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Abstract

This work presents methods of computational intelligence for water usage forecast-
ing and anomaly (leaks) detection performed on data from waterworks network
of Wrocław. Additionally, the work contains comparison of known methods with
proposition of their future improvement.

Celem niniejszej pracy jest zaprezentowanie metod inteligencji obliczeniowej w prze-
widywaniu zużycia wody i wykrywania anomalii (wycieków) na danych z wrocław-
skiej sieci wodociągowej. Dodatkowo, praca zawiera porównanie znanych metod i
propozycje rozszerzenia ich w przyszłych badaniach.
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Chapter 1

Introduction

Water usage forecasting is very important topic for its urban suppliers. As described
in [1], [2] and [3] water schedule optimization is wide field of study, which can bring
much savings in energy costs and consumption. Other significant problem in this
area is anomalies detection, i.e. finding moments in time, where water usage behaves
in singular way.

1.1 Leaks detection problem

Application of tracking down anomalies is a leaks detection problem. In case of
water suppliers it is very hard problem, because most of the leaks appears under the
ground, therefore sometimes it is impossible to detect it in ordinary methods. Such
unnoticed leakage can cause big losses for long period of time.

1.2 Overview of this work

In this thesis all way from raw data to water consumption forecast is explored on
data from waterworks of Wrocław, with solutions similar to those in [1], [2] and [3].
In addition, models based on Recurrent Neural Networks are tested.

With water demand prediction, ability of trained models to detect anomalies is
tested, with comparison to more basic methods. After such experiments, improve-
ment of used methods is suggested.
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Chapter 2

Data Description

Dataset consisted of information from six flowmeters of Wrocław’s waterworks,
which can be seen on Figure 2.1. Each of them held independent area and pro-
vided numerical value of water flow counted from 1 July 2014 with ten minutes
frequency. For data analysis information from every flowmeter was treated as a
time series.

2.1 Time series

Time series[4] is a sequence of random variables realizations ordered by time and
measured with fixed time step.

Time series decomposition

For analysis three components of every time series are considered:

• trend - long term direction

• seasonal - systematic, time related movements

• irregular - short term, often chaotic fluctuations

In our water flow example trend can be related to increasing number of corresponding
area residents, so more water is used. Seasonal component is most connected to
people weekly lifestyle.

These components can be connected in additive, multiplicative or mixed way.
That is, observed series Ot can be decomposed as Ot = Tt+St+ It or Ot = Tt ·St · It
or in some mixed way.

9
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Figure 2.1: Map shows region of Wrocław with places of six flowmeters. These are
Kłokoczycka DN 150, Krzywoustego DN 600, Krzywoustego DN 300, Zakrzowska DN 500,
Przedwiośnie DN 250 and Sobieskiego DN 500. Number next to the name of the region is
a value of nominal diameter of particular pipe. The map was made with usage of Open-
StreetMap [9].

Stationarity of time series

It is very important for analysis to decompose time series and work only with irreg-
ular component It. After such operation one can assume stationarity of time series,
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Figure 2.2: On the upper plot example of observed time series is shown. Lower are
plotted three components: trend, seasonal and irregular (residual). In this example series
was decomposed in multiplicative way.

i.e. every random variable in series has the same probability distribution.

2.2 Regression problem

After decomposing time series it can be assumed, that all random variables in series
have the same probability distribution, i.e. all observed values are realizations of
the same random variable Y .

For estimating Y by regression approach, group of predictors is needed. There-
fore random variables X1, ..., Xd should be defined.

Let
y = [y1, ..., yn]

be observed values of variable Y , and let

X =


x11 . . . x1n
...

. . .
...

xd1 . . . xdn


be observed values of predictors X1, ..., Xd. In such case the goal is to find function
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f(x) = f(x1, ..., xd) which, for every sample i = 1, ..., n minimize the distance be-
tween yi and f(x1i , ..., x

d
i ) in terms of some error function. For this thesis, as in [2],

mean absolute percentage error (MAPE) function was used.

MAPE(f, Y,X) =
100

n

n∑
i=1

∣∣∣∣f(xi)− yi
yi

∣∣∣∣ ,
where for simplicity, notation xi = [x1i , ..., x

d
i ] was used.



Chapter 3

Description of Algorithms

For water usage forecasting, similarly to [2] and [3], SVR and Gaussian processes
models were used. In addition to these, also artificial neural networks models were
tried, i.e. LSTM networks.

