), then j2 will never be
chosen as the optimum.

Proof. We have two cases, depending on the relation between f (i) and cmp(j1, j2):

• f (i) ≥ cmp(j1, j2), then f (i) > cmp(j2, j3), and f (i) < cmp(j3, j2), and we can
choose j3 over j2,

• f (i) < cmp(j1, j2), then we simply should choose j1 over j2. �

The first observation shows that we can only maintain a set of candidates
(jl, jl+1, . . . , jr), where cmp(jl, jl+1) ≤ cmp(jl+1, jl+2) ≤ . . . ≤ cmp(jr−1, jr).

Going back to our interpretation with functions and convex hull, this means that
we will keep only the lower convex hull. Moreover, these functions will be given in the
order of decreasing slopes, therefore we can just keep this hull using a stack. Then
we can find the optimum for each i using binary search, which will result in O(n log n)
solution. But we can use one more observation to speed it up even more.

Observation 2. If cmp(j1, j2) < f (i) for i < j2 < j1, then we do not have to consider
j1 in further steps (i − 1, i − 2, . . .).

Proof. This is trivial, as f (i) is a decreasing function. �

The second observation is telling us how we can choose the optimal j for i: we
will remove elements from the front of the set of candidates mentioned above, until
cmp(jl, jl+1) ≥ f (i). As you can notice, we only need to append elements to the back
of this set, and pop elements from the front and back, therefore we can use a deque
again. In this simplified case, this algorithm is just a variation on the monotone queue

94 CHAPTER 6. DYNAMIC PROGRAMMING OPTIMIZATIONS

optimization, where the element that is monotone is the slope of the function.

D← deque();
for i ← n − 1 to −1

// pop elements out of the bounds from the front
while D.size() ≥ 2 and cmp(D.front(), next(D.front())) < f (i)

D.pop_front();

// calculate result using the front of the deque
if not D.empty()

dp[i] ← dp[D.front()] + f (i) · cost(D.front());

// pop elements no longer needed
while D.size() ≥ 2 and cmp(prev(D.back()), D.back()) > cmp(D.back(),

i)
D.pop_back();

// insert i at the back
D.push_back(i);

This solution works in O(n) time and O(n) memory.

To summarize, we managed to optimize O(n2) solution to O(n) by using two
observations. The first one allowed us to store the candidates for the optimum as a
lower convex hull of linear functions on the stack, which resulted in O(n log n) solution.
Sometimes (when f is also a monotone function) we can do one more step and reduce
this problem to keeping the monotone queue with proper candidates, which results in
O(n) time solution.

6.3.1. Li Chao tree

Now let us focus on the online version of this problem. We need to have a data
structure that will allow us to keep a set of linear functions and to find the minimum
value of these functions for some given argument. We only assume that every two of
these functions intersect at most once.

Li Chao introduced the following data structure, which was first presented during
his lecture at Zhejiang Provincial Selection in 2013 and is now commonly known as ”Li
Chao tree”. The main idea is to just keep a segment tree on these linear functions. We
will keep a segment tree, where each node in the segment tree covers some interval
and store one function. We will make sure that for every point p covered by a tree,
we can find a leaf covering the interval containing this point, so we can find a function
that minimize all the values in this segment by traversing all the functions from the
leaf to the root and checking values of these functions in p.

If we have only one function (red on the picture), we will just keep this function
over the whole interval. Now imagine we want to add a new function (blue on the

6.3. CONVEX HULL OPTIMIZATION 95

picture) to our set of functions. What can happen?

We have two possible cases:

1. either one of the functions will majorize the second (will be always greater or
lesser), as shown on the left hand side of the picture above,

2. or they will cross somewhere within this interval, as shown on the right hand
side.

In the first case, we can just modify the function in the node (if needed). In the
second case, we need to find in which child the intersection point (the point where the
minimum of these function changes) occurs and continue our recursive process there.
For the second child, we can just choose the function that minimizes the segment.
We can do that by checking the values of these functions in one of the bounds of the
corresponding interval (let us say the left bound) and in the middle of that interval.

Function InsertFunction(Node node, Function f):
mid ← 1

2 (node.le f t + node.right);
// below we are checking which function is lower on the left

bound of the interval, and in the middle of the interval
lowerLe f t ← f (node.le f t) < node. f (node.le f t);
lower Mid ← f (mid) < node. f (mid);
if lower Mid

node. f = f ;

if node is a leaf
return

if lowerLe f t = lower Mid
InsertFunction(node.le f tChild, f);

else
InsertFunction(node.rightChild, f);

We can also do it dynamically: we can use binary search to find the intersection
point and split the interval into two (uneven) intervals. Then, each node in our segment
tree will cover some interval, but each node will still store exactly one function.

96 CHAPTER 6. DYNAMIC PROGRAMMING OPTIMIZATIONS

Now if we want to check the minimum for some value, we just walk over the path
to the leaf of this value and take the minimum value from all the functions found on
this path.

Function GetMinimumValue(Node node, x):
if node is a leaf

return node. f (x)

mid ← 1
2 (node.le f t + node.right);

if x < mid
return min(node. f (x), GetMinimumValue(node.le f tChild, x))

else
return min(node. f (x), GetMinimumValue(node.rightChild, x))

Please note that we can also adapt this approach for other functions that can
cross in at most one point or just line segments.

Removing elements from the persistent data structures

One may ask if we can delete some functions from the set kept in the Li Chao
tree. There is a handy method that allows us to delete elements from any
persistent data structure by adding just an additional log factor in the time
complexity. We assume here that we do not have to do it online, so we know
in advance when each element will be removed.
We are keeping a segment tree over the time T . In each node we will keep a
set of elements that correspond to this time (are inserted in the data structure
in this period). Then for each element that should be added and eventually
later removed from that data structure, we just need to add this element in
O(logT) nodes. Then if we want to know something about the data structure
at subsequent moments of time, we run the DFS algorithm in this segment tree.
We keep a copy of this persistent data structure. When we enter the node, we
add the elements in this node, but when we leave the node, we need to remove
these elements. Here we are using the persistency – for example we can keep
all the updates on the stack, so we can remove all the updates we did in this
node.

6.4. Knuth optimization

Gilbert and Moore in [Gilbert and Moore, 1959] tried to solve the problem of
finding the optimal binary tree. In this section, we will describe a simplified version of
this problem. We are given values a1 < a2 < . . . < an with corresponding probabilities
of being chosen p1, p2, . . . , pn and we are asked to organize them into a binary tree in
a way that the sum of the probabilities multiplied by the depths of the values in the
tree is minimum. (The root has depth 1.) One can notice that we can simplify the

6.4. KNUTH OPTIMIZATION 97

problem and forget about the values ai and just focus on the probabilities. The only
thing that we have to remember is that we cannot reorder these probabilities.

We will start by proposing the natural dynamic programming solution. Let dp(l, r)
will be the cost of the optimal tree that may be built over the values from l to r. Then:

dp(i, i) = pi

dp(l, r) = minl≤i≤r (dp(l, i − 1) + (pl + pl+1 + . . . + pr) + dp(i + 1, r))

In the second equation, we are looking for the optimal value ai to take as a root
of the subtree for all the values between l and r and we are paying the cost of putting
all the nodes in the next level and the cost of two subtrees (one from l to i − 1 and
the second one from i + 1 to r). Please note that all the sums can be precalculated
(and we will denote cost(l, r) = (pl + pl+1 + . . . + pr)). The total complexity of this
dynamic programming solution (proposed by Gilbert and Moore) is O(n3) time and
O(n2) memory.

Let us try to notice something about the function cost. We will say that the
function cost for a ≤ b ≤ c ≤ d:

• is monotone if
cost(b, c) ≤ cost(a, d),

• satisfies the quadrangle inequality (QI) if

cost(a, c) + cost(b, d) ≤ cost(a, d) + cost(b, c).

The first property is also known in the literature as monotonicity on the lattice of
intervals (MLI).

In our case, it is easy to notice that our cost function is monotone (if we broaden
our interval, we have to pay more). To prove that our function satisfies QI, we just
need to see that

cost(a, c) + cost(b, d) = (pre fc − pre fa−1) + (pre fd − pre fb−1)

= (pre fd − pre fa−1) + (pre fc − pre fb−1) = cost(b, c) + cost(a, d)

where pre fk = p1 + p2 + . . . + pk .

Yao in [Yao, 1980] proved that these two properties of the cost function are
sufficient to speed up any dynamic programming using it from O(n3) to O(n2) time.
We need two observations.

Observation 1. For the following dynamic programming function:
dp(i, i) = 0

dp(l, r) = minl≤k≤r dp(l, k − 1) + dp(k + 1, r) + cost(l, r),

if cost function is monotone and satisfies QI, then dp function also satisfies QI.

98 CHAPTER 6. DYNAMIC PROGRAMMING OPTIMIZATIONS

We skip the proof here, as it involves only case analysis. For more details, see
Yao’s original paper.

Observation 2. For the dynamic programming function from the first observation, let
us denote the optimum value of k for dp(l, r) mentioned above as opt(l, r) (if there are
several such optimums, then we choose the latest one). Then opt(l, r −1) ≤ opt(l, r) ≤
opt(l + 1, r).

In our case with the optimal binary tree problem, that means that extending the
tree by adding a new value ar to the already optimal tree for values (al, al+1, . . . , ar−1)
will not move the root of the tree to the left (and symmetrically).

Proof. We will prove that opt(l, r−1) ≤ opt(l, r), as the second inequality is symmetric.
We just need to show that for l ≤ k1 ≤ k2 ≤ r:

dp(l, k2 − 1) + dp(k2 + 1, r − 1) + cost(l, r − 1)

≤ dp(l, k1 − 1) + dp(k1 + 1, r − 1) + cost(l, r − 1)

⇓

dp(l, k2 − 1) + dp(k2 + 1, r) + cost(l, r) ≤ dp(l, k1 − 1) + dp(k1 + 1, r) + cost(l, r)

As dp satisfies QI, we can say that:

dp(k1 + 1, r − 1) + dp(k2 + 1, r) ≤ dp(k2 + 1, r − 1) + dp(k1 + 1, r)

Then we can add cost(l, r − 1)+ cost(l, r)+ dp(l, k1 − 1)+ dp(l, k2 − 1) to both sides
and we get:

(dp(l, k1 − 1) + dp(k1 + 1, r − 1) + cost(l, r − 1)) + (dp(l, k2 − 1) + dp(k2 + 1, r) + cost(l, r))

≤ (dp(l, k1 − 1) + dp(k1 + 1, r) + cost(l, r)) + (dp(l, k2 − 1) + dp(k2 + 1, r − 1) + cost(l, r − 1)) ,

which yields the implication above. �

We have shown that for dp(l, r) we need to look for the optimum k only in range
[opt(l, r − 1), opt(l + 1, r)]. The algorithm then works as follows: we can calculate
the values of our dynamic programming algorithm in the order of increasing range
d = r − l, but with our observation, the running time for a fixed d will be equal to
(opt(d + 1, 2) − opt(d, 1)+ 1)+ (opt(d + 2, 3) − opt(d + 1, 2)+ 1)+ . . .+ (opt(n, n− d + 1) −
opt(n − 1, n − d) + 1) = opt(n, n − d + 1) − opt(d, 1) + n, so only O(n) time. The overall

6.4. KNUTH OPTIMIZATION 99

running time is O(n2).

precalculate cost function;
for len← 0 to n − 1

for a← 1 to n − len
b← a + len;
for i ← opt(a, b − 1) to opt(a + 1, b)

cost AtI = dp(l, i − 1) + dp(i + 1, r) + cost(l, r);
if cost AtI ≤ dp(a, b)

dp(a, b) ← cost AtI;
opt(a, b) ← i;

return dp(1, n)

Knuth in [Knuth, 1971] first proposed the solution for the problem of finding
the optimal binary search tree working in O(n2) time, but his approach was problem-
specific. Yao, on the other hand, gave us simple conditions for the cost function which
are applicable in many problems, see [Yao, 1982] and [Bar-Noy and Ladner, 2004].

Problem Drilling

Algorithmic Engagements 2009.
Limits: 2s, 64MB.
https://kostka.dev/sp/dri

Byteman is the person in charge of a team that is looking for crude oil reservoirs.
He has made two boreholes: he found crude oil in point A and found out that there
is no crude oil in point B. It is known that the oil reservoir occupies a connected
fragment of segment AB with one end at point A. Now Byteman has to check, how
far, along the segment connecting points A and B, does the oil reservoir reach. It is
not that simple, however, because in some locations one can drill faster than in other
locations. Moreover, Byteman’s team is rather small, so they can drill in at most one
location at a time. Byteman’s boss would like him to predetermine when he will be
able to identify the boundary of the oil reservoir.

Byteman has asked you for help. He has divided the segment connecting points A
and B into n+1 segments of equal length. If we assume that point A has coordinate 0,
and point B coordinate n+1, then there are points with coordinates 1, 2, 3, . . . , n between
them. It is enough to find the farthest from A of these points in which some crude oil
occurs. Byteman has informed you about the amounts of time necessary for making
boreholes in these points – they are equal to t1, t2, . . . , tn respectively. You should create
such a plan of drilling, that the time necessary to identify the oil reservoir’s boundary
is shortest possible, assuming the worst-case scenario.

https://kostka.dev/sp/dri

100 CHAPTER 6. DYNAMIC PROGRAMMING OPTIMIZATIONS

Input

The first line of the standard input contains a single positive integer n (1 ≤ n ≤
2000). The second line contains n positive integers t1, t2, . . . , tn separated by single
spaces (1 ≤ ti ≤ 106).

Output

Your program should write a single integer to the standard output - the smallest
amount of time that Byteman has to spend (assuming the worst-case scenario) drilling
in search of oil, to be sure that he will identify the reservoir’s boundary.

Example

For the input data:

4
8 24 12 6

the correct result is:

42

Solution

This solution is based on [Idziaszek, 2015].

First, let us assume that all the times are equal. In this case, in the worst scenario,
we have to drill blog nc + 1 times (using the binary search).

The first idea is to construct a dynamic programming solution that will work in
O(n3) time. Let dp(l, r) denote the optimal time of finding the reservoir’s boundary
within the bounds l and r (both inclusively), assuming that l − 1 contains oil, while
r + 1 does not. Then:

dp(l, r) = min
l≤i≤r
(ti +max(dp(l, i − 1), dp(i + 1, r))) (*)

We are looking here for a place to drill (i), and then we will call our function
recursively – we will spend at most max(dp(l, i − 1), dp(i + 1, r)) time, depending on the
answer in i.

