Uniwersytet Wrocławski Wydział Matematyki i Informatyki Instytut Matematyczny Indywidualne Studia Informatyczno-Matematyczne

$Maciej\ Kucharski$

Problem Waringa i metoda łuków Hardy'ego-Littlewooda

Praca licencjacka napisana pod kierunkiem dr. hab. Mariusza Mirka

Wrocław, 2018 r.

University of Wrocław Faculty of Mathematics and Computer Science Mathematical Institute

Joint Studies in Computer Science and Mathematics

$Maciej\ Kucharski$

Waring's problem and the Hardy-Littlewood circle method

Bachelor's thesis written under the supervision of dr. hab. Mariusz Mirek

Contents

1.	War	ng's problem	4	
2.	Useful lemmas			
	2.1.	Weyl's inequality	19	
	2.2.	Hua's lemma	21	
	2.3.	Infinite products	23	
	The	circle method	26	
	3.1.	The minor arcs	27	
	3.2.	The major arcs	28	
	3.3.	The singular series	37	
Rε	eferer	ces	48	

1. Waring's problem

Waring's problem asks whether for each natural number k there exists an integer s such that any natural number is the sum of at most s kth powers. Since every number can be represented as the sum of ones, this is equivalent to the question if there exists s such that the equation

$$x_1^k + \dots + x_s^k = N \tag{1}$$

has any solutions in integers for all sufficiently large integers N.

Let $r_{k,s}(N)$ be the number of solutions of equation (1). We will follow the method of Hardy, Littlewood and Ramanujan described in [1] to obtain the estimate of $r_{k,s}$. Let A be a set of non-negative integers and let $f(z) = \sum_{a \in A} z^a$. Then

$$f(z)^s = \sum_{n=0}^{\infty} r_{A,s}(n)z^n,$$

where $r_{A,s}(n)$ is the number of representations of n as the sum of s elements of A. Since elements of A are non-negative, if we want to recover $r_{A,s}(n)$, we can truncate this series to get the polynomial $p(z) = \sum_{\substack{a \in A \\ a \leq N}}$. Then

$$p(z)^s = \sum_{m=0}^{sN} r_{A,s}^{(N)}(m) z^m,$$

where $r_{A,s}^{(N)}(m)$ is the number of representations of m as the sum of s elements of A not exceeding N. For $m \leq N$ we have $r_{A,s}^{(N)}(m) = r_{A,s}(m)$. If we let $z = e(\alpha) = e^{2\pi i\alpha}$, we get

$$F(\alpha) = p(e(\alpha)) = \sum_{\substack{a \in A \\ a \le N}} e(a\alpha)$$

and

$$F(\alpha)^s = \sum_{m=0}^{sN} r_{A,s}^{(N)}(m)e(m\alpha).$$

Since

$$\int_0^1 e(m\alpha)e(-n\alpha)d\alpha = \begin{cases} 1 & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$$

we have

$$r_{A,s}(N) = \int_0^1 F(\alpha)^s e(-N\alpha) d\alpha.$$

If we want to apply this to Waring's problem, we let A be the set of kth powers and $P = [N^{\frac{1}{k}}]$. Then

$$F(\alpha) = \sum_{\substack{a \in A \\ a \le N}} e(\alpha a) = \sum_{n=1}^{P} e(\alpha n^{k})$$

and

$$r_{k,s}(N) = r_{A,s}(N) = \int_0^1 F(\alpha)^s e(-\alpha N) d\alpha.$$

Our aim is to estimate this integral.

2. Useful lemmas

First we establish some tools needed in the circle method.

Lemma 1. Let f be a continuously differentiable function and let $U(t) = \sum_{1 \le n \le t} u(n)$. Let a and b be non-negative integers with a < b. Then

$$\sum_{n=a+1}^{b} u(n)f(n) = U(b)f(b) - U(a)f(a) - \int_{a}^{b} U(t)f'(t)dt.$$

Proof. First observe that

$$f(n+1) - f(n) = \int_{n}^{n+1} f'(t)dt$$

and

$$U(n)(f(n+1) - f(n)) = \int_{n}^{n+1} U(t)f'(t)dt.$$

Therefore

$$\sum_{n=a+1}^{b} u(n)f(n) = \sum_{n=a+1}^{b} (U(n) - U(n-1))f(n)$$

$$= \sum_{n=a+1}^{b} U(n)f(n) - \sum_{n=a}^{b-1} U(n)f(n+1)$$

$$= U(b)f(b) - U(a)f(a) - \sum_{n=a}^{b-1} U(n)(f(n+1) - f(n))$$

$$= U(b)f(b) - U(a)f(a) - \sum_{n=a}^{b-1} \int_{n}^{n+1} U(t)f'(t)dt$$

$$= U(b)f(b) - U(a)f(a) - \int_{a}^{b} U(t)f'(t)dt.$$

Lemma 2. Let

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

be the gamma function.