3.1 SVR

Support Vector Regression ([5], [6]) is kind of SVM (Support Vector Machine) used
for regression problem. Suppose {(x1, y1), ..., (xn, yn)} ⊂ Rd × R are observed data
points. The goal is to find a function f(x) that for every data point xi, observed
value of function is near, i.e. |f(xi)−yi| < ε and additionally, f is as flat as possible.

In linear case, f has a form:

f(x) = 〈w, x〉+ b,where w ∈ Rd, b ∈ R.

〈·, ·〉 denotes the dot product in Euclidean space. In this case, the flatness of f
means, that ||w||2 need to be minimized.

In fact, with fixed ε, not always such function exists, or even one could want to
allow some errors. In such case, instead of minimizing ||w||2, one have to minimize

1

2
||w||2 + C

n∑
i=1

(ξi − ξ∗i )

subject to 
yi − 〈w, x〉 − b ≤ ε+ ξi

〈w, x〉+ b− yi ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0

Here one can easily see meaning of C parameter, which is some kind of trade-off
between the flatness of f and error toleration.

It is important to mention, that for describing w not all xi are necessary, but
only these which are outside the ε-tube. Such points are called support vectors.

13
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Figure 3.1: Empty dots are in smaller than ε distance to f , so there is no penalty for
them. Dark dots are outside of ε-neighborhood so corresponding loss function is greater
than 0. They are also called support vectors, because predicted function is described only
by them.

In nonlinear case observed data can be implicitly mapped via kernel function
Φ(x) to some other, more dimensional space. Such mapping can be computed ef-
ficiently, because there is no need to know it explicitly. Values of 〈Φ(x),Φ(x′)〉 is
enough to find a solution.

3.2 Gaussian processes

In Gaussian process regression (GPR [7]) the point is to describe probability dis-
tribution over functions. Gaussian process is a collection of random variables, any
finite number of which have a joint Gaussian distribution. Such process is completely
described by its mean and covariance functions, µ(x) and K(x, x′).

Let D = {(x1, y1), ..., (xn, yn)} = (X,y) be observed data points, where yi =

f(xi) + εi, f ∼ GP (·|0,K) and εi ∼ N
(
·|0, σ2

)
.

With such prior it is possible to make predictions. Let x∗ be new point, and y∗
value in this point. Then posterior distribution can be expressed as

p(y∗|x∗,D) =

∫
p(y∗|x∗, f,D)p(f |D)df

and the marginal likelihood

p(y|X) =

∫
p(y|f,X)p(f)df.

In such a case predicted value y∗ would be the mean of this posterior distribution.

Marginal likelihood can be treated as a function of K’s hyperparameters, so
they can be learned from data via likelihood maximization.
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Figure 3.2: In Gaussian process regression it is possible to explicitly set a strength of data
noise. In addition to function prediction, such model gives also probabilistic information,
e.g. about confidence intervals.

3.3 LSTM neural networks

Long Short Term Memory networks [8] are a special kind of RNNs (Recurrent Neural
Networks). Their architecture is designed to work with long-term dependencies,
because they have additional memory cell in which they are able to store some data
to ”remember”, or ”forget” it and save something new.

Figure 3.3: Unrolled LSTM layer. Upper horizontal line describe memory cell and its
information flow. The lower parts are similar to those in RNN, but with additional elements
for interaction with memory cell.

Let xt be the input to the layer at the time t, Ct be the memory cell value and
ht - the output of the layer. Then the new value of memory cell Ct is computed as
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follows:
ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft � Ct−1 + it � C̃t,

and new output value ht:

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot � tanh(Ct).

The σ and tanh activation functions can be replaced, for example byRectifiedLinearUnit.



Chapter 4

Data Preparing

The general purpose in this work (as described in previous Chapters) was to create
group of regression models, which could predict water consumption. Such forecast, if
it is precise enough, should be later compared to real values. When much differences
between estimation and true consumption are noticed, it is a sign that leakage might
happened.

4.1 Data preprocessing

Before applying any machine learning model three operations needed to be per-
formed on raw data described in Chapter 2. Firstly, series needed to be resampled
to lower frequency and any outliers, which could mess analysis, should have been
removed. Afterwards, as described in 2.1, time series had to be decomposed to be
more stationary. This step was very important for prediction accuracy. As the last
part before learning, to perform regression some predictor variables needed to be
determined, as described in 2.2.