To speed up this algorithm, we will need several observations. First, let us note
that the monotonicity condition for dp is fulfilled. If we already have result dp(l, r)
for some interval [l, r], then expanding this interval in any direction will never cause

6.4. KNUTH OPTIMIZATION 101

result to decrease. We know that with the increasing i, the value dp(a, i − 1) does not
decrease, and the value dp(i + 1, b) does not increase. Therefore we can find an index
opt(l, r) ∈ (l − 1, r), so that the following conditions are fulfilled:

• dp(l, i − 1) ≤ dp(i + 1, r) for i ≤ opt(l, r),

• dp(l, i − 1) > dp(i + 1, r) for i > opt(l, r).

Because of that, we can rewrite the dynamic programming formula (*):

dp(l, r) = min(min
l≤i≤opt(l,r)

(ti + dp(i + 1, r)), min
opt(l,r)<i≤r

(ti + dp(l, i − 1))) (**)

Now, we can also notice that opt is also monotonic, i.e.:

opt(l, r − 1) ≤ opt(l, r) ≤ opt(l + 1, r)

Indeed, if we take any i ≤ opt(l, r − 1) and use the fact that dp is monotonic, ergo
expanding the segment will not decrease the cost, then dp(l, i − 1) ≤ dp(i + 1, r − 1) ≤
dp(i + 1, r), which proves that i ≤ opt(l, r). The right hand side of the inequality above
is symmetric.

Now the only thing left is how to calculate these minimums in (**). We will
calculate dp function in the order of the increasing lengths of the segments. We will
use the monotone queue here. We will keep n pairs of deques, let us denote them by
A[i] and B[i] for i = 1, 2, . . . , n. In A[l] we will store minimums for the right minimum
(in order of increasing indices) for segments starting in l, while in B[r] we will store
minimums for the left minimum (in order of decreasing indices) for segments starting
in r. As we calculate dp(l, r) after calculating dp(l − 1, r) and dp(l, r − 1), all updates
in these deques can be done in amortized O(1) time, which leads to the total time and

102 CHAPTER 6. DYNAMIC PROGRAMMING OPTIMIZATIONS

memory complexity of O(n2).

for len← 0 to n − 1
for l ← 1 to n − len

r ← l + len;
for i ← opt(l, r − 1) to opt(l + 1, r)

if dp(l, i − 1) ≤ dp(i + 1, r)
opt(l, r) ← i;

while not A[l].empty() and A[l].back().second ≥ t[r] + dp(l, r − 1)
A[l].pop_back();

A[l].push(r, t[r] + dp(l, r − 1));
while not (A[l].empty()) and A[l]. f ront() ≤ opt(l, r)

A[l].pop_ f ront();

while not B[r].empty() and B[r].back().second ≥ t[l] + dp(l + 1, r)
B[r].pop_back();

B[r].push(l, t[l] + dp(l + 1, r));
while not (B[r].empty()) and B[r]. f ront() > opt(l, r)

B[r].pop_ f ront();

dp(l, r) = min(A[l]. f ront(), B[r]. f ront());

return dp(1, n)

Note that this solution is merely based on Yao’s method, but we did not used this
method explicitly.

6.5. Divide and conquer optimization

We will start this section with a very classical problem from the ICPC World Finals.

Problem Money for Nothing

ICPC World Finals 2017.
Limits: 4s, 1GB.
https://kostka.dev/sp/mon

In this problem, you will be solving one of the most profound challenges of humans
across the world since the beginning of time – how to make lots of money.

You are a middleman in the widget market. Your job is to buy widgets from
widget producer companies and sell them to widget consumer companies. Each widget
consumer company has an open request for one widget per day, until some end date,
and a price at which it is willing to buy the widgets. On the other hand, each widget

https://kostka.dev/sp/mon

6.5. DIVIDE AND CONQUER OPTIMIZATION 103

producer company has a start date at which it can start delivering widgets and a price
at which it will deliver each widget.

Due to fair competition laws, you can sign a contract with only one producer
company and only one consumer company. You will buy widgets from the producer
company, one per day, starting on the day it can start delivering, and ending on the
date specified by the consumer company. On each of those days you earn the difference
between the producer’s selling price and the consumer’s buying price.

Your goal is to choose the consumer company and the producer company that
will maximize your profits.

Input

The first line of input contains two integers m and n (1 ≤ m, n ≤ 500 000) denoting
the number of producer and consumer companies in the market, respectively. It is
followed by m lines, the i-th of which contains two integers pi and di (1 ≤ pi, di ≤ 109),
the price (in dollars) at which the i-th producer sells one widget and the day on which
the first widget will be available from this company. Then follow n lines, the j-th of
which contains two integers qj and ej (1 ≤ qj, ej ≤ 109), the price (in dollars) at which
the j-th consumer is willing to buy widgets and the day immediately after the day on
which the last widget has to be delivered to this company.

Output

Display the maximum total number of dollars you can earn. If there is no way to
sign contracts that gives you any profit, display 0.

Examples

For the input data:

2 2
1 3
2 1
3 5
7 2

the correct result is:

5

And for the input data:

1 2
10 10
9 11
11 9

the correct result is:

0

104 CHAPTER 6. DYNAMIC PROGRAMMING OPTIMIZATIONS

Solution

If we think about producers and consumers as 2D points, we are looking for the
maximum area of some rectangle, where the bottom-left point is some producer (the
green points on the picture below), and the top-right point of this rectangle is some
consumer (the red points).

price

time

The first observation is quite easy: if for a producer p we can find any producer
that is both cheaper and can start producing faster than p, then we can forget about
p. A similar thing can be said about consumers. All remaining red and green points
will form two chains.

price

time

Now for some chosen producer company, let us try to find the best consumer. We
can iterate over all consumers in O(n) time and choose the rectangle with the maximum

6.5. DIVIDE AND CONQUER OPTIMIZATION 105

area. Now, we can observe that if we match all consumers with their respective best
producers, and draw arrows between them, then the arrows will never cross. We can
formally prove it by contradiction, i.e. we have the situation as shown on the left hand
side of the picture below:

If we swap these pairs, as shown on the right hand side, we can see that we will
get rectangles with an area not smaller than of the ones on the left. One can check
that formally by writing proper inequalities.

Therefore, we can find the optimal consumer c for some producer p, and then we
can use divide and conquer to split this problem into two: for all producers to the left
of p find their optimal consumers, knowing that either they are equal to c or they are
somewhere to the left of c. Similarly for the right side.

This results in O((n + m) log(n + m)) solution.

We will use the approach described in the problem above to optimize another form
of dynamic programming:

dp(i, j) = min
k< j
(dp(i − 1, k) + cost(j, k))

for i = 1, 2, . . . , N and j = 1, 2, . . . , M and where cost is some function computable in
O(1).

In the general case, we can solve it in O(N M2) time. Let us once again denote
the smallest optimal k for dp(i, j) as opt(i, j). If the condition opt(i, j) ≤ opt(i, j + 1) is
fulfilled, then we can speed it up to O(N M log M) time.

What does this condition actually mean? If we are calculating the dp function for
layer i, let us think where the optimums are in comparison to the previous row i − 1

Our condition means that if we will draw arrows from every element opt(i − 1, j) to the
smallest element opt(i, ∗) greater than or equal to opt(i − 1, j), these arrows will never
cross themselves.

106 CHAPTER 6. DYNAMIC PROGRAMMING OPTIMIZATIONS

i − 1

i

j j + 1

Because of that, we can use the divide and conquer approach, as seen in the
problem with consumers and producers. When we calculate the next row, we can find
the optimum for the middle index m in O(M) time. Now if we find this optimum, let us
note that all the elements to the left of m can have their optimum at the same place
or to the left of the optimum for m, i.e. opt(i, l) ≤ opt(i,m) for l < m. We can make a
symmetric statement for the elements to the right of m. Moreover, we can continue
using the divide and conquer method in both parts that we have now.

i − 1

i

m

Therefore for calculating the layer i, we can use the following recursive function:

Function calculateDp(i, l, r, optl, optr):
opt ← optl;
mid ← 1

2 (l + r);
// find the optimum for mid in linear time
for k ← optl + 1 to optr

if dp(i − 1, k) + cost(mid, opt) < dp(i − 1, opt) + cost(mid, opt)
opt ← k;

dp(i,mid) ← dp(i − 1, opt) + cost(mid, opt);
// and solve two subproblems for the left and right side
calculateDp(i, l,mid − 1, optl, opt);
calculateDp(i,mid + 1, R, opt, optr);

which works in O(M log M). This allows us to reduce the time complexity to
O(N M log M). The biggest problem in using this approach is to prove that opt fulfills
the monotonicity condition.

For further reference, see [Galil and Park, 1992].

6.5. DIVIDE AND CONQUER OPTIMIZATION 107

Problem Guardians of the Lunatics

IOI 2014 Practice Contest 2 @ Hackerrank.
Limits: 7 s, 512 MB.
https://kostka.dev/sp/gua

You are in charge of assigning guards to a prison where the craziest criminals are
sent. The L cells form a single row and are numbered from 1 to L. Cell i houses
exactly one lunatic whose craziness level is Ci.

Each lunatic should have one guard watching over them. Ideally, you should have
one guard watching over each lunatic. However, due to budget constraints, you only
have G guards to assign. You have to assign which lunatics each guard should watch
over in order to minimize the total risk of having someone escape.

Of course, you should assign each guard to a set of adjacent cells. The risk level
Ri that the lunatic in cell i can escape is given by the product of their craziness level
Ci and the number of lunatics the guard assigned to them is watching over. Getting
the sum of the Ri’s from i = 1 to i = L will give us the total amount of risk, R, that a
lunatic might escape.

Given L lunatics and G guards, what is the minimum possible value of R?

Input

The first line of input contains two space-separated positive integers: L and G
(1 ≤ L ≤ 8000, 1 ≤ G ≤ 800), the number of lunatics, and the number of guards
respectively.

The next L lines describe the craziness level of each of the lunatics. The i-th of
these L lines describes the craziness level Ci (1 ≤ Ci ≤ 109) of the lunatic in cell block
i.

Output

Output a line containing the minimum possible value of R.

https://kostka.dev/sp/gua

108 CHAPTER 6. DYNAMIC PROGRAMMING OPTIMIZATIONS

Example

For the input data:

6 3
11
11
11
24
26
100

the correct result is:

299

Note: The first guard should be assigned to watch over the first three lunatics, each
having a craziness level of 11. The second guard should be assigned to watch over
the next two lunatics, having craziness levels of 24 and 26. The third guard should be
assigned to the craziest lunatic, the one having a craziness level of 100.

The first three lunatics each have a risk level of 33, the product of 11 (their
craziness level), and 3 (the number of lunatics their guard is watching over). The next
three lunatics have a risk level of 48, 52, and 100. Adding these up, the total risk level
is 299.

Solution

Let dp(n,m) denote the minimum total cost of partitioning the first m lunatics
between n guards. Then we can write the following dynamic programming formula:

dp(1,m) = cost(1,m)

dp(n,m) = min0≤k≤m (dp(n − 1, k) + cost(k + 1,m)) for n > 1

We are here determining what will be the group watched by the last guard. Note
that cost can be calculated in O(1) time after O(L) preprocessing by calculating the
prefix sums, as cost(i, j) = (Ci + Ci+1 + . . . + Cj) · (j − i + 1).

Now we can speed it up by using the observation that opt(n,m) (optimum k for
the minimum in the transition above) is monotone for a fixed n. That means that
we can use the divide and conquer optimization that will result in O(LG logG) time
solution with O(LG) memory. Memory can be reduced to O(L), by using the rolling
array method. To prove the monotonicity, use the fact that cost satisfies quadrangle
inequality (compare with the section about the Knuth’s optimization).

6.6. LAGRANGE OPTIMIZATION 109

As cost in this particular problem fulfills QI, we can check if we can use the Knuth’s
optimization. It turns out that we can and we can end up with the solution with O(L2)

time complexity.

6.6. Lagrange optimization

The last optimization we will demonstrate originated in [Aggarwal et al., 1994]
and uses the method of Lagrange multipliers. For more details about this method, see
[de la Fuente, 2000] and [Bertsekas, 2014].

We will show how the Lagrange optimization works in the form of a solution to
the following problem.

Problem Low-cost airlines

Algorithmic Engagements 2012.
Limits: 7s, 256MB.
https://kostka.dev/sp/low

Byteasar goes on a long-awaited vacation, which he is going to spend basking in
the sun on the golden sands of the beaches of the Bytocki Sea. Taking into account
his biorhythm, the weather forecast and the cultural attractions of Bytocia, Byteasar
determined a recreation factor for each of the vacation days, which means how much
fun Byteasar will have on a given day. Each of the coefficients is an integer; perhaps
negative - it means that Byteasar would rather be at home and weeding his garden
that day.

Fortunately, Byteasar does not have to spend his entire vacation at the seaside.
His favorite low-cost airlines have prepared a promotion thanks to which Byteasar can
buy k air tickets at an extremely attractive price (each ticket is for a trip to the Bytocki
Sea and back).

Help Byteasar plan his vacation in such a way that the sum of the recreational
factors for the days he will spend at the seaside is as high as possible, assuming that
during his vacation he can fly to the seaside at most k times. For simplicity, we assume
that planes run at night.

Input

The first line of input contains two integers n and k (1 ≤ k ≤ n ≤ 1 000 000). In
the second line there are n numbers ri (−109 ≤ ri ≤ 109) which describe the recreation
coefficients of successive days of Byteasar’s leave.

https://kostka.dev/sp/low

110 CHAPTER 6. DYNAMIC PROGRAMMING OPTIMIZATIONS

Output

The only line of output should contain one integer, which represents the sum of
the recreation coefficients in the optimal vacation plan.

Example

For the input data:

5 2
7 -3 4 -9 5

the correct result is:

13

Solution

When k = 1 it is a somewhat standard problem and we can solve it in many
ways, the most famous one is probably Kadane’s algorithm (fun note: Kadane de-
signed his linear solution within a minute at a seminar at Carnegie Mellon University)
[Bentley, 1984].

Now, let us go back to the original problem and consider the following input array:
[3, 6,−2,−4, 7, 4,−2, 1,−6, 3, 5,−2]. When k = 1, we can easily notice that we should
take [3, 6,−2,−4, 7, 4] to get the best result (14), but when we have k = 2, we can
add [3, 5] as another interval and get 22. Now if we continue, for k = 3, the optimal
answer is to take [3, 6], [7, 4], [3, 5]. If k = 4 we can add last 1. Notice that we will not
increase our answer any more if we add more intervals, as we already used all positive
numbers.

3 6 −2 −4 7 4 −2 1 −6 3 5 −1

k = 1

k = 2

k = 3

k = 4

We can make an interesting observation from this example. When we increase k,
in every step we will either add an interval that is completely outside of any intervals
already chosen or we will split an already chosen interval by choosing the interval with
the minimum sum and removing it. Proving this observation we will leave as an exercise
for the reader.