1. If x > 0, then $\Gamma(x) \geqslant \frac{1}{e}$. 2. If $x \in [1, 2]$, then $\Gamma(x) \leqslant 1$.

Proof.

If $x \in (0,1)$, then we have

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt \geqslant \int_0^1 t^{x-1} e^{-t} dt \geqslant \frac{1}{e}.$$

If $x \ge 1$, then

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt \geqslant \int_1^\infty t^{x-1} e^{-t} dt \geqslant \int_1^\infty e^{-t} dt = \frac{1}{e}.$$

2. Assume that x > 0 and compute the second derivative of Γ :

$$\Gamma''(x) = \frac{d^2}{dx^2} \int_0^\infty t^{x-1} e^{-t} dt = \int_0^\infty \frac{\partial^2}{\partial x^2} t^{x-1} e^{-t} dt = \int_0^\infty t^{x-1} \log^2(t) e^{-t} dt > 0.$$

Thus, Γ is convex for x > 0. Noting that $\Gamma(1) = \Gamma(2) = 1$, we get the desired result.

Theorem 3 (Dirichlet's theorem). Let α and $Q \ge 1$ be real numbers. Then there exist integers a and q such that $1 \le q \le Q$, (a,q) = 1 and

$$\left|\alpha - \frac{a}{q}\right| < \frac{1}{qQ} \leqslant \frac{1}{q^2}.$$

Proof. Let N = [Q]. Suppose that $\{q\alpha\} \in [0, \frac{1}{N+1})$ for some positive integer $q \leq N$. Taking $a = [q\alpha]$, we get

$$0 \leqslant \{q\alpha\} = q\alpha - [q\alpha] = q\alpha - a < \frac{1}{N+1}$$

and

$$\left|\alpha - \frac{a}{q}\right| < \frac{1}{q(N+1)} < \frac{1}{qQ} \leqslant \frac{1}{q^2}.$$

Similarly, if $\{q\alpha\} \in [\frac{N}{N+1}, 1)$ for some positive integer $q \leq N$ and if $a = [q\alpha] + 1$, then

$$\frac{N}{N+1} \leqslant \{q\alpha\} = q\alpha - a + 1 < 1.$$

This implies that

$$\left|\alpha - \frac{a}{q}\right| < \frac{1}{q(N+1)} < \frac{1}{qQ} \leqslant \frac{1}{q^2}.$$

Now suppose that $\{q\alpha\} \in [\frac{1}{N+1}, \frac{N}{N+1})$ for all $q=1,\ldots,N$. This means that there are N numbers lying in N-1 intervals $[\frac{i}{N+1}, \frac{i+1}{N+1})$ $(i=1,\ldots,N-1)$. By the pigeonhole principle, there exist integers $i \in [1,N-1]$ and $1 \leqslant q_1 < q_2 \leqslant N$ such that

$$\{q_1\alpha\}, \ \{q_2\alpha\} \in \left[\frac{i}{N+1}, \frac{i+1}{N+1}\right).$$

Let $q = q_2 - q_1 \in [1, N - 1]$ and $a = [q_2 \alpha] - [q_1 \alpha]$. Then

$$|q\alpha - a| = |(q_2\alpha - [q_2\alpha]) - (q_1\alpha - [q_1\alpha])| = |\{q_2\alpha\} - \{q_1\alpha\}| < \frac{1}{N+1} < \frac{1}{Q}.$$

Definition 1. $\|\alpha\| = \min(|n - \alpha| : n \in \mathbb{Z}) = \min(\{\alpha\}, \{1 - \alpha\})$

Observation.

- 1. $\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|$ for all real numbers α and β .
- 2. $|\sin \pi \alpha| = \sin \pi \|\alpha\|$ for all real numbers α .