4.1.1 Frequency change

Ten minutes frequency was to high for this application, because for every day only
one value was to be predicted. Aggregating series to days would be to inaccurate,
in day rhythm could be hidden useful information. Due to this fact time series was
resampled to hours, i.e. six values from every hour with ten minutes frequency were
summed up to one value for entire hour. Such operation reduced amount of data,
but also made it more stable, as can be seen on the Figure 4.1

17
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Figure 4.1: Ten minutes frequency was to high for this application, so series was resampled
to hours, i.e. six values from every hour with ten minutes frequency were summed up to
one value for entire hour.

4.1.2 Outliers removing

The data was collected by electronic devices, so it was susceptible to errors. That
is why, before computing any statistics, any values, that were likely to be biased by
such errors were removed.

In time series it is important to have sequential data without big gaps. Therefore
instead of removing outliers entirely, its values were changed to be more suitable for
series. For y, the old value of time series, the new value ỹ was computed according
to formula

ỹ = min(y, mean+ c · std),

where mean was the mean of entire series, std was its standard deviation and con-
stant c had value between 4 and 8, depending on particular dataset.

4.1.3 Seasonal component removing

As described in Section 2.1, it is important, to decompose time series before forecast-
ing. In this example, trend component was omitted, it was not noticeable, because
of too little time period of our series.

With seasonal component the case was much different. Because of people
lifestyle two strong seasonal components could be distinguished - weekly and daily.
Because only night time values were to predict, so daily seasonality was not impor-
tant.
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Figure 4.2: Such outliers, as can be seen on the upper plot, make analyze inaccurate.
Therefore all values were cut on the level of data mean plus standard deviation multiplied
by constant between 4 and 8, depending on particular dataset.

Finally, observed time series was represented as:

Ot = S1
t (S2

t + It),

where S1
t and S2

t are two seasonal components.

Two extract It series was firstly divided by walking seven day mean according
to formula

ỹi =
yi

1
7

∑i
j=i−6 yj

This operation reduced differences between the same days of week, i.e. all Mondays
became more similar to each other, also Tuesdays etc. Later, to reduce disparity
between all days of week, mean value of every day of week was computed and
subtracted from the series respectively, accordingly to formula

ŷi = ỹi −
1

|Wi|
∑
j∈Wi

ỹj ,

where Wi is set of indexes of observed values from the same day of week as yi.

4.2 Features extraction

Till this moment of preprocessing time series was still containing only single sequence
of values. The idea was to apply regression models, so it was necessary to find proper
features which could explain the series. What is more, series still had hour frequency,
but only night time values were to forecast.
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Figure 4.3: Week seasonality causes series to be non stationary. To remove this inconve-
nience, series was preprocessed to make means of all days of week equal to zero.

4.2.1 Finding proper night time

For this task hour which was most stable was chosen. After computing standard
deviations of every hour it turned out (as can be seen on Figure 4.4), that 2 o’clock
was the best, because it had the smallest value of this statistic.

Figure 4.4: It was necessary to find proper night time for forecasting. Standard deviation
of values from every hour was used as a measure of stability and the time with the smallest
value was chosen, i.e. 2 o’clock.

4.2.2 Determination of predictor variables

For the features shifted back values of time series, which had the strongest auto-
correlation response, were chosen. In addition to this, statistics from longer period
of time were taken, where was wrapped information about more global behavior of
series, which could be a consequence of some special events, weather or season.

Finally, such features were determined:

• histogram of values of twenty three hours before main night hour
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• histogram of three values of series shifted by 24, 48 and 72 hours back

• mean of last twenty four hours

• means of values from last seven and fourteen days

This gave twenty nine values plus value from 2 o’clock which was to predict, but
with one day frequency.

Last step of preprocessing was normalization or standard scaling of data. This
means either scaling data to interval [0, 1] or making its mean equal to 0 and variation
to 1. Both were tried, because one models worked better with normalization, others
with standard scaling.

Example of such preprocessed time series can be seen on Figure 4.5.

Figure 4.5: Example of preprocessed and normalized time series from Krzywoustego DN
600 flowmeter from year 2016.

4.3 Learning

As described in Chapter 3, regression models based on SVR, Gaussian Processes and
LSTM neural network were used. Therefore, for better comparison, they needed to
be checked on different dataset.