Now we can make some further observations. It is pretty easy to notice that if
ans(k) is the answer for k intervals, then ans(k) ≤ ans(k + 1), i.e. if we have more

6.6. LAGRANGE OPTIMIZATION 111

intervals, then we can improve the result. Moreover, when k increases, then the
difference between the results cannot increase, i.e.

ans(k) − ans(k − 1) ≥ ans(k + 1) − ans(k).

This is a direct consequence of our first observation, as if we could add/remove an
interval in step k + 1 that is better for our solution than in step k, then we should
swap these intervals and get a better solution in step k. Note that the inequality above
means that the function ans is concave.

In our example, the function ans has the following shape.

0 1 2 3 4 5 6
0

10

20

30

Now let us go back and try to figure out the solution when we do not have a limit
for k, i.e. we can choose as many intervals as we want. We can clearly choose all the
positive integers and leave the negative behind. This solution works in O(n).

Let us think about a different algorithm. We will add a penalty for creating a new
interval, let us say C. This penalty is added so that our solution will be discouraged from
creating new intervals all the time. For a fixed penalty, we use a dynamic programming
algorithm to compute the answer in linear time. Let the result of the algorithm be
f (k). Of course when C = 0 this algorithm will find the solution with unlimited k, but
when C = ∞ we will find the solution with k = 0. Now, what will happen in between?

Let us use a new function called ans′C which will be equal to the cost of the solution
for different values of k, but decreased by our penalty, i.e. ans′C(k) = ans(k) − C · k.
One can check that ans′C is also a concave function.

112 CHAPTER 6. DYNAMIC PROGRAMMING OPTIMIZATIONS

0 1 2 3 4 5 6
0

10

20

30

ans
ans′4

Note that when we compute f (4), we will find some maximum value of ans′4(k),
which in our case is for k = 3. Also notice that from ans′4(3) we can easily deduct
ans(3).

Can we find the optimal value C that will show the solution for a given k? The
answer is positive. As our function ans is concave, we can take a tangent to the
function for a given k, and then the slope of this function will determine the optimal
C. (Check out the dashed lines in the plot above.) To find this C, we use binary search,
as k is monotone with respect to C. In each step of the search, for a given value of C we
compute k by finding the optimal solution using the dynamic programming approach.

Keep in mind that the line corresponding to the value C can be the tangent for
many values of k.

This allows us to solve the problem in O(n · logV), where V =
∑

i max(0, ri), which
is the maximum possible value of our result.

To use this trick in the general case, we need to prove that the function that we
are trying to optimize in concave/convex (to be more precise, we need to prove the
concave Monge property, see [Aggarwal et al., 1994] for more details). In most cases
it is quite difficult to prove (even in this task, we skipped the formal proof), so during
the competition it is not recommended to try to prove it formally. Sometimes you
should trust your instinct or write a brute-force solution that can check this property
on random testcases.

6.7. Summary

Below, we will shortly summarize all the optimizations we discussed in this chapter
in a handy cheat sheet.

1. Sum over subsets (SOS)

6.7. SUMMARY 113

• Transitions: dp(mask) =
∑

submask⊂mask dp(submask),
∑

can be replaced
by other operations.

• Complexity improvement: O(4n) → O(n2n).

2. Monotone queue optimization

• Transitions: dp(i) = minp(i)≤ j<i(f (j)+cost(i)), where f (j) depends on dp(j).

• Conditions: p(i) is an increasing function.

• Complexity improvement: O(n2) → O(n).

3. Convex hull optimization

• Transitions: dp(i) = minj<i(f (i) · cost(j) + dp(j)).

• Conditions: cost is a monotone function.

• Complexity improvement: O(n2) → O(n log n).

• If f is also monotone, then we can improve the time to O(n).

4. Knuth optimization

• Transitions: dp(l, r) = minl≤i≤r (dp(l, i) + dp(i, r) + cost(l, r)).

• Conditions:

– for opt: opt(l, r − 1) ≤ opt(l, r) ≤ opt(l + 1, r),

– or for cost: for all a ≤ b ≤ c ≤ d: monotonicity (i.e. cost(b, c) ≤
cost(a, d)) and quadrangle inequality (i.e. cost(a, c) + cost(b, d) ≤
cost(a, d) + cost(b, c)).

• Complexity improvement: O(n3) → O(n2).

5. Divide and conquer optimization

• Transitions: dp(i, j) = mink< j(dp(i − 1, k) + cost(j, k)).

• Condition: opt(i, j) ≤ opt(i, j + 1).

• Complexity improvement: O(nm2) → O(nm logm).

6. Lagrange optimization

• Condition: Function that we are trying to optimize is concave/convex.

• Complexity improvement: O(nk) → O(n logV).

As an exercise, we will also introduce a problem that focuses on applying these
optimizations.

114 CHAPTER 6. DYNAMIC PROGRAMMING OPTIMIZATIONS

Problem Aliens

International Olympiad in Informatics 2016, second day.
Limits: 2s, 2GB.
https://kostka.dev/sp/ali

Our satellite has just discovered an alien civilization on a remote planet. We have
already obtained a low-resolution photo of a square area of the planet. The photo
shows many signs of intelligent life. Our experts have identified points of interest in
the photo. The points are numbered from 0 to n − 1. We now want to take high-
resolution photos that contain all of those n points.

Internally, the satellite has divided the area of the low-resolution photo into an m
by m grid of unit square cells. Both rows and columns of the grid are consecutively
numbered from 0 to m−1 (from the top and left, respectively). We use (s, t) to denote
the cell in row s and column t. The point number i is located in the cell (ri, ci) . Each
cell may contain an arbitrary number of these points.

Our satellite is on a stable orbit that passes directly over the main diagonal of the
grid. The main diagonal is the line segment that connects the top left and the bottom
right corner of the grid. The satellite can take a high-resolution photo of any area that
satisfies the following constraints:

• the shape of the area is a square,

• two opposite corners of the square both lie on the main diagonal of the grid,

• each cell of the grid is either completely inside or completely outside the pho-
tographed area.

The satellite is able to take at most k high-resolution photos. Once the satellite
is done taking photos, it will transmit the high-resolution photo of each photographed
cell to our home base (regardless of whether that cell contains some points of interest).
The data for each photographed cell will only be transmitted once, even if the cell was
photographed several times. Thus, we have to choose at most k square areas that will
be photographed, assuring that:

• each cell containing at least one point of interest is photographed at least once,
and

• the number of cells that are photographed at least once is minimized.

Your task is to find the smallest possible total number of photographed cells.

https://kostka.dev/sp/ali

6.7. SUMMARY 115

Implementation details

You should implement the following function (method):

int64 take_photos(int n, int m, int k, int[] r, int[] c)

• n: the number of points of interest,

• m: the number of rows (and also columns) in the grid,

• k: the maximum number of photos the satellite can take,

• r and c: two arrays of length n describing the coordinates of the grid cells that
contain points of interest. For 0 ≤ i ≤ n − 1, the i-th point of interest is located
in the cell (r[i], c[i]).

The function should return the smallest possible total number of cells that are
photographed at least once (given that the photos must cover all points of interest).

Examples

Example 1.

take_photos(5, 7, 2, [0, 4, 4, 4, 4], [3, 4, 6, 5, 6])

In this example we have a 7 × 7 grid with 5 points of interest. The points of
interest are located in four different cells: (0, 3), (4, 4), (4, 5), and (4, 6). You may take
at most 2 high-resolution photos.

One way to capture all five points of interest is to make two photos: a photo of
the 6 × 6 square containing the cells (0, 0) and (5, 5), and a photo of the 3 × 3 square
containing the cells (4, 4) and (6, 6). If the satellite takes these two photos, it will
transmit the data about 41 cells. This amount is not optimal.

The optimal solution uses one photo to capture the 4 × 4 square containing cells
(0, 0) and (3, 3) and another photo to capture the 3×3 square containing cells (4, 4) and
(6, 6). This results in only 25 photographed cells, which is optimal, so take_photos
should return 25.

Note that it is sufficient to photograph the cell (4, 6) once, even though it contains
two points of interest.

This example is shown in the figures below. The leftmost figure shows the grid
that corresponds to this example. The middle figure shows the suboptimal solution in
which cells were photographed. The rightmost figure shows the optimal solution.

116 CHAPTER 6. DYNAMIC PROGRAMMING OPTIMIZATIONS

Example 2.

take_photos(2, 6, 2, [1, 4], [4, 1])

Here we have 2 points of interest located symmetrically: in the cells (1, 4) and
(4, 1). Any valid photo that contains one of them contains the other one as well.

Therefore, it is sufficient to use a single photo. The figures below show this
example and its optimal solution. In this solution the satellite captures a single photo
of 16 cells.

Subtasks

For all subtasks, 1 ≤ k ≤ n.

1. (4 points) 1 ≤ n ≤ 50, 1 ≤ m ≤ 100, k = n,

2. (12 points) 1 ≤ n ≤ 500, 1 ≤ m ≤ 1000, for all i such that 0 ≤ i ≤ n − 1, ri = ci,

3. (9 points) 1 ≤ n ≤ 500, 1 ≤ m ≤ 1000,

4. (16 points) 1 ≤ n ≤ 4000, 1 ≤ m ≤ 1 000 000,

5. (19 points) 1 ≤ n ≤ 50 000, 1 ≤ k ≤ 100, 1 ≤ m ≤ 1 000 000,

6. (40 points) 1 ≤ n ≤ 100 000, 1 ≤ m ≤ 1 000 000.

Sample grader

The sample grader reads the input in the following format:

• line 1: integers n, m and k,

6.7. SUMMARY 117

• line 2 + i (0 ≤ i ≤ n − 1): integers ri and ci.

Solution

We will briefly describe the dynamic programming solution and ways to optimize
it using the optimizations from this chapter.

First, let us observe that we just need to think about points of interests above
diagonal, as we can mirror the picture below it (as pictures are squares, so they will be
covered by them anyway).

Moreover, we can notice that some of the points are redundant. We will say
that point a dominates b, if r[b] ≥ r[a] and c[b] ≤ c[a];, then b is not relevant, as
all squares covering a will also cover b. In the picture below, all the white points are
dominated by the green point. We can remove redundant points by sorting the values
by r and then checking proper values using a stack.

0 1 2 3 4 5

5

4

3

2

1

0

When we remove all irrelevant points, we are left with points with increasing r and
c. Now we can notice that if a photo covers points i and j, then it covers also all the
points between i and j and the area of this photo is equal to (c[j] − r[i] + 1)2. Note
that some photos may overlap, so we need to calculate the area of these overlaps.
Overlaps only depend on the last point from the previous photo and the area is equal
to max(0, c[i − 1] − r[i] + 1)2 (you can find both cases on the pictures below).

118 CHAPTER 6. DYNAMIC PROGRAMMING OPTIMIZATIONS

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

0

So now we can come up with the cost function for covering points between i and
j:

cost(i, j) = (c[j] − r[i] + 1)2 −max(0, c[i − 1] − r[i] + 1)2

And we can finally describe the dynamic programming transitions. Let dp(i, j)
denote the cost of covering prefix of j points with i photos. Then:

dp(i, j) = min(dp(i − 1, j), min
0≤p< j

dp(i − 1, p) + cost(p + 1, j))

With these transitions, we can solve this problem in O(n2k) time with O(nk) space,
which was enough to solve subtask 3.

To solve subtask 4, we can prove that in the dynamic programming above opt(i, j−
1) ≤ opt(i, j) ≤ opt(i + 1, j), where opt(i, j) is the optimal value of p in formula above.
We can use the Knuth optimization the to reduce the complexity to O(n2).

For subtask 5, we have two options. We can use the fact that opt(i, j−1) ≤ opt(i, j)
and all values dp(∗, j) can be calculated from all dp(∗, j−1) and we can apply the divide
and conquer optimization to come up with an O(kn log n) solution. We can also use
the convex hull optimization, after expanding dp(i, j) into linear function terms. This
optimization gives us an O(kn) solution.

Finally, to solve the final subtask, we need to use the last optimization. When we
consider dp(i, k) as a function on k, we can prove that dp is convex. Then we can use
the Lagrange optimization and end up with O(n log(n + m)).

Chapter 7

Polynomials

In this section we will discuss polynomials. First, we will discuss the general
problem of multiplication of two polynomials. Then, we will talk about various rep-
resentations of polynomials and focus on evaluation and interpolation of polynomials.
Finally, we will present Fast Fourier transform (FFT). After that, we will take a look
at other bitwise convolutions of polynomials.

Polynomials and their representations

We will consider polynomials only in one variable x in the following form A(x) =
a0+a1x+a2x2+ . . .+anxn (ai are coefficients of this polynomial). This representation
is called a coefficient representation. We will pretty often represent these polynomials
just as a vector of coefficients, i.e.: (a0, a1, a2, . . . , an).

We want to find a fast way to multiply two polynomials A(x) = a0 + a1x + a2x2 +
. . .+an−1xn−1+anxn and B(x) = b0+ b1x+ b2x2+ . . .+ bm−1xm−1+ bmxm. To compute
C(x) = A(x) · B(x), we need to calculate:

C(x) = (an · bm)xn+m + (an−1 · bm + an · bm−1)xn+m−1+

+(an−2 · bm + an−1 · bm−1 + an · bm−2)xn+m−2+

+ . . . + (a0 · b1 + a1 · b0)x + a0 · b0

In particular, we can see that the straightforward method of multiplying two poly-
nomials works in O(nm) time.

Let us try to find something faster. A polynomial in variable x can also be repre-
sented as a plot of function A(x). Moreover, every n+1 distinct points (pairs (xi, A(xi))
for i = 0, 1, . . . , n and distinct xi) uniquely determine the polynomial of degree at most
n. Let us prove this fact right now. Assume that there are two polynomials A and B of
degree at most n that fit these points, i.e. A(xi) = B(xi) for i = 0, 1, . . . , n. Then let us
consider polynomial A(x) − B(x). It has at least n + 1 roots, therefore it has to be the

119

120 CHAPTER 7. POLYNOMIALS

zero polynomial (because it cannot have degree more than n) and A(x) = B(x). This
representation (n + 1 pairs of (point, value)) is called a point-value representation.

When we consider this representation, multiplying (and adding) is pretty easy. For
multiplying, we just need to multiply values in the same points (A ·B)(xi) = A(xi) ·B(xi),
but we need to remember that we need more points (exactly n + m + 1, where n and
m are degrees of A and B respectively), as the degree of the resulting polynomial is
greater.

So if we want to multiply two polynomials faster, we have to switch from the
coefficient representations to the point-value representations, multiply them and then
go back. The first operation is called evaluation, while the second one is called inter-
polation.

coefficient representation

x2 + 7 or (7, 0, 1)

point-value representation

[(−1, 8), (0, 7), (1, 8)]

interpolation

evaluation

Below, we will describe how we can perform these operations.