Fact 4. If $0 < \alpha < \frac{1}{2}$, then $2\alpha < \sin \pi \alpha < \pi \alpha$.

Definition 2. $e(t) = e^{2\pi it}$

Lemma 5. For every real number α and all integers $N_1 < N_2$

$$\left| \sum_{n=N_1+1}^{N_2} e(\alpha n) \right| \leqslant \min\left(N_2 - N_1, \frac{1}{2 \|\alpha\|} \right) \leqslant \min\left(N_2 - N_1, \frac{1}{\|\alpha\|} \right).$$

Proof. Since $|e(\alpha n)| \leq 1$, we have

$$\left| \sum_{n=N_1+1}^{N_2} e(\alpha n) \right| \leqslant N_2 - N_1.$$

If $\alpha \notin \mathbb{Z}$, then $\|\alpha\| > 0$ and $e(\alpha) \neq 1$. We have

$$\left| \sum_{n=N_1+1}^{N_2} e(\alpha n) \right| = \left| e(\alpha(N_1+1)) \sum_{n=0}^{N_2-N_1-1} e(\alpha)^n \right|$$

$$= \left| \frac{e(\alpha(N_2-N_1))-1}{e(\alpha)-1} \right| \leqslant \frac{2}{|e(\alpha)-1|}$$

$$= \frac{2}{|e(\frac{\alpha}{2})-e(\frac{-\alpha}{2})|} = \frac{2}{|2i\sin\pi\alpha|}$$

$$= \frac{1}{|\sin\pi\alpha|} = \frac{1}{\sin\pi||\alpha||} \leqslant \frac{1}{2||\alpha||} \leqslant \frac{1}{||\alpha||}$$

Lemma 6. Let α be a real number and let q and a be integers such that $q \ge 1$ and (a,q) = 1. If $\left| \alpha - \frac{a}{q} \right| \le \frac{1}{q^2}$, then

$$\sum_{1 \leqslant r \leqslant \frac{q}{2}} \frac{1}{\|\alpha r\|} \leqslant 6q \log q$$

Proof. The lemma holds for q = 1, so we can assume that $q \ge 2$. For each integer r there exist integers $s(r) \in [0, \frac{q}{2}]$ and m(r) such that

$$\frac{s(r)}{q} = \left\| \frac{ar}{q} \right\| = \pm \left(\frac{ar}{q} - m(r) \right).$$

Since (a,q)=1, it follows that s(r)=0 if and only if $r\equiv 0\pmod q$ and therefore $s(r)\in [1,\frac{q}{2}]$ if $r\in [1,\frac{q}{2}]$. Let $\alpha-\frac{a}{q}=\frac{\theta}{q^2}$, where $-1\leqslant \theta\leqslant 1$. Then

$$\alpha r = \frac{ar}{q} + \frac{\theta r}{q^2} = \frac{ar}{q} + \frac{\theta'}{2q},$$

where

$$|\theta'| = \left| \frac{2\theta r}{q} \right| \leqslant |\theta| \leqslant 1.$$

From the triangle inequality we have

$$\|\alpha r\| = \left\| \frac{ar}{q} + \frac{\theta'}{2q} \right\|$$

$$= \left\| m(r) \pm \frac{s(r)}{q} + \frac{\theta'}{2q} \right\|$$

$$= \left\| \frac{s(r)}{q} \pm \frac{\theta'}{2q} \right\|$$

$$\geqslant \left\| \frac{s(r)}{q} \right\| - \left\| \frac{\theta'}{2q} \right\|$$

$$\geqslant \frac{s(r)}{q} - \frac{1}{2q}.$$

Let $1 \leqslant r_1 \leqslant r_2 \leqslant \frac{q}{2}$. We will show that $s(r_1) = s(r_2)$ if and only if $r_1 = r_2$. If

$$\frac{s(r_1)}{a} = \frac{s(r_2)}{a},$$

then

$$\pm \left(\frac{ar_1}{q} - m(r_1)\right) = \pm \left(\frac{ar_2}{q} - m(r_2)\right)$$

and

$$ar_1 \equiv \pm ar_2 \pmod{q}$$
.