For time series prediction testing, simple cross validation cannot be used, be-
cause it would be possible to train model on data very near in time to testing data,
and result would not be reliable. Therefore number of independent enough datasets
needed to be created.

4.3.1 Datasets creation

After preprocessing described in Section 4.1 performed on data from all flowmeters
separately, it was divided to nineteen periods of 350 days in such way that none two
overlapped by more than 150 days. All these new datasets appeared in two forms,
one after normalization and one after standard scaling.
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Characteristics of all datasets before normalization and standard scaling can be
seen in Table 4.1.

Table 4.1: Datasets characteristics

Dataset Flowmeter Date from Date to Mean Standard deviation

0 Krzywoustego DN 600 2014-07-15 2015-06-29 -0.635 0.076

1 Krzywoustego DN 600 2014-12-04 2015-11-18 -0.67 0.128

2 Krzywoustego DN 600 2015-08-22 2016-08-05 -0.661 0.115

3 Krzywoustego DN 600 2016-04-12 2017-03-27 -0.7 0.064

4 Krzywoustego DN 600 2016-11-17 2017-12-27 -0.678 0.122

5 Krzywoustego DN 300 2014-07-07 2015-06-21 -0.54 0.285

6 Krzywoustego DN 300 2015-10-02 2016-09-15 -0.74 0.123

7 Krzywoustego DN 300 2016-05-28 2017-05-12 -0.769 0.12

8 Przedwiośnie DN 250 2016-02-06 2017-01-20 -0.746 0.126

9 Przedwiośnie DN 250 2016-10-15 2017-09-29 -0.737 0.152

10 Sobieskiego DN 500 2014-07-12 2015-06-26 -0.57 0.097

11 Sobieskiego DN 500 2015-03-06 2016-02-18 -0.594 0.09

12 Sobieskiego DN 500 2015-10-26 2016-10-09 -0.643 0.111

13 Sobieskiego DN 500 2016-07-19 2017-07-03 -0.717 0.077

14 Zakrzowska DN 500 2014-08-02 2015-07-17 -0.82 0.144

15 Zakrzowska DN 500 2015-05-09 2016-04-22 -0.883 0.134

16 Zakrzowska DN 500 2015-10-01 2016-09-14 -0.872 0.132

17 Kłokoczycka DN 150 2014-09-21 2015-09-05 -0.696 0.279

18 Kłokoczycka DN 150 2015-01-10 2015-12-25 -0.7 0.267
Characteristics of created datasets. Different number of datasets was created from data from
different flowmeters, because some periods were not usable due to big gaps of information.

4.3.2 Applying a model

To every so prepared dataset, all models described in Chapter 3 were applied, but
used many times with different parameters, which are explained in details in next
Chapter.



Chapter 5

Experiments and Results

5.1 Parameters description

In this Section particular models, which were used, are described, including used
parameters, neural network architecture etc.

SVR and Gaussian processes regression models were created and trained us-
ing scikit-learn library [10], LSTM network with use of Keras library [11] run on
TensorFlow [12] backend.

5.1.1 SVR

Number of different parameters were used with SVR models, which can be seen in
Table 5.1.

Table 5.1: SVR parameters

C 0.1 0.5 1 1.5 2 2.5 3

γ 0.01 0.034 0.05 0.1 0.2 0.5 0.7 1

ε 0.05 0.1 0.5 1
Parameters used with SVR models. All configurations were tried, also with normalized and
standard scaled datasets, which gave 448 different models.

ε parameter was responsible for acceptable error tube, C parameter was the
trade-off between flatness of function and error toleration. As kernel mapping,
Radial Basis Functions were used, with γ parameter. This mapping is computed
according to following formula:

〈Φ(x),Φ(x′)〉 = eγ||x−x
′||2

23
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5.1.2 Gaussian processes

As with SVR, for Gaussian process regression model different parameters values
were tried, what can be seen in Table 5.2.

Table 5.2: GPR parameters

α 1e-10 1e-5 1e-2 1e-1 5e-1 1 1.5

c 0.01 0.05 0.1 0.5 1 1.5 2

l 0.01 0.05 0.1 0.5 1 1.5
Parameters used with GPR models. All configurations were tried, also with normalized and
standard scaled datasets, which gave 588 different models.