7.1. Evaluation

For evaluation, we will use the Horner’s method (also known as Horner’s scheme),
which comes from 1819 [Horner, 1819]. This method uses this simple observation:

A(x) = a0 + a1x + a2x2 + a3x3 + · · · + anxn

= a0 + x
(
a1 + x

(
a2 + x

(
a3 + · · · + x(an−1 + x an) · · ·

)))
which corresponds to the following iterative code:

Function evaluate(A = [a0, a1, . . . , an], x):
res← 0;
for i ← n down to 0

res← x · res + ai;
return res

Unfortunately, in a general case, we need to run this function n times for n distinct
points, therefore this evaluation is still slow (O(n2) time).

7.2. INTERPOLATION 121

7.2. Interpolation

For interpolation, there are two famous methods to find the coefficient repre-
sentation of a polynomial. First we will introduce Lagrange polynomial. The idea to
interpolate the polynomial A is as follows. Let us find polynomials Li, such that:

Li(xi) = 1

Li(xj) = 0 for i , j

For simplicity, let us denote that yi = A(xi) for i = 0, 1, . . . , n, where n is the degree
of the polynomial A. Then our interpolating polynomial will take the following form:

L(x) = L0y0 + L1y1 + . . . + Lnyn

It turns out that polynomials Li are pretty easy to define, for example:

L0 =
(x − x1)(x − x2) . . . (x − xn)
(x0 − x1)(x0 − x2) . . . (x0 − xn)

The numerator guarantees that for every xj , x0, the whole expression will be
calculated to zero, while the denominator guarantees that the expression will be equal to
one in case of x0 (we are removing all the unnecessary expressions from the numerator).
Please note that the polynomial in the numerator is of degree at most n− 1, while the
denominator is just some constant (there are no variables in it).

Newton’s interpolation shows another approach. Let us use induction. If we want
to interpolate using only one given value (x0, y0), it is pretty easy:

N0(x) = y0

If we want to add another value (i.e. (x1, y1)), we still want to keep that N1(x0) =
y0, therefore we will add something that will evaluate to zero in x0, like (x − x0):

N1(x) = y0 + c1(x − x0)

We can continue this approach, until we end up with the following polynomial:

Nn(x) = y0 + c1(x − x0) + c2(x − x0)(x − x1) + . . . + cn(x − x0)(x − x1) . . . (x − xn−1)

Now we just need to find the constants ci. There is a handy method to calculate
these constants using difference quotients. They are defined recursively as follows:

f [xi] = yi

f [xi, xi+1, . . . , xj] =
f [xi+1,xi+2,...,x j]− f [xi,xi+1,...,x j−1]

x j−xi

122 CHAPTER 7. POLYNOMIALS

You may notice that in particular for two elements, the difference quotient is equal
to the difference of values divided by the difference of the corresponding points, hence
the name. This term is often used in calculus.

It turns out that ci is equal exactly to f [x0, x1, . . . , xi]. We will now show how to
calculate these quotients, by trying to interpolate function that is not a polynomial:
f (x) =

√
x by a polynomial of degree 3. This is just a small experiment, but this

approach is widely used when we need to find some approximation of a function that
is not a polynomial. We need to get four values of this function, so let us take
f (0) = 0, f (1) = 1, f (4) = 2 and f (16) = 4. Now we will create the following diagram:

16

4

1

0

4

2

1

0

2
12

1
3

1

− 1
90

− 2
12

7
720

xi f [xi]
f [xi, xi+1]

f [xi, xi+1, xi+2]
f [xi, xi+1, . . . , xi+3]

You may notice that each of the values in the boxes from the second level is
a difference between previous boxes (pointed with arrows) divided by the difference
between corresponding pairs of xi (in circles). Now we can take first box in each
column and create the Newton’s polynomial:

N(x) = 0 + 1(x − 0) −
2

12
(x − 0)(x − 1) +

7

720
(x − 0)(x − 1)(x − 4)

or simpler:

N(x) =
217

180
x −

31

144
x2 +

7

720
x3

We can also see how our polynomial is quite close to the original function.

7.2. INTERPOLATION 123

2 4 6 8 10

1

2

3
√

x
N(x)

Unfortunately, these two methods still work in O(n2) time.

Problem Stack machine programmer

Centeral European Regional Contest 2011.
Limits: 1s, 128 MB.
https://kostka.dev/sp/smp

Many ciphers can be computed much faster using various machines and automata.
In this problem, we will focus on one particular type of machines called stack machine.
Its name comes from the fact that the machine operates with the well-known data
structure – stack. The later-stored values are on the top, older values at the bottom.
Machine instructions typically manipulate the top of the stack only.

Our stack machine is relatively simple: It works with integer numbers only, it has
no storage beside the stack (no registers etc.) and no special input or output devices.
The set of instructions is as follows:

• NUM X, where X is a non-negative integer number, 0 ≤ X ≤ 109. The NUM
instruction stores the number X on top of the stack. It is the only parametrized
instruction.

• POP: removes the top number from the stack.

• INV: changes the sign of the top-most number. (42→ −42)

• DUP: duplicates the top-most number on the stack.

• SWP: swaps (exchanges) the position of two top-most numbers.

• ADD: adds two numbers on the top of the stack.

• SUB: subtracts the top-most number from the second one (the one below).

https://kostka.dev/sp/smp

124 CHAPTER 7. POLYNOMIALS

• MUL: multiplies two numbers on the top of the stack.

• DIV: integer division of two numbers on the top. The top-most number becomes
divisor, the one below dividend. The quotient will be stored as the result.

• MOD: modulo operation. The operands are the same as for the division but the
remainder is stored as the result.

All binary operations consider the top-most number to be the right operand, the
second number the left one.

All of them remove both operands from the stack and place the result on top in
place of the original numbers. If there are not enough numbers on the stack for an
instruction (one or two), the execution of such an instruction will result into a program
failure. A failure also occurs if a divisor becomes zero (for DIV or MOD) or if the result of
any operation should be more than 109 in absolute value. This means that the machine
only operates with numbers between −1 000 000 000 and 1 000 000 000, inclusive. To
avoid ambiguities while working with negative divisors and remainders: If some operand
of a division operation is negative, the absolute value of the result should always be
computed with absolute values of operands, and the sign is determined as follows:
The quotient is negative if (and only if) exactly one of the operands is negative. The
remainder has the same sign as the dividend. Thus, 13 div -4 = -3, -13 mod 4 = -1, -13
mod -4 = -1, etc. If a failure occurs for any reason, the machine stops the execution
of the current program and no other instructions are evaluated in that program run.

The trouble with such machines is that someone has to write programs for them.
Just imagine, how easy it would be if we could write a program that would be able
to write other programs. In this contest problem, we will (for a while) ignore the fact
that such a "universal program" is not possible. And also another fact that most of
us would lose our jobs if it existed.

Your task is to write a program that will automatically generate programs for the
stack machine defined below.

Input

The input contains several test cases. Each test case starts with an integer number
N (1 ≤ N ≤ 5), specifying the number of inputs your program will process. The next
N lines contain two integer numbers each, Vi and Ri. Vi (0 ≤ Vi ≤ 10) is the input
value and Ri (0 ≤ Ri ≤ 20) is the required output for that input value. All input values
will be distinct. Each test case is followed by one empty line. The input is terminated
by a line containing one zero in place of the number of inputs.

7.3. FAST FOURIER TRANSFORM 125

Output

For each test case, generate any program that produces the correct output values
for all of the inputs. It means, if the program is executed with the stack initially
containing only the input value Vi, after its successful execution, the stack must contain
one single value Ri. Your program must strictly satisfy all conditions described in the
specification of the stack machine, including the precise formatting, amount of white
space, maximal program length, limit on numbers, stack size, and so on. Of course,
the program must not generate a failure. Print one empty line after each program,
including the last one.

Examples

For the input data:

3
1 3
2 6
3 11

1
1 1

2
2 4
10 1

0

the correct result is:

DUP
MUL
NUM 2
ADD
END

END

NUM 3
MOD
DUP
MUL
END

Solution

The solution is pretty straightforward: we need to find a polynomial that matches
with given pairs of points-values using chosen interpolation method and then carefully
construct a stack machine that will evaluate this polynomial.

7.3. Fast Fourier transform

Up to now, we have not managed to come up with a method how to multiply two
polynomials in the coefficient representation in o(n2) time. Please note that we have

126 CHAPTER 7. POLYNOMIALS

shown that if we will find a faster way to change between the coefficient representation
and the point-value representation, we can multiply in O(n) time. Please also note that
we can choose any points to calculate point-value representation, but we did not use
this fact before.

First of all, let us think how to compute values of some polynomial A(x) for x = 1

and x = −1 in parallel.

A(1) = a0 + a1 + a2 + a3 + . . . + an

A(−1) = a0 − a1 + a2 − a3 + . . . ± an

Therefore we can group coefficients with odd and even indexes and sum them
separately. Moreover, a similar trick works for any x:

A(x) = (a0 + a2x2 + a4x4 + . . .) + x(a1 + a3x2 + a5x4 + . . .)

A(−x) = (a0 + a2x2 + a4x4 + . . .) + (−x)(a1 + a3x2 + a5x4 + . . .)

In this case we can just calculate two polynomials of size n
2 in x2.

Unfortunately, we cannot continue our method, because R is limited.

To our rescue come complex numbers. First let us assume that the degree of
polynomial n is a power of two (we can pad extra zeroes, if that is not the case).
Now consider n solutions of the equation xn = 1. The following picture shows these
solutions for n = 8 and n = 4 respectively.

R

C

1
R

C

1

In general, if we take ωn = cos
(
2π
n

)
+ i sin

(
2π
n

)
, then all such solutions are of the

form ωk
n = cos

(
k 2π

n

)
+ i sin

(
k 2π

n

)
for k = 0, 1, 2, . . . , n − 1.

Moreover, if we take all the solutions for n = 8, i.e.

{ω0
8, ω

1
8, ω

2
8, ω

3
8, ω

4
8, ω

5
8, ω

6
8, ω

7
8}

and consider their squares, we get respectively:

{ω0
8, ω

2
8, ω

4
8, ω

6
8, ω

0
8, ω

2
8, ω

4
8, ω

6
8}

therefore, we have only half of values (one may notice that they correspond to the
solutions for n = 4, i.e. {ω0

4, ω
1
4, ω

2
4, ω

3
4}, shown on the right side of the figure above).

Now we can show how we can use our trick.

7.3. FAST FOURIER TRANSFORM 127

We will calculate values in points ωk
n for k = 0, 1, 2, . . . , n − 1. To do so, let us

notice that:

A(ωi
n) =

(
a0 + a2ω2i

n + a4ω4i
n + . . .

)
+ ωi

n

(
a1 + a3ω2i

n + a5ω4i
n + . . .

)
=

=
(
a0 + a2ωi

n/2 + a4ω2i
n/2 + . . .

)
+ ωi

n

(
a1 + a3ωi

n/2 + a5ω2i
n/2 + . . .

)
Therefore, to calculate the values of n polynomials of size n, we just need to

calculate values of n polynomials of size n
2 (n2 on odd coefficients and n

2 on even
coefficients, only on squares of roots) and then add their values properly. Once again,
for n = 8, we have (below, we will use vector notation for polynomials):

(a0, a1, a2, a3, . . . , a7)(ω0
8) = (a0, a2, a4, a6)(ω

0
4) + ω

0
8 · (a1, a3, a5, a7)(ω

0
4)

(a0, a1, a2, a3, . . . , a7)(ω1
8) = (a0, a2, a4, a6)(ω

1
4) + ω

1
8 · (a1, a3, a5, a7)(ω

1
4)

. . .

(a0, a1, a2, a3, . . . , a7)(ω6
8) = (a0, a2, a4, a6)(ω

2
4) + ω

6
8 · (a1, a3, a5, a7)(ω

2
4)

(a0, a1, a2, a3, . . . , a7)(ω7
8) = (a0, a2, a4, a6)(ω

3
4) + ω

7
8 · (a1, a3, a5, a7)(ω

3
4)

Moreover, we can continue this process recursively to obtain the time complexity
O(n log n). Please note that we are simplifying the following code, using the fact that
ω
i+ n

2
n = −ωi

n.

Function FFT(A = [a0, a1, . . . , an−1]):
if n = 1

return a0
res_even← FFT([a0, a2, a4, . . .]);
res_odd ← FFT([a1, a3, a5, . . .]);
res← array of size n;
ω← cos

(
2π
n

)
+ i sin

(
2π
n

)
;

for k ← 0 to n
2

// below we define two auxiliary values which we will use
in further calculations

le f t ← res_evenk ;
right ← ωi · res_oddk ;
resk ← le f t + right;
resk+ n

2
← le f t − right;

return res

The FFT function returns a vector of n elements, where i-th element corresponds
to the value A(ωi

n) for i = 0, 1, . . . , n − 1.

128 CHAPTER 7. POLYNOMIALS

Iterative FFT

To speed up the FFT algorithm, we can completely remove the recursion in the
following way. Let us consider the recursion tree for n = 8. Each node contains
a vector of coefficients (in round brackets) and the roots where we calculate
values of our polynomial (in square brackets):

(a0)
[
ω0
1

]
(a4)

[
ω0
1

]
(a2)

[
ω0
1

]
(a6)

[
ω0
1

]
(a1)

[
ω0
1

]
(a5)

[
ω0
1

]
(a3)

[
ω0
1

]
(a7)

[
ω0
1

]
(a0, a4)

[
ω0
2, ω

1
2

]
(a2, a6)

[
ω0
2, ω

1
2

]
(a1, a5)

[
ω0
2, ω

1
2

]
(a3, a7)

[
ω0
2, ω

1
2

]
(a0, a2, a4, a6)

[
ω0
4, ω

1
4, ω

2
4, ω

3
4

]
(a1, a3, a5, a7)

[
ω0
4, ω

1
4, ω

2
4, ω

3
4

]
(a0, a1, a2, a3, a4, a5, a6, a7)

[
ω0
8, ω

1
8, ω

2
8, . . . , ω

7
8

]

Now instead of going top-down, we will try a bottom-up approach. We will go
from the bottom-most layer all the way to the top. In each layer, we need to
calculate values in corresponding roots, therefore in each step, we will try to
combine two values from the children to get the new values.
In the leaves we should store values of (ai) in 1. Now, for each node above the
leaves, we would like to use values from its children to calculate values needed
for the node itself and we can do it, cf. the last loop in the algorithm above,
the names le f t and right were not accidental).
For example, if we want to know the values of (a1, a3, a5, a7) in ω0

4, ω
1
4, ω

2
4, and

ω3
4 (which are required for the right node in the second row), we can compute

these values easily from the previously computed values. For example:

(a1, a3, a5, a7)
(
ω1
4

)
= (a1, a5)

(
ω1
2

)
+ ω1

4 · (a3, a7)
(
ω1
2

)
(a1, a3, a5, a7)

(
ω3
4

)
= (a1, a5)

(
ω1
2

)
− ω1

4 · (a3, a7)
(
ω1
2

)
Now, we just need to find the proper order for the leaves. This is pretty easy if
we look at their binary representations:

(000, 100, 010, 110, 001, 101, 011, 111),

and reverse them:

(000, 001, 010, 011, 100, 101, 110, 111).

We can see that their reversed binary representations correspond to the sequence
(0, 1, 2, 3, . . . , n − 1), therefore we can easily shuffle leaves to the correct order.

7.3. FAST FOURIER TRANSFORM 129

So now our algorithm will work as follows:

Function Iterative-FFT(A = [a0, a1, . . . , an−1]):
shuffle A according to the order described above;
for level ← 1 to log n

for i ← 0 to 2level−1

for j ← i to n by 2level

le f t ← A[j];
right ← ωi · A[j + 2level−1];
A[j] ← le f t + right;
A[j + 2level−1] ← le f t − right;

return A

So now we can change from the coefficient representation to the point-value rep-
resentation efficiently. But we still need to come back to the coefficient representation.
How to do this?

Let us notice that the evaluation in FFT might be considered as applying the
following transformation matrix T on the vector of coefficients:

ω0
n ω0

n ω0
n . . . ω0

n

ω0
n ω1

n ω2
n . . . ωn−1

n

ω0
n ω2

n ω4
n . . . ω2n−2

n
...

...
...

. . .
...

ω0
n ωn−1

n ω2n−2
n . . . ω

(n−1)n−(n−1)
n

︸ ︷︷ ︸
T

·

©«

a0
a1
a2
...

an−1

ª®®®®®®®®¬
=

©«

A(ω0
n)

A(ω1
n)

A(ω2
n)

...

A(ωn−1
n)

ª®®®®®®®®¬
Therefore, if we want to compute the interpolation from these points, we can

simply find an inverse matrix to this one. Fortunately, this matrix has some special
property: every row is a geometric progression. Such matrices are known in literature
as Vandermonde matrices. A square Vandermonde matrix is invertible if and only if all
ratios of these progressions are distinct and that is the case in our matrix. Moreover, an
explicit formula for the inverse is known [Turner, 1966, Macon and Spitzbart, 1958].
In our case the inverse is really simple:

T−1 =
(
−
1

n

)
T

Therefore, we can use FFT for interpolation as well, changing only ω to −ω and
dividing the results by n.

To conclude the whole algorithm, let us look at the following diagram:

130 CHAPTER 7. POLYNOMIALS

two polynomials A and B

in coefficient representation

two polynomials A and B

in point-value representation

polynomial A · B

in point-value representation

polynomial A · B

in coefficient representation

FFT in O(n log n) inverse FFT in O(n log n)

multiplication in O(n)

FFT for two polynomials at the same time

You might notice that in FFT, we need to calculate the transform for two
polynomials A and B. There is a pretty nice trick that allows us to do it
simultaneously, using imaginary numbers once again. Consider the following
polynomial: X(x) = A(x) + iB(x). Now if we want to calculate values of A and
B in ωi

n, we just need to know values of X(ωi
n). In particular, let us notice that

X(x) = A(x) − iB(x). Therefore:

A(ωi
n) =

1

2

(
X(ωi

n) + X(ωn−i
n)

)
B(ωi

n) =
1

2i

(
X(ωi

n) − X(ωn−i
n)

)
Moreover, it can also work for the inverse-FFT: we just need to calculate inverse-
FFT for Y = A + iB.

Problem Polynomial

25th Polish Olympiad in Informatics, third stage, second day.
Limits: 15s, 128MB.
https://kostka.dev/sp/pol

Byteasar was misbehaving in mathematics class, and for punishment he is to
evaluate a very long polynomial W with n integer coefficients

W(x) = a0 + a1x + a2x2 + . . . + an−2xn−2 + an−1xn−1

at points q1, q2, . . . , qn. To help the teacher verify his results quickly, Byteasar should
first provide the remainder modulo m of the sum of these values, and then provide the
remainders modulo m of all the successive values.

https://kostka.dev/sp/pol

7.3. FAST FOURIER TRANSFORM 131

Not only does he misbehave frequently, Byteasar is also rather lazy, so he asked
you (surprisingly politely) for help in this task right before heading out to a party. To
his credit, Byteasar is quite bright, only too lazy to follow up his ideas. Saying his
goodbyes, he shared his hunch that the following properties could drastically reduce
the amount of calculations necessary to get the results: n is a power of two, and the
remainder of qn modulo m is 1 (i.e., qn mod m = 1).

Input

In the first line of the standard input, there are three integers n, m and q (n ≥ 1,
n is a power of two, 2 ≤ m ≤ 109, 1 ≤ q < m, qn mod m = 1), separated by single
spaces.

In the second line, there is a sequence of n integers, separated by single spaces,
specifying successive coefficients of the polynomial in this order: a0, a1, . . . , an−1 (0 ≤
ai ≤ 109).

Output

A single integer should be printed to the first line of the standard output –
the remainder modulo m of the sum of values of the polynomial W at the points
q1, q2, q3, . . . , qn. In the second line the remainders modulo m of W(q1), W(q2), W(q3),
. . . , W(qn) should be printed, separated by single spaces.

Examples

For the input data:

4 13 5
3 2 2 1

the correct result is:

12
6 2 9 8

Explanation for the example: The polynomial is W(x) = 3+2x+2x2+ x3, so its values
at successive points are W(5) = 188, W(52) = 16 928, W(53) = 1 984 628, W(54) =
244 923 128. The number in the first output line is the remainder modulo 13 of 188 +
16 928 + 1 984 628 + 244 923 128 = 246 924 872, which is 12. The second line provides
the remainders modulo 13 of aforementioned summands.

Grading

If the sum’s remainder is correct but one of the successive values is not, your
program will be awarded up to 40% of the test’s score, provided that all the n numbers
in the second line are in the range from 0 to m − 1.

132 CHAPTER 7. POLYNOMIALS

Subtask Property Score
1 n ≤ 210 17

2 n ≤ 215 9

3 n ≤ 220 74

Solution

This problem is a slight variation on FFT called Number Theoretic Transform
(NTT). We just need to notice that instead of calculating each value in O(n) time, we
can divide our problem into 2 smaller subproblems:

(a0, a1, a2, . . . , an−1)(x) = (a0, a2, . . . , an−2)(x2) + x · (a1, a3, . . . , an−1)(x2)

Using the fact that qn = 1, we can calculate all values in a similar way as in FFT
in O(n log n) time.

Please note that NTT can in several cases replace FFT, as it has many advantages.
We use here just integers (in modular arithmetic), therefore we won’t have precision
errors. Note that we should pick a generator to use as q. In general calculations,
we can use two (or more) different prime numbers and then later extract the result
using Chinese Remainder Theorem. Unfortunately, NTT is pretty slow compared to
FFT, because of the necessity to use the modulo function, but uses less memory
[Tommila, 2003]. If you need precision or are restricted by memory, you can consider
using NTT instead of FFT. For more details, check out [Feng and Li, 2017].

7.4. Applications of the polynomial multiplication

In this section, we will describe several applications of FFT in competitive pro-
gramming.

First, we will discuss how we can use FFT to multiply large integers. Let us note
that integers can be represented as a polynomial, where its digits are the coefficients.
For example 4243 can be represented in base b = 10 as:

3 · b0 + 4 · b1 + 2 · b2 + 4 · b3

We can also choose a different base (such as 100, or 1 000 000), but we need to
be careful with numerical precision.

Then we can multiply two integers as their polynomials in O(n log n) time, where
n is the maximal number of digits of these numbers in the chosen base.

7.4. APPLICATIONS OF THE POLYNOMIAL MULTIPLICATION 133

Now we will introduce another problem allowing us to use FFT from a different
angle.

Problem Biotechnology Laboratory

The 2017 ACM-ICPC Brazil Finals.
Limits: ?s, ?MB.
https://kostka.dev/sp/bio

A weighted string is defined over an alphabet Σ and a function f that assigns a
weight to each character of the alphabet. Thus we can define the weight of a string s
as the sum of the weights of all characters in s.

Several problems of bioinformatics can be formalized as problems in weighted
string. An example is protein mass spectrometry, a technique that allows you to
identify proteins quite efficiently. We can represent each amino acid with a distinct
character and a protein is represented by the character string relative to its amino
acids.

One of the applications of protein mass spectrometry is database searching. For
this, the protein chain is divided into strings, the mass of each strand is determined,
and the mass list is compared to a protein database. One of the challenges for this
technique is dealing with very large strings, which can have several possible substrings.
The number of substrings selected is critical for good results.

On his first day of internship at a renowned biotechnology lab, Carlos was tasked
with determining, for an s chain, the amount of distinct weights found when evaluating
the weights of all nonempty consecutive strings of s.

Carlos could not think of an efficient solution to this task, but fortunately he
knows the ideal group to assist him.

Assuming that s consists of lowercase letters and each letter has a different weight
between 1 and 26: letter a has weight 1, letter b has weight 2, and so on. Show that
your team can help Carlos impress his supervisor within the first week with a solution
that can easily handle the largest strings in existence.

Input

Only one line, containing the string s formed by lowercase letters, the length of
which |s | satisfies 1 ≤ |s | ≤ 105.

https://kostka.dev/sp/bio

134 CHAPTER 7. POLYNOMIALS

Output

Your program should produce a single line with an integer representing the number
of distinct weights of the nonempty consecutive substrings of s.

Examples

For the input data:

abbab

the correct result is:

8

Whereas for the input data:

adbbabdcdbcbacdabbaccdac

the correct result is:

56

Solution

Let us calculate prefix sums for value for each prefix of s. Now the problem can
be reduced to finding all distinct values of pre fj − pre fi, where i < j.

Now let us introduce a polynomial P, in which coefficients are defined as follows:

pi =

1 if ∃ pre fi

0 otherwise

Now our problem looks pretty similar to multiplication of polynomials, but with
subtraction, rather than addition. To do so, we can just pad this polynomial, for
example by adding pre fn, then we will always be in positive values.

So let us define the second polynomial P′, such that:

p′i =

1 if ∃ pre fn − pre fi

0 otherwise

So now we just need to calculate P · P′ using FFT, and then count all non-zero
coefficients.

Another problem that we can solve using FFT is the string matching problem
discussed and solved in [Clifford and Clifford, 2007]. We are given a text t = t0t1 . . . tn−1
and a pattern p = p0p1 . . . pm−1. In the standard approach, we are saying that the
pattern occurs in the text at location i if pj = ti+j for j = 0, 1, . . . ,m. For example, the
pattern ana occurs in banana at positions 1 and 3. There are many linear algorithms

7.4. APPLICATIONS OF THE POLYNOMIAL MULTIPLICATION 135

that solve this problem, but we will introduce a solution involving FFT that we will
later use for more general problems.

Here we will assume that the characters correspond to integers from 1 to |Σ |.

When we want to check if the pattern occurs at some position i, we can calculate
the following expression:

di =
m−1∑
j=0

(
pj − ti+j

)2
.

If all the characters are in the right place, then di = 0. Note that for bi-
nary strings this expression is equal to the Hamming distance (concept introduced
in [Hamming, 1950]), i.e. the number of mismatches between these two strings.

To calculate these values, we will expand the expression above:

di =
m−1∑
j=0

(
pj − ti+j

)2
=

m−1∑
j=0

p2j − 2
m−1∑
j=0

pj · ti+j +
m−1∑
j=0

t2i+j

The first term can be easily calculated for all i in O(m), the second one is just
the correlation (convolution, where one of the polynomials is reversed), so it can be
calculated in O(n log n) time using FFT, while the last one can be calculated in O(n).

Moreover, we can expand this idea by adding wildcards, i.e. characters that match
with every other character. We often denote wildcards with an asterisk (*). For
example, for the text ba*ana*, the pattern *a will occur at positions 0, 2, and 4.

In this problem, we will use similar approach. We will say that the wildcards will
correspond to 0 and calculate the following distance:

d ′i =
m−1∑
j=0

pj ti+j
(
pj − ti+j

)2
.

If either pj or ti+j is the wildcard, then the second character does not matter,
therefore it will not contribute to the distance.

We can also calculate these distances quickly as:

d ′i =
m−1∑
j=0

pj ti+j
(
pj − ti+j

)2
=

m−1∑
j=0

p3j ti+j − 2
m−1∑
j=0

p2j · t
2
i+j +

m−1∑
j=0

pj t3i+j

And every single term can be calculated using FFT.

136 CHAPTER 7. POLYNOMIALS

Another approach with trigonometry

Below we will show another approach to the pattern matching problem, using a
little bit different idea.
We will assume here that the letters in the text and the pattern correspond to
integers from 0 to |Σ | −1. To solve the problem, we will create two polynomials
A and B with the following coefficients:

ak = cos

(
2πtk
|Σ |

)
+ i sin

(
2πtk
|Σ |

)
bk = cos

(
2πpm−k−1
|Σ |

)
− i sin

(
2πpm−k−1
|Σ |

)
Please note that we are explicitly reversing the pattern here.
Then we will calculate C = A ·B, and then the coefficients, seemingly in a magic
way, will tell us if the pattern occurs on the given position. Let us look closely
at this expression. In particular, we will look at the m+ k − 1-th coefficient of C
for k = 1, . . . , n:

cm+k−1 =
m−1∑
j=0

ak+j · bm−j−1 =

m−1∑
j=0

(
cos

(
2πtk+j
|Σ |

)
+ i sin

(
2πtk+j
|Σ |

))
·

(
cos

(
2πpj

|Σ |

)
− i sin

(
2πpj

|Σ |

))
If there is a match of the pattern, then tk+j = pj for all j = 0, . . . ,m, so the
values of the trigonometric functions are equal and we have:

cm+k−1 =
m−1∑
j=0

ak+j · bm−j−1 =
m−1∑
j=0

(
cos

(
2πpj

|Σ |

)2
+ sin

(
2πpj

|Σ |

)2)
=

m−1∑
j=0

1 = m

Therefore, if the pattern occurs at the i-th position in a given text, then cm+k−1 =
m. Moreover, the opposite is also true. If at least one of the characters is
different, then at least one of the products is not equal to 1, then cm+k−1 , m.

Problem Fuzzy Search

Codeforces Round #296.
Limits: 3s, 256MB.
https://kostka.dev/sp/fuz

Leonid works for a small and promising start-up that works on decoding the human

https://kostka.dev/sp/fuz

7.4. APPLICATIONS OF THE POLYNOMIAL MULTIPLICATION 137

genome. His duties include solving complex problems of finding certain patterns in long
strings consisting of letters textttA, T, G, and C.