α parameter described strength of data noise. As a covariance function once
again Radial Basis Functions were used, with l and c parameters, according to the
formula:

K(x, x′) = c2 · e−
1
2
||x/l,x′/l||2

Like was mentioned in Section 3.2, covariance hyperparameters were optimized dur-
ing model fitting. For every model ten restarts were performed to find optimal
solution.

5.1.3 LSTM networks

Few different network architectures were used:

• network with single LSTM layer with 64 units,

• network with four LSTM layers with 64 units each,

• network with four LSTM layers with 256 units each.

It gave six different models, because of normalized and standard scaled types of
datasets.

In every network there was last dense layer with single output. All LSTM
layers got input from two time steps. As activation function Rectified Linear Unit
was tried, to avoid vanishing gradient problem. As a loss function mean absolute
percentage error (MAPE) was used with Adam Optimizer [13]. All networks were
trained for 15000 epochs with batch size equal to 32.

5.2 Results

Every model was trained separately on nineteen datasets consisting of 250 successive
training samples and later tested on further 100 testing samples, as described in
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Section 4.3.

5.2.1 SVR

In total, 448 SVR models were trained, because model with fixed set of parameters
were tried separately on normalized and standard scaled datasets. For every model
MAPE on training and testing data was computed. Later, three best models were
chosen, depending on their average error on testing data, which was plotted on
Figure 5.1.

Figure 5.1: MAPE on testing data of all SVR models averaged on all datasets sorted
ascending. These values were used to choose three best models.

All these three models were tried on normalized datasets. On Figure 5.2 their
MAPEs computed on testing data on all datasets are plotted. Parameters of these
models were similar, what can be seen in Table 5.3.

Table 5.3: Best SVR parameters

C 3 2.5 3

γ 0.05 0.034 0.034

ε 0.05 0.05 0.05

Average MAPE 12.66 12.74 12.77
Parameters of three best SVR models.

5.2.2 Gaussian processes

After the same procedure as in previous Section with SVR 5.2.1, three best GPR
models were chosen out of 588, depending of averaged MAPE values plotted on
Figure 5.3.

Chosen models had similar results on all datasets, as can be seen on Figure 5.4,
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Figure 5.2: MAPE computed on testing data of three best SVR models, depending on
dataset. For all three models datasets were in normalized type.

Figure 5.3: MAPE on testing data of all GPR models averaged on all datasets sorted
ascending. These values were used to choose three best models.

except datasets number 1 and 5. Especially on datasets number 1 difference was
very significant. Parameters of best model can be seen in the Table 5.4.

5.2.3 LSTM networks

Results of LSTM networks from normalized datasets can be seen on the Figure 5.5
and from standard scaled datasets on the Figure 5.6.

Errors on normalized datasets was very big in most of examples, but it was not
an effect of overfitting, because error on training samples was comparable. With
standard scaled results was much better, but still errors were twice as big as in SVR
or GPR models.

To explore problem with neural networks deeper, also Multilayer perceptron
model was tried, with similar architecture, i.e. four dense layers with 64 units each
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Table 5.4: Best GPR parameters

α 1.5 0.5 0.5

c 1.5 2 1

l 1.5 1 0.05

Average MAPE 12.16 12.54 12.54
Parameters of three best GPR models.

Figure 5.4: MAPE computed on testing data of three best GPR models, depending on
dataset. For all three models datasets were in standard scaled type.

and last dense layer with single output. All hidden layers had Rectified Linear Unit
as activation function. Network was trained with Adam Optimizer for 2000 epochs
with batch size equal to 32. Such model had very similar results to LSTM models.

Because of poor results and long time of training, LSTM models were not
considered for further experiments with particular datasets.

5.3 Comparing to forecasting by value from previous
hour

Regression models from experiments used, among other features, value from previous
hour, which could be used also as predictor itself. Therefore it was important for
reliability of this thesis, to compare forecasting by value from previous hour with
forecasting by machine learning models.

As can be seen on Figure 5.7, on most of the datasets machine learning models
had better results, but there were few, where previous hour was more accurate. Most
significant difference could be noticed on dataset number 1. This dataset was tested
more detailed in next Section.
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Figure 5.5: MAPE from three LSTM models computed on all datasets in normalized type.

Figure 5.6: MAPE from three LSTM models computed on all datasets in standard scaled
type.

5.4 More detailed view on some datasets

On Figures 5.2 and 5.4 can be seen that for dataset number 5 MAPE value was much
bigger than for others and that this behavior was similar for all models. In addition,
as described in Section 5.3, on dataset number 1, forecasting by value from previous
hour would be much more accurate. Therefore, in this Section a more detailed view
on these datasets is described.

5.4.1 Dataset with worst result

As can be seen on Figure 5.8, for dataset number 5 forecasting by value from previous
hour would not be very accurate, MAPE equal to 72.94%. This could be the reason
why all models on this dataset had the worst result, but anyway smaller than 65%
for three best SVR models, and one 61% and two even 55% for three best GPR
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Figure 5.7: On upper plot there are values from SVR models, on the lower from GPR. Blue,
green and red columns describe MAPE value of three best models computed on testing data
from all datasets. Purple columns describe MAPE computed from forecasting by value from
previous hour. On most of the dataset, machine learning models had significant advantage,
but there were few, where previous hour had better result.

models.

On the Figure 5.9 one can see that best SVR and GPR models had the biggest
errors in places of bigger peaks, which could be desired property for leaks detection.
After removing the biggest peak, MAPE from 61.67% became 6.04% for SVR and
from 60.17% to 5.29% for GPR.

5.4.2 Dataset with significant previous hour advantage

As can be seen on Figure 5.10, forecasting by previous hour was very accurate on
dataset number 1, but probably useless for leaks detection. It can be seen on the
plot, that there was one big peak in the series - this could be a leak, but one could
not see any anomaly comparing to value from previous hour.

On the Figure 5.11 forecasting by best SVR model is plotted. Here one can
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Figure 5.8: Blue line shows real time series values, green shows values from previous hour.
There was much difference in most of the points, which could be a reason of inaccurate
forecast.

also see accurate forecasting, except this big peak, where much smaller value was
predicted. Such difference could be recognized as anomaly and probable leak.

Best SVR error on testing data from this dataset was 20.77%. But after remov-
ing this big peak, the error was only 6.86%.

As can be seen of Figure 5.8, best GPR model was significantly better than
others for dataset number 1, and even better than forecasting by previous hour, as
the only one from best models. Therefore for this dataset two best GPR models
were tested more carefully.

As can be see on plot 5.12, best GPR model, similar to forecasting by previous
hour, did not notice big anomaly, in contrast to second best GPR model, where
anomaly was very clearly visible. Therefore, it turned out, that it is very important
to check if models are not overfitted not only by computing forecasting accuracy,
but in this application also perceptivity for anomalies detection.
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Figure 5.9: Blue line shows real time series values, green shows values from prediction
by best SVR model on top and best GPR below. Here the difference between values was
smaller than on the plot 5.8, only in places of big peaks error was more significant, which
could be a desired property for leaks detection.

Figure 5.10: Blue line shows real time series values, green shows values from previous hour.
It can be easily seen, that lines are very near, even in the biggest peak which is probable
leak.
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Figure 5.11: Blue line shows real time series values, green shows values from prediction by
best SVR model. Here, as on the Figure 5.10 values are very near, except the biggest peak,
which is probable leak.
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Figure 5.12: Blue line shows real time series values, green shows values from prediction
by best GPR model on top and second best below. Upper model, similar to forecasting by
previous hour, had well predicted value even for big peak, which could be a leak, therefore
lower model was better in this example, because one could see probable anomaly from its
prediction.





Chapter 6

Conclusions and Future Work

Experiments described in Chapter 5 showed, that SVR and Gaussian processes mod-
els are much better in forecasting water demand than used LSTM neural networks,
because they achieved smaller errors and also their training was computationally
cheaper.

What is more, Gaussian processes on most of the datasets had significantly
lower MAPE level than SVR models and, additionally GPR provides information
about probability distribution of every variable in series, which could be useful both
in anomalies detection and water demand schedule optimization.

6.1 Leaks detection problem

Both SVR and GPR models were able to detect anomalies in time series, but, as
shown in Section 5.4 on GPR example, they could be misled and might predict value
close to leakage, in such case anomaly would not be detected. Therefore, it would
be useful to have information about points where real leaks happened and use it as
validation data.

In such case even more complicated approach could be made. Additionally to
water usage forecast, individual classifier could be trained and, with use of estimated
and real values, and also some other local information, predict whether there is a
leakage or not.
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