Let’s consider the following scenario. There is a fragment of a human DNA chain,
recorded as a string S. To analyze the fragment, you need to find all occurrences of
string T in a string S. However, the matter is complicated by the fact that the original
chain fragment could contain minor mutations, which, however, complicate the task
of finding a fragment. Leonid proposed the following approach to solve this problem.

Let’s write down integer k ≥ 0 – the error threshold. We will say that string T
occurs in string S on position i (1 ≤ i ≤ |S | − |T |+1), if after putting string T along with
this position, each character of string T corresponds to the some character of the same
value in string S at the distance of at most k. More formally, for any j (1 ≤ j ≤ |T |)
there must exist such p (1 ≤ p ≤ |S |), that |(i + j − 1) − p| ≤ k and S[p] = T[j].

For example, corresponding to the given definition, string ACAT occurs in string
AGCAATTCAT in positions 2, 3 and 6.

Note that at k = 0 the given definition transforms to a simple definition of the
occurrence of a string in a string.

Help Leonid by calculating in how many positions the given string T occurs in the
given string S with the given error threshold.

Input

The first line contains three integers |S |, |T |, k (1 ≤ |T | ≤ |S | ≤ 200 000, 0 ≤ k ≤
200 000) – the lengths of strings S and T and the error threshold.

The second line contains string S.

The third line contains string T .

Both strings consist only of uppercase letters A, T, G, and C.

138 CHAPTER 7. POLYNOMIALS

Output

Print a single number – the number of occurrences of T in S with the error
threshold k by the given definition.

Example

For the input data:

10 4 1
AGCAATTCAT
ACAT

the correct result is:

3

Solution

We are looking for a way to reduce this text problem to polynomial multiplication.

We will create bitmasks for each character (out of four) both for the text and
the pattern signifying if the character occurs in the given position. For example,
for AGCAATTCAT and the character T, we will have vector (0000011001). Now if we
calculate the correlation (convolution where one of the vectors is reversed) between
the corresponding text and pattern vectors for each character, we will know how many
characters are in the right places. Therefore we can check if the sum over all characters
is equal to |T |. If that is the case, then we have a match.

We still need to add the error threshold k. To do so, let us modify the text
vectors, by expanding all occurrences k to the left and k to the right, for instance our
vector above for text AGCAATTCAT and the character T will become (00001111011) for
k = 1. We can calculate these vectors simply in O(|S |) using prefix sums and use these
modified vectors in the algorithm described above.

7.5. Bitwise convolutions

Let us introduce another transformation that helps us compute some convolutions
of two polynomials.

Previously, we tried to calculate polynomial with coefficients ck , such that:

ck =
∑
i+j=k

aibj

7.5. BITWISE CONVOLUTIONS 139

Now we will try to compute the polynomial with bitwise xor on indexes, instead
of sum, i.e.:

ck =
∑
i⊕ j=k

aibj

Such expression is called a xor-convolution of polynomials A and B. We will denote
this operation by ⊕, i.e. C = A ⊕ B will mean that C is the xor-convolution of A and
B.

The algorithm will be really similar to FFT. We will once again try to find the
transformation matrix T and then use it to calculate the convolution C = A ⊕ B, i.e.
we will:

• transform vectors A and B, by multiplying them by the transformation matrix T ,

• multiply values of T A and T B linearly, i.e. calculate vector TC, in which TC[i] =
T A[i] · T B[i],

• transform TC back to C form, by calculating T−1(TC).

How to find T? Let us first think how to find T for polynomials of size 2, i.e.
some matrix

T2 =

[
t0,0 t0,1
t1,0 t1,1

]
The following two equations must be satisfied:

(a0, a1) ⊕ (b0, b1) = (a0b0 + a1b1, a0b1 + a1b0)

T2(a0, a1) � T2(b0, b1) = T2(a0b0 + a1b1, a0b1 + a1b0)

and T2 has to be invertible. Please note that ⊕ denotes xor-convolution, while �
denotes multiplication "by coordinates", i.e. we multiply two elements with the same
index in these vectors.

We can do some calculations and come up with the following solution (please note
that it is not unique):

T2 =

[
1 1

1 −1

]
Moreover, from this small solution we can deduce the general solution – the

following matrix defined recursively:
T1 = [1]

Ti+1 =

Ti Ti

Ti −Ti

 for i ≥ 1

140 CHAPTER 7. POLYNOMIALS

This transform matrix can be proven correct using the induction method. This
matrix is called a Walsh-Hadamard matrix and can be calculated implicitly in O(n2)
time, but we can use the recursive form to speed it up to O(n log n) time, as we will
show now.

Let us notice that we would like to take a vector A = (a0, a1, . . . , an) and multiply
it by Tlog n (once again, let us recollect that we can assume that n is a power of two),
so if we denote s = log n, we want to calculate:

ATs = A

[
Ts−1 Ts−1

Ts−1 −Ts−1

]

So let us divide A into two parts (equal in length)
[
Ale f t Aright

]
, then we have:

ATs =
[
Ale f t Aright

] [
Ts−1 Ts−1

Ts−1 −Ts−1

]
=

=
[
Ale f tTs−1 + ArightTs−1 Ale f tTs−1 − ArightTs−1

]
So we just need to calculate Ale f tTs−1 and ArightTs−1 (separately), and then using

one single loop calculate the whole resulting vector.

The whole algorithm can be implemented in a couple of lines:

Function XOR_convolution(A = [a0, a1, . . . , an−1]):
if n = 1

return a0
A_le f t ← A = [a0, a1, . . . , an/2−1);
A_right ← A = [an/2, an/2+1, . . . , an−1);
res_le f t ← XOR_convolution(A_le f t);
res_right ← XOR_convolution(A_right);
return [res_le f t + res_right, res_le f t − res_right]

We can also really easily change this algorithm to use the iterative approach:

Function Iterative-XORConv(A = [a0, a1, . . . , an−1]):
for level ← 1 to log n

for i ← 0 to n by 2level+1

for j ← 0 to 2level

le f t ← A[i + j];
right ← A[i + j + 2level];
A[i + j] ← le f t + right;
A[i + j + 2level] ← le f t − right;

return A

7.5. BITWISE CONVOLUTIONS 141

We also need to find the inverse of T , i.e. T−1, and we are quite lucky, as

T−1k =
1
√
2
k

Tk .

Therefore, we can use exactly same algorithm to go back. Note that we can divide by
the proper power of

√
2 at the end.

AND- and OR-convolution

A similar approach works for other bitwise convolutions, such as AND- and OR-
convolution. Below, we will just mention their transformation matrices, but you
can deduce them yourself.
Please note that in these cases, the inverse matrix is different from the trans-
formation matrix, so we need to write two separate functions for these convo-
lutions.

AND-convolution

T1 = 1

Ti+1 =

0 Ti

Ti Ti

 for i ≥ 1

T−11 = 1

T−1i+1 = c

−T−1i T−1i

T−1i 0

 for i ≥ 1

OR-convolution

T1 = 1

Ti+1 =

Ti Ti

Ti 0

 for i ≥ 1

T−11 = 1

T−1i+1 = c

0 T−1i

T−1i −T−1i

 for i ≥ 1

Problem And to Zero

Moscow Pre-Finals Workshop 2018, Radewoosh Contest.
Limits: 2s, 256MB.
https://kostka.dev/sp/and

You are given an array of length n, which consists of positive natural numbers. In
one move you can choose an ordered pair of its elements and replace first of them with
bitwise AND of these two elements. What is the minimum possible number of moves
needed to obtain a 0 in the array? Also, how many shortest sequences of moves are

https://kostka.dev/sp/and

142 CHAPTER 7. POLYNOMIALS

there? Two sequences are different if and only if for some k the k-th move is different
in the two sequences. Two moves are different if and only if ordered pairs of indices of
elements are different. As the second number can be huge, output it modulo 109 + 7.

Input

The first line of the input contains one integer n (1 ≤ n ≤ 106) – the length of
the array. The second line contains n integers xi (1 ≤ xi < 220) – the array.

Output

If there is no way to make some zero appear in the array then output −1. If it’s
possible, output two integers, where first will be equal to minimal number of moves
needed to obtain a 0 in the array, and second will be equal to number of shortest
sequences of moves. Output second number taken modulo 109 + 7.

Examples

For the input data:

5
8 3 12 7 15

the correct result is:

1 6

Whereas for the input data:

3
3 5 6

the correct result is:

2 12

And for the input data:

2
3 5

the correct result is:

-1

Solution

In this problem, we are looking for the subset with the smallest number of elements
in which AND of all elements is equal to 0. Let us denote the size of such the subset
by s. Then our answer will be equal to (s − 1,ways · (s − 1)!) (the number of and
operations (or moves) we need to perform and the number of ways to choose this
subset multiplied by some factorial (as the order of moves does not matter).

7.5. BITWISE CONVOLUTIONS 143

First, it is easy to check if there is any way to make some zero appear in the array.
If the bitwise-and of all the numbers in the array is not equal to zero, then we should
output −1, as there is at least one bit that cannot be changed to zero. We can also
notice that the minimal number of moves will be at most 20, as with every move we
should set at least one bit to zero in our candidate for zero.

Now, let us create an array B0 in which the i-th element will keep how many
elements in A are equal to i.

We will iterate over the number of operations we have to perform (k). If we want
to know what numbers we can get after performing k moves (and the number of ways
to obtain these numbers), we just need to calculate Bk as AND-convolution of Bk−1

and B0 for k > 0. Now, Bk[i] keeps the number of ways to get the i-th element after
k moves. When we first find that Bk[0] is different than zero, then we know that the
output should be k and Bk[0] multiplied by k! (as the order of moves doesn’t matter,
as we mentioned earlier).

This solution works in O(n log n · log x), where x denotes the maximum element
in the array. We can speed it up to O(n log n · log log x) by using binary search over
the result (number of moves). Moreover, we can remove the log n factor from the
complexity by using some combinatorics, but it was not necessary in this problem.

Please also note that we can find a test that the number of shortest sequences of
moves can be equal to 109 + 7. Because of that, we cannot calculate our convolutions
modulo 109+7, but we should use, for example, two different prime numbers to perform
operations.

Chapter 8

Matroids

In this section, we will start by introducing some examples of matroids. Then
we will define them formally and show some observations and lemmas in the matroid
theory. After that, we will introduce optimization problems in matroids and show
a simple greedy algorithm that solves these problems. Finally, we will focus on the
matroid intersection problem and show a polynomial algorithm computing the maximal
common independent set in the intersection of any two matroids.

Examples of matroids

If you think you have not seen matroids in your life, you are probably very wrong.
Matroids are quite common, both in mathematics and in computer science, especially
in linear algebra and graph theory. Below, we will introduce some popular matroids.

In matroids we would like to focus on the concept called independent sets. In linear
algebra, we have an easy candidate, because there is a notion called linear independency
of a set of vectors. Let us recall that we call a set of vectors linearly dependent if
we can find at least one of the vectors in this set that can be defined as a linear
combination of the others, i.e. we can find vector vi, such that:

vi =
∑

j=1,2,...,n
i,j

ajvj

145

146 CHAPTER 8. MATROIDS

First, let us consider the following set of vectors V = {v1, v2, . . . , v7}:

v1 = (1, 0, 0, 0)

v2 = (0, 1, 0, 0)

v3 = (1, 1, 0, 0)

v4 = (0, 0, 1, 0)

v5 = (0, 0, 0, 1)

v6 = (0, 0, 0, 2)

v7 = (0, 0, 0, 0)

In this example, vectors {v1, v3, v4, v5} are linearly independent, while {v1, v2, v3} or
{v5, v6} are linearly dependent.

Now let us consider the following graph:

A B

C

D E

F

1

2 4
3

5

6

7

We would like to identify the vectors by the corresponding edges in the graph (vi
corresponds to the edge with label i). We want to find something similar to linear
independency in graphs. Please choose any linearly independent subset of V and check
that the corresponding edges in this graph form a forest (acyclic graph or equivalently
– a collection of trees). Moreover, you can choose any forest spanned by edges of E
and check that it will correspond to a linearly independent subset in V . Now, we hope
you realize that a set of linearly independent vectors and a set of edges that forms a
forest, in this case, are describing the same object.

We would like to introduce one more representation of the same matroid. Let us
consider the matching problem in the following bipartite graph.

147

1

2

3

4

1

2

3

4

5

6

7

The graph was created in the following way. The vertices on the left side represent
dimensions, and the vertices on the right side correspond to vectors vi. Once again,
you can check that any valid matching corresponds to some set of independent vectors
from V . Therefore, we can guess that all three matroids are isomorphic.

Matroids formally

Now, when we have seen some matroids, let us define them formally. The word
‘matroid’ was first introduced in [Whitney, 1935], where the author investigated ma-
troids as a set of independent rows in matrices (hence the name). A matroid is a tuple
(X,I), where X is a finite set of some objects (we will call this set a ”ground set”) and
I describes independent subsets of X such that:

1. ∅ ∈ I,

2. if A ⊆ B and B ∈ I, then A ∈ I,

3. for A, B ∈ I, if |A| < |B|, then ∃b ∈ B \ A, such that A ∪ b ∈ I.

The last property is known as the exchange property.

In our previous examples, X was a set of vectors and I was a set of subsets of X
that are linearly independent. We call this matroid a linear matroid or matrix matroid.
X was also a set of edges in some graph, and I was a set of subsets of these edges
that formed a forest in this graph. This matroid is called a graph matroid. Finally,
the matroid related to the problem is a transversal matroid. Please note that here the
ground set is the set of vertices from one side, and the independent sets are sets of
those vertices that can be chosen in some matching. Matching on edges, unfortunately,
is not a matroid. Consider the following graph with two valid matchings A and B:

148 CHAPTER 8. MATROIDS

1

2

3

4

A (in bold)

1

2

3

4

B (in bold)

As |A| < |B|, we should be able to find an edge in B \ A and add it to A to still have a
valid matching (using the exchange property) and here we cannot do this.

We will show that the graphic matroid indeed fulfills all matroid properties. First
two properties are quite trivial. An empty set of edges is indeed a forest. Similarly,
when we remove any number of edges from a forest, we cannot create any new cycles,
therefore the second property is also fulfilled. Finally, to prove the exchange property,
we need the following observation: if |A| < |B|, then forest B has fewer connected
components than A. Therefore, from the Dirichlet’s pigeonhole principle, there exists
a component in B that contains vertices of at least two components of A. There-
fore we can choose any two components and then choose any path connecting those
components in B and then choose any edge from this path and add it to A.

As an exercise, you can check that both the linear matroid and the transversal
matroid are indeed matroids.

Problem Red-black trees

Algorithmic Engagements 2018, the grand final, practice session.
Limits: 1s, 64MB.
https://kostka.dev/sp/rbt

You probably know exactly what red–black trees are. Bytek would like to have
such a tree, but he is not sure what this term means, so he drew an undirected graph
with n vertices and m edges. After that he colored each edge in red or black. He calls a
subgraph a red-black tree, if it is a tree spanning on all n vertices (a connected acyclic
subgraph that contains all vertices).

Let us say that each black edge has weight 1 and the red ones have weight 2.
The weight of a tree is a sum of weights of all edges of this tree. For a given graph,
find the number of different possible weights of red-black trees.

Input

The first line of the standard input contains two integers n and m (1 ≤ n ≤ 100 000,
n − 1 ≤ m ≤ 300 000), denoting the number of vertices and edges in the graph,
respectively. The next m lines describe the edges in the graph. The i-th of these lines

https://kostka.dev/sp/rbt

149

contains three integers ai, bi, ci (1 ≤ ai, bi ≤ n, ai , bi, ci ∈ {1, 2}) meaning that i-th
edge connects vertices ai and bi and is black if ci = 1, or red otherwise.

The graph is connected and may contain multiple edges.

Output

Output one integer in a single line – the number of possible weights of red-black
trees.

Example

For the input data:

5 5
1 2 1
2 3 1
3 4 1
1 5 1
4 5 2

the correct result is:

2

Note: Possible weights are 4 and 5, as shown below. The edges that are not selected
are marked with a dashed line.

5

1 2

3

4 5

1 2

3

4

Solution

The problem is to find all possible weights of a spanning tree in a undirected graph,
knowing that the weights of the edges are 1 and 2.

We can find the trees that maximize and minimize the weight in O(m logm) time
using for example Kruskal’s algorithm. Let us call these trees TMAX and TMIN respec-
tively.

150 CHAPTER 8. MATROIDS

Now we need to notice that we can find trees with all weights between w(TMIN)

and w(TMAX). To prove that, we will use the fact that forests in this graph form a
matroid. Let us consider the following algorithm:

F = TMIN

while F , TMAX

remove some edge e ∈ F, that e < TMAX ,
add some edge f ∈ TMAX to F, in a way that F remains a forest

Please note that removing an edge from F will still result in a forest. Moreover,
|F | < |TMAX |, therefore we can use the exchange property to prove that we can always
find some edge f that we can add to F.

Moreover, in each step of this algorithm we exchange only one edge, therefore F
is always a tree (it has to remain acyclic). Furthermore, the weight of the tree can
change by at most one, therefore we will find trees of all weights between w(TMIN)

and w(TMAX).

To conclude the problem, we just need to find weights of TMIN and TMAX and
the answer is w(TMAX) −w(TMIN)+1. Overall, the solution’s time complexity depends
on the algorithm used to find the minimal and maximal spanning tree and for example,
for Kruskal’s algorithm works in O(m logm) time.

Basis of the matroid

We can conclude from the exchange property that every maximal independent
set has the same size. We call each such a maximal set the basis of this matroid.
For graph matroids, it is a simple observation, as every connected component
of size k has exactly k − 1 edges that do not form a cycle in this component. In
the linear matroid, the size of the basis is the dimension of space described by
these vectors, or the rank, if we consider these vectors as rows of some matrix.
The term rank is also used for matroids, as the rank of the matroid describes
the size of the basis of this matroid.

8.1. Optimization problems on matroids

So why do we even focus on matroids? A very interesting fact that we will discuss
now is that for optimization problems on matroids, a simple greedy method gives
optimal results.

For matroid (X,I), let us introduce a weight function w : X → R+. Now, the
weight of a subset will be the sum of weights of its elements. Our task will be to find
an independent set in I that maximizes this sum.

8.1. OPTIMIZATION PROBLEMS ON MATROIDS 151

We will now introduce a simple, greedy algorithm that solves this problem.

OPT = ∅
for x ∈ X sorted non-ascending by w

if (OPT ∪ {x}) ∈ I
OPT ← OPT ∪ {x}

return OPT

The algorithm above finds the optimal solution for any matroid (X,I). Please note
that here we solved the maximizing problem. When we want to solve the minimizing
problem, we should iterate over all elements of the ground set in the non-decreasing
order.

In particular, there is a well-known problem that uses this algorithm. When we take
a graph matroid for a connected graph, you can notice that finding the independent set
of maximal weight corresponds to finding the maximum spanning tree. In the Kruskal’s
algorithm [Kruskal, 1956], we greedily add an edge with the maximum weight that was
not considered before, if it does not create a cycle with already chosen edges. Here
checking if a set of edges does not contain cycle is pretty easy (we can use a disjoint-
set structure, aka union-find) and can be done in O(α(n)) with the same complexity
for adding an edge to the set.

Please note that, in general, checking if a set is independent might be problematic.
For example, checking if a set of vectors is independent is more difficult.

Let us prove that the Kruskal’s algorithm indeed find the maximum spanning tree.
Of course we always keep a forest (we are explicitly checking if we do not form any
cycles), therefore let us focus on the maximality.

We want to prove that any set chosen by Kruskal’s algorithm belongs to some
maximal spanning tree and we will prove it by induction. The base property (for an
empty set) is trivially fulfilled. Otherwise, let us assume that we have a subset of edges
F already chosen by the algorithm and the maximal spanning tree T containing F. Now
if we want to add a new edge e to T , we have two cases:

• e ∈ T , then we can add e to F and the property holds,

• e < T , then {e} ∪T contains a cycle C. Please note that C has some edge c that
does not belong to F, because {e} ∪ F does not form a cycle. As c belongs to
T , it was not considered by the algorithm before and has the weight at most as
large as e. Then let us consider T ∪ {e} \ { f }. It is a spanning tree. Moreover
this tree has weight not smaller than T , therefore it is a maximal spanning tree
that contains F ∪ {e} and the property still holds.

Therefore, by induction, we proved that with each step of algorithm we keep the
maximal spanning forest.

152 CHAPTER 8. MATROIDS

A proof for a general matroid is similar, but more abstract and we will skip it. You
can find it for example in [Cormen et al., 2009].

Problem Binary robots

Polish Olympiad in Informatics training camp 2011.
Limits: 2s, 64MB.
https://kostka.dev/sp/bin

Binary robots are the latest craze. A binary robot is always designed so that it
can do two kinds of job (for example, sewing and prying, or food and philosophizing),
but it cannot do both at the same time. Sometimes, fortunately, rarely, the robot, due
to a hardware failure, is only capable of one job.

Byteasar runs a binary robots rental company. He rents n robots, each of which
has specific capabilities and can be rented at a fixed price. Byteasar can choose from
m offers for renting robots, each of them related to a different type of job. The hired
robot can only deal with one of the jobs it can perform. Each offer is designed for at
most one robot. Of course, Byteasar does not have to rent all robots or accept all
offers. Write a program that will calculate how much Byteasar can earn.

Input

First line of the standard input contains three integers: n, m and q (1 ≤ n,m ≤
1 000 000, 0 ≤ q ≤ 2n) denoting the number of robots, the number of jobs to be
performed (that is, the number of offers) and the total number of robotic abilities.
Robots are numbered from 1 to n, and jobs from 1 to m.

In the second line there is a sequence of n integers w1,w2, . . . ,wn (1 ≤ wi ≤ 109),
where wi denotes the price for renting the robot i.

The next q lines contain two integers ai, bi, (1 ≤ ai ≤ n, 1 ≤ bi ≤ m) indicating
that the robot ai can do the job bi. No pair (ai, bi) repeats. For each x = 1, 2, . . . , n,
one or two pairs (x, y) will appear on the input.

Output

Your program should output one integer to the output - Byteasar’s maximum
profit.

https://kostka.dev/sp/bin

8.2. MATROID INTERSECTION 153

Example

For the input data:

3 2 4
3 1 4
1 1
2 1
2 2
3 2

the correct result is:

7

Solution

We have a bipartite graph, with the robots on one side and the jobs on the
other. We have to find a matching that will maximize profit. There is one important
restriction: the degree of the vertices representing robots is at most two.

We know that this matching problem (finding a set of vertices that can be
matched) is indeed a matroid and we can solve it easily in O(nm), using alternating
paths, but we can do this even faster.

Let’s consider the following graph: now the jobs will be the vertices and the robots
will be represented by edges connecting jobs that the given robot can perform. Now
in this graph we are looking for a set of edges such that every connected component
has at most one cycle (we call such a graph a pseudoforest). So now, we are looking
for a pseudoforest that maximizes the total weight of edges.

Pseudoforests in the graph also form a matroid, therefore a greedy approach works
too (we can add edges in the non-decreasing order). We just need to have an easy
way to check if every connected component has at most one cycle. We can do this
with a slightly modified disjoint-set structure (union-find).

The overall time complexity is O(n log n + nα(m)).

8.2. Matroid intersection

Unfortunately, an intersection of two matroids is rarely a matroid, but we still can
find the largest common independent set in two matroids over the same ground set.
The approach that we will introduce in this section was first described in [Lawler, 1975]
and [Edmonds, 1979].

First let us introduce a new matroid – the partition matroid – which should be

154 CHAPTER 8. MATROIDS

quite intuitive. Let us consider k boxes with different candies (candies will be our
ground set in this example). For each box, we set some limit, how many candies can
we take from this box. Now we will call a set of candies independent if for every box,
we did not exceed the limit of chosen candies in this box.

Now let us consider a bipartite graph ((V1,V2), E). Now we will define a partition
matroid on E in a way that we cannot choose more than one edge connected to every
vertex in V1. In a similar fashion, we can define another partition matroid with limits
on vertices in V2. Then, the problem of finding the largest common independent set
in the intersection of these two matroids is exactly the problem of finding the largest
matching in this graph, which unfortunately is not a matroid.

But we can still find a maximum matching in a bipartite graph in polynomial time!
Moreover, we will show in this section a polynomial time algorithm that can find the
largest common independent set for the intersection of any matroids.

To do so, let us solve the following problem.

Problem Coin Collector

2011 Southwestern Europe Regional Contest.
Limits: 2s, 128MB.
https://kostka.dev/sp/coi

As a member of the Association of Coin Minters (ACM), you are fascinated by
all kinds of coins and one of your hobbies involves collecting national currency from
different countries. Your friend, also an avid coin collector, has her heart set on some
of your precious coins and has proposed to play a game that will allow the winner to
acquire the loser’s collection (or part thereof).

She begins by preparing two envelopes, each of them enclosing two coins that
come from different countries. Then she asks you to choose one of the two envelopes.
You can see their contents before making your choice, and also decline the offer and
take neither. This process is repeated for a total of r times. As the game progresses,
you are also allowed to change your mind about your previous picks if you think you
can do better. Eventually, your friend examines the envelopes in your final selection,
and from among them, she picks a few envelopes herself. If her selection is non-empty
and includes an even number of coins from every country (possibly zero), she wins
and you must hand over your entire coin collection to her, which would make years of
painstaking effort go to waste and force you to start afresh. But if you win, you get
to keep the coins from all the envelopes you picked.

Despite the risks involved, the prospect of enlarging your collection is so appealing
that you decide to take the challenge. You’d better make sure you win as many coins
as possible.

https://kostka.dev/sp/coi

8.2. MATROID INTERSECTION 155

Input

The first line of the standard input contains one integer t, the number of testcases.
The first line of each test case is the number r of rounds (1 ≤ r ≤ 300); a line with
r = 0 indicates the end of the input. The next r lines contain four non-negative integers
0 ≤ a, b, c, d < 10 000, meaning that your friend puts coins from countries labeled a
and b inside one of the envelopes, and c and d inside the other one (a , b, c , d).

Output

Print a line per test case containing the largest number of coins you are guaranteed.

Example

For the input data:

2
4
0 1 0 5
5 1 0 5
1 2 0 1
1 5 2 0
6
1 4 1 4
2 4 2 4
0 3 0 3
0 4 0 4
4 3 4 3
1 3 1 3

the correct result is:

6
8

Solution

The simplified problem is as follows:

• There are r pairs of envelopes and we are allowed to pick at most one of the
envelopes from each pair.

• At the end, there cannot be any subset of chosen envelopes that contains an
even number of coins from each country.

156 CHAPTER 8. MATROIDS

Let us consider a graph, where vertices represent the countries, and edges are
envelopes (each envelope contains exactly two coins).

Now, think about matroids. The first condition is, of course, a partition matroid -
we are allowed to choose at most one edge from each box containing two edges. The
second condition is also a matroid: if there exists a subset of edges in which every
vertex has an even degree, that means there exists a cycle in this graph. Therefore we
are looking for an acyclic graph, or, in other words, a graphic matroid.

So now our task is to find the largest subset of the intersection of a partition
matroid and a graphic matroid. How we should approach this problem? Below we will
try to show some intuition, how this problem should be solved. We will skip unnecessary
proofs.

Let us try greedily. We will start with an empty set of envelopes/edges OPT and
consider each pair of edges (u, v) and try to expand this set, keeping an invariant that
OPT fulfills both conditions. If the first element from this pair (u) does not form a
cycle with already chosen edges, add it to our set (OPT = OPT ∪ {u}). If that is not
the case, that means that we have found a cycle C (we keep an invariant that the
previous set did not contain a cycle). Let us break this cycle by removing some edge
e ∈ C. That means that there was an edge e′ that was in pair with e, and we can check
if we can add edge e′ to our set. Therefore we need to check if OPT ∪ {u} \ {e} ∪ {e′}
does not contain any cycles. If that is the case, we have found a proper set, that has a
larger size than the previous one. Otherwise, we can continue our search, find a cycle
C1 in OPT ∪ {u} \ {e} ∪ {e′} and so on. . .

We have shown that the matching problem is an instance of the matroid intersec-
tion problem; we will borrow an idea of an augmenting path, but in a slightly different
fashion. If we consider a directed bipartite graph GOPT , this time on edges, where on
the left side we will consider edges belonging to OPT , and on the other side edges not
belonging to the chosen set, we can have the following edges in GOPT for a ∈ OPT
and b ∈ E \OPT :

• (a, b) if (a, b) are in a pair (of envelopes),

• (b, a) if OPT \ {a} ∪ {b} does not contain cycles.

Therefore, for a pair (u, v), we are looking for an augmenting path

(b1 ∈ {u, v}, a1, b2, a2, . . . , bk)

in GOPT that will allow us to add all edges b1, b2, . . . , bk and remove edges a1, a2, . . . ak−1.
So we need to find a path that goes from any edge from the pair to any edge with
out-degree 0.

Please note that not every path is good. We might find a path that involves
some edges that were already removed (the graph GOPT is changing while we are

8.2. MATROID INTERSECTION 157

constructing OPT and we might use the same vertex in GOPT several times, but we
cannot remove the same edge more than once), but that means that there will be a
shortcut in this path. If we find the shortest path fulfilling our condition, that means
that there will not be any shortcuts.

It can be proven that OPT is optimal if we cannot find any augmenting path and
thus this algorithm is correct.

To finalize, what we have to do is to consider pairs one by one, construct a new
graph for already chosen subset OPT and check if we can augment this set by finding
an augmenting path in the constructed graph GOPT . This solution can be implemented
to work in O(r3) time.

Now let us explain the general algorithm, but first we need to introduce some
formal notation. We consider two matroids over the same ground set: M1 = (X,I1) and
M2 = (X,I2). By the intersection of these two matroids we mean M1∩M2 = (X,I1∩I2).

We will start from the empty set and in each step, we will try to increase the
common independent set. Let us define an exchange graph DOPT for already chosen
independent set OPT ∈ I1 ∩ I2:

• DOPT will be a directed bipartite graph with two sets of vertices OPT and X \
OPT ,

• the edges are defined in the following way: for a ∈ OPT and b ∈ X \OPT :

– (a, b) ∈ E if OPT \ {a} ∪ {b} ∈ I1,

– (b, a) ∈ E if OPT \ {a} ∪ {b} ∈ I2.

That means that we have the edge (a, b), if exchanging a for b, will give an
independent set in I1, and (b, a) if exchanging a for b will result in an independent set
in I2.

We hope to find an augmenting path in this directed graph from X \ OPT , i.e.
sets A ⊂ OPT and B ⊂ X \ OPT , such that |A| + 1 = |B| and OPT \ A ∪ B ∈ I1 ∩ I2.
Let us define two more subsets in X \OPT :

• SOURCES = {b ∈ X \OPT : OPT ∪ {b} ∈ I1},

• SINKS = {b ∈ X \OPT : OPT ∪ {b} ∈ I2}.

Now it turns out that if we will find the shortest path from SOURCES to SINKS ,
we can augment OPT by exchanging objects on this path and we will have larger OPT
still fulfilling all conditions.

158 CHAPTER 8. MATROIDS

Therefore, our algorithm will work as follows:

OPT = ∅
(optionally) greedily add to OPT any b ∈ X \OPT , such that

OPT ∪ {b} ∈ I1 ∩ I2
while true

build the graph DOPT as described above
calculate SOURCES and SINKS as defined above
augmentingPath← shortest path from SOURCES to SINKS
if augmentingPath does not exist

return OPT
else

augment OPT with augmentingPath

We will skip the complete proof that the algorithm above indeed finds the largest
independent set in the intersection of two matroids because it is complicated and
technical, but you can find it for example in [Edmonds, 2003] or [Welsh, 2010].

Please note that the time complexity is indeed polynomial, but we still need to
consider the complexity of adding a new object into an optimal set, and testing if the
set is still independent.

While implementing this algorithm, we strongly recommend to write it as generally
as possible. In particular, we can have a template that can be used with any two
matroids that can provide two methods: one to check if after adding an element x to
the already considered set, the set will remain independent, and one to actually add
this element to the set.

Problem Pick Your Own Nim

2019 Petrozavodsk Winter Camp, Yandex Cup.
Limits: 2s, 512MB.
https://kostka.dev/sp/nim

Alice and Bob love playing the Nim game. In the game of Nim, there are several
heaps of stones. On each turn, the player selects any heap and takes some positive
number of stones from it. The player who takes the last stone wins the game. They
played it so many times that they learned how to determine the winner at a first glance:
if there are a1, a2, . . . , an stones in the heaps, the first player wins if and only if the
bitwise xor a1 ⊕ a2 ⊕ . . . ⊕ an is nonzero.

They heard that in some online games players pick their characters before the
game, adding a strategic layer. Why not do it with Nim?

They came up with the following version. Alice and Bob each start with several
boxes with heaps of stones. In the first phase, they pick exactly one heap from each

https://kostka.dev/sp/nim

8.2. MATROID INTERSECTION 159

box. In the second phase Alice chooses some nonempty subset of those heaps, and
the regular Nim game starts on chosen heaps with Bob to move first.

Bob already knows which heaps Alice picked. Help him to perform his picks so
that he wins the game no matter which heaps Alice chooses during the second phase.

Input

On the first line, there is a single integer n (0 ≤ n ≤ 60) the number of heaps
picked by Alice.

If n > 0 on the next line there are n integers: the sizes of those heaps. Otherwise,
this line is omitted.

On the next line, there is a single number m (1 ≤ m ≤ 60), the number of Bob’s
boxes.

Each of the next m lines contains the description of a box. Each description starts
with a number ki (1 ≤ ki ≤ 5000), the number of heaps in the box. Then ki numbers
follow, denoting the sizes of those heaps.

The size of each heap is between 1 and 260 − 1, inclusive. The total number of
heaps in Bob’s boxes does not exceed 5000.

Output

If Bob cannot win (that is, no matter what he picks, Alice can make such a choice
that the resulting Nim position is losing), print -1. Otherwise, print m integers: the
sizes of the heaps Bob should pick from his boxes in the same order in which the boxes
are given in the input.

Examples

For the input data:

2
1 2
2
2 1 2
3 1 2 3

the correct result is:

-1

whereas for the input data:

1
5
2
3 1 2 3
4 4 5 6 7

the correct result is:

1
6

160 CHAPTER 8. MATROIDS

Solution

This problem can be reduced to the matroid intersection problem. We just need
to find proper matroids. One is pretty easy: it is just a partition matroid (we have to
choose exactly one heap from each box). The second one is a linear matroid. If we
consider the heaps as vectors on bits, then if Alice can find a dependent set on these
vectors, then she can choose them and then bitwise xor will be 0 and Bob will lose.

Intersection of three matroids

We saw that we can easily solve optimization problems on a simple matroid
and we have a polynomial time algorithm for the intersection of two matroids.
Unfortunately, we rarely can go any further. Finding the maximum independent
set in the intersection of three matroids is NP-hard.
We will now show this fact by a reduction from the Hamiltonian path problem
(finding a path that goes through every vertex in a graph) on a directed graph.
So now, let us take an instance of this problem, i.e. graph G = (V, E) and
consider the following three matroids:

• M1 will be a graph matroid over E (we do not care about direction here),

• M2 will be a partition matroid that will guarantee that every vertex has
in-degree at most 1,

• M3 will be a partition matroid that will guarantee that every vertex has
out-degree at most 1.

Now it is easy to check that if we can find an independent set in M1 ∩M2 ∩M3

of size |V | − 1, that means that we can find a Hamiltonian path in G.
Therefore, in general, finding the maximum independent set in the intersection
of more than two matroids is NP-hard.

Bibliography

[Aggarwal et al., 1994] Aggarwal, A., Schieber, B., and Tokuyama, T. (1994). Find-
ing a minimum-weight k-link path in graphs with the concave Monge property and
applications. Discrete & Computational Geometry, 12(3):263–280.

[Apostolico et al., 1993] Apostolico, A., Breslauer, D., and Galil, Z. (1993). Par-
allel detection of all palindromes in a string. Theoretical Computer Science,
141(1&2):163–173.

[Bar-Noy and Ladner, 2004] Bar-Noy, A. and Ladner, R. E. (2004). Efficient algo-
rithms for optimal stream merging for media-on-demand. SIAM Journal on Com-
puting, 33(5):1011–1034.

[Bellott et al., 2014] Bellott, D. W., Hughes, J. F., Skaletsky, H., Brown, L. G., Pyn-
tikova, T., Cho, T.-J., Koutseva, N., Zaghlul, S., Graves, T., Rock, S., et al.
(2014). Mammalian Y chromosomes retain widely expressed dosage-sensitive regu-
lators. Nature, 508(7497):494–499.

[Bentley, 1984] Bentley, J. (1984). Programming pearls: algorithm design techniques.
Communications of the ACM, 27(9):865–873.

[Bertsekas, 2014] Bertsekas, D. P. (2014). Constrained optimization and Lagrange
multiplier methods. Academic press.

[Bottenbruch, 1962] Bottenbruch, H. (1962). Structure and use of ALGOL 60. Jour-
nal of the ACM, 9(2):161–221.

[Brucker, 1995] Brucker, P. (1995). Efficient algorithms for some path partitioning
problems. Discrete Applied Mathematics, 62(1-3):77–85.

[Castro et al., 2016] Castro, R., Lehmann, N., Pérez, J., and Subercaseaux, B.
(2016). Wavelet trees for competitive programming. Olympiads in Informatics,
10:19–37.

[Chazelle and Guibas, 1986a] Chazelle, B. and Guibas, L. J. (1986a). Fractional cas-
cading: I. a data structuring technique. Algorithmica, 1(1-4):133–162.

[Chazelle and Guibas, 1986b] Chazelle, B. and Guibas, L. J. (1986b). Fractional cas-
cading: II. applications. Algorithmica, 1(1-4):163–191.

161

162 BIBLIOGRAPHY

[Claude et al., 2015] Claude, F., Navarro, G., and Ordóñez Pereira, A. (2015). The
wavelet matrix: An efficient wavelet tree for large alphabets. Information Systems,
47:15–32.

[Clifford and Clifford, 2007] Clifford, P. and Clifford, R. (2007). Simple deterministic
wildcard matching. Information Processing Letters, 101(2):53–54.

[Cormen et al., 2009] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
(2009). Introduction to Algorithms. MIT Press.

[de la Fuente, 2000] de la Fuente, A. (2000). Mathematical methods and models for
economists. Cambridge University Press.

[Diks et al., 2018] Diks, K., Idziaszek, T., Lacki, J., and Radoszewski, J. (2018).
Przygody Bajtazara. 25 lat Olimpiady Informatycznej. PWN.

[Dymchenko and Mykhailova, 2015] Dymchenko, S. and Mykhailova, M. (2015).
Declaratively solving tricky Google Code Jam problems with Prolog-based ECLiPSe
CLP system. In Proceedings of the 30th Annual ACM Symposium on Applied Com-
puting, pages 2122–2124.

[Edmonds, 1979] Edmonds, J. (1979). Matroid intersection. In Annals of Discrete
Mathematics, volume 4, pages 39–49. Elsevier.

[Edmonds, 2003] Edmonds, J. (2003). Submodular functions, matroids, and cer-
tain polyhedra. In Combinatorial Optimization—Eureka, You Shrink!, pages 11–26.
Springer.

[Feng and Li, 2017] Feng, X. and Li, S. (2017). Design of an area-effcient million-bit
integer multiplier using double modulus NTT. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 25(9):2658–2662.

[Galil and Park, 1992] Galil, Z. and Park, K. (1992). Dynamic programming with
convexity, concavity and sparsity. Theoretical Computer Science, 92(1):49–76.

[Gilbert and Moore, 1959] Gilbert, E. N. and Moore, E. F. (1959). Variable-length
binary encodings. Bell System Technical Journal, 38(4):933–967.

[Grossi et al., 2003] Grossi, R., Gupta, A., and Vitter, J. S. (2003). High-order
entropy-compressed text indexes. In Proceedings of the Fourteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 841–850. Society for Industrial and
Applied Mathematics.

[Hamming, 1950] Hamming, R. W. (1950). Error detecting and error correcting codes.
The Bell system technical journal, 29(2):147–160.

[Horner, 1819] Horner, W. G. (1819). XXI. a new method of solving numerical equa-
tions of all orders, by continuous approximation. Philosophical Transactions of the
Royal Society of London, pages 308 – 335.

BIBLIOGRAPHY 163

[Idziaszek, 2015] Idziaszek, T. (2015). Informatyczny kącik olimpijski: Wiercenia.
Delta, czerwiec 2015.

[Knuth, 1971] Knuth, D. (1971). Optimum binary search trees. Acta Informatica,
1(1):14–25.

[Knuth, 1997] Knuth, D. E. (1997). The art of computer programming, volume 3.
Pearson Education.

[Kruskal, 1956] Kruskal, J. B. (1956). On the shortest spanning subtree of a graph
and the traveling salesman problem. Proceedings of the American Mathematical
Society, 7(1):48–50.

[Lakhani et al., 2010] Lakhani, K. R., Garvin, D. A., and Lonstein, E. (2010). Top-
coder (a): Developing software through crowdsourcing. Harvard Business School
General Management Unit Case 610-032.

[Lawler, 1975] Lawler, E. L. (1975). Matroid intersection algorithms. Mathematical
programming, 9(1):31–56.

[Macon and Spitzbart, 1958] Macon, N. and Spitzbart, A. (1958). Inverses of Van-
dermonde matrices. The American Mathematical Monthly, 65(2):95–100.

[Manacher, 1975] Manacher, G. (1975). A new linear-time “on-line” algorithm for
finding the smallest initial palindrome of a string. Journal of the ACM, 22(3):346–
351.

[Mehlhorn and Näher, 1990] Mehlhorn, K. and Näher, S. (1990). Dynamic fractional
cascading. Algorithmica, 5(1-4):215–241.

[Navarro, 2014] Navarro, G. (2014). Wavelet trees for all. Journal of Discrete Algo-
rithms, 25:2–20.

[Rubinchik and Shur, 2015] Rubinchik, M. and Shur, A. M. (2015). EERTREE: an
efficient data structure for processing palindromes in strings. In International Work-
shop on Combinatorial Algorithms, pages 321–333. Springer.

[Rubinchik and Shur, 2018] Rubinchik, M. and Shur, A. M. (2018). EERTREE: an
efficient data structure for processing palindromes in strings. European Journal of
Combinatorics, 68:249–265.

[Tommila, 2003] Tommila, M. (2003). A C++ high performance arbitrary precision
arithmetic package.

[Turner, 1966] Turner, L. R. (1966). Inverse of the Vandermonde matrix with appli-
cations. Nasa Technical Note.

[Welsh, 2010] Welsh, D. J. (2010). Matroid theory. Courier Corporation.

164 BIBLIOGRAPHY

[Whitney, 1935] Whitney, H. (1935). On the abstract properties of linear dependence.
American Journal of Mathematics, 57(3):509–533.

[Yao, 1980] Yao, F. F. (1980). Efficient dynamic programming using quadrangle in-
equalities. In Proceedings of the Twelfth Annual ACM Symposium on Theory of
Computing, pages 429–435.

[Yao, 1982] Yao, F. F. (1982). Speed-up in dynamic programming. SIAM Journal on
Algebraic Discrete Methods, 3(4):532–540.

	Introduction
	Competitions and platforms

	Extensions of binary search
	Parallel binary search
	Fractional cascading

	Segment trees rediscovered
	Segment tree beats
	Historic information for sequences
	Wavelet trees

	Tree decompositions
	Centroid decomposition
	Heavy-light decomposition

	Palindromes
	Manacher's algorithm
	Eertree

	Dynamic programming optimizations
	Sum over subsets (SOS)
	Monotone queue optimization
	Convex hull optimization
	Li Chao tree

	Knuth optimization
	Divide and conquer optimization
	Lagrange optimization
	Summary

	Polynomials
	Evaluation
	Interpolation
	Fast Fourier transform
	Applications of the polynomial multiplication
	Bitwise convolutions

	Matroids
	Optimization problems on matroids
	Matroid intersection

	Bibliography