Since (a,q)=1, we have $r_1\equiv \pm r_2\pmod q$ and $r_1=r_2$ as $1\leqslant r_1\leqslant r_2\leqslant \frac{q}{2}$. Thus

$$\left\{\left\|\frac{ar}{q}\right\|: 1\leqslant r\leqslant \frac{q}{2}\right\} = \left\{\frac{s(r)}{q}: 1\leqslant r\leqslant \frac{q}{2}\right\} = \left\{\frac{s}{q}: 1\leqslant s\leqslant \frac{q}{2}\right\}.$$

and

$$\sum_{1 \leqslant r \leqslant \frac{q}{2}} \frac{1}{\|\alpha r\|} \leqslant \sum_{1 \leqslant r \leqslant \frac{q}{2}} \frac{1}{\frac{s(r)}{q} - \frac{1}{2q}}$$

$$= 2q \sum_{1 \leqslant s \leqslant \frac{q}{2}} \frac{1}{2s - 1}$$

$$\leqslant 2q \sum_{1 \leqslant s \leqslant \frac{q}{2}} \frac{1}{s} \leqslant 2q(1 + \log \frac{q}{2})$$

$$\leqslant 2q(1 + \log q) \leqslant 6q \log q.$$

Lemma 7. Let α be a real number. If $\left|\alpha - \frac{a}{q}\right|$, where $q \ge 1$ and (a,q) = 1, then for any $V \ge 0$ and natural number h

$$\sum_{r=1}^{q} \min \left(V, \frac{1}{\|\alpha(hq+r)\|} \right) \leqslant 8V + 24q \log q.$$

Proof. Let $\alpha = \frac{a}{q} + \frac{\theta}{q^2}$ for some $-1 \leqslant \theta \leqslant 1$. Then

$$\alpha(hq+r) = ah + \frac{ar}{q} + \frac{\theta h}{q} + \frac{\theta r}{q^2}$$

$$= ah + \frac{ar}{q} + \frac{[\theta h] + \{\theta h\}}{q} + \frac{\theta r}{q^2}$$

$$= ah + \frac{ar + [\theta h] + \delta(r)}{q},$$

where

$$-1 \leqslant \delta(r) = \{\theta h\} + \frac{\theta r}{q} < 2.$$

For r = 1, ..., q let r' be an integer such that $\{\alpha(hq + r)\} = \frac{ar + [\theta h] + \delta(r)}{q} - r'$. Let $0 \le t \le 1 - \frac{1}{q}$. If

$$t \leqslant \{\alpha(hq+r)\} \leqslant t + \frac{1}{q},$$

then

$$qt \leqslant ar - qr' + [\theta h] + \delta(r) \leqslant qt + 1.$$

It follows that

$$ar - qr' \leqslant qt - [\theta h] + 1 - \delta(r) \leqslant qt - [\theta h] + 2$$

and

$$ar - qr' \geqslant qt - [\theta h] - \delta(r) > qt - [\theta h] - 2$$

Thus, ar - qr' is in an interval containing exactly four distinct integers. If $1 \le r_1 \le r_2 \le q$ and $ar_1 - qr'_1 = ar_2 - qr'_2$, then $ar_1 \equiv ar_2 \pmod{q}$. Since (a, q) = 1, $r_1 \equiv r_2 \pmod{q}$ and $r_1 = r_2$. It follows that for any $t \in [0, 1 - \frac{1}{q}]$ there are at most four integers $r \in [1, q]$ such that

$$\{\alpha(hq+r)\}\in[t,t+\frac{1}{q}]$$

Observe that

$$\|\alpha(hq+r)\| \in [t,t+\frac{1}{q}]$$

if and only if

$$\{\alpha(hq+r)\}\in[t,t+\frac{1}{q}]\quad\text{or}\quad 1-\{\alpha(hq+r)\}\in[t,t+\frac{1}{q}].$$

The second relation is equivalent to

$$\{\alpha(hq+r)\} \in [t', t' + \frac{1}{q}]$$

for $0 \leqslant t' = 1 - \frac{1}{q} - t \leqslant 1 - \frac{1}{q}$. It follows that for any $t \in [0, 1 - \frac{1}{q}]$ there are at most eight integers $r \in [1, q]$ such that $\|\alpha(hq + r)\| \in [t, t + \frac{1}{q}]$. For $s = 0, 1, \ldots$ let $I(s) = \left[\frac{s}{q}, \frac{s+1}{q}\right]$. Let us estimate the sum

$$\sum_{r=1}^{q} \min \left(V, \frac{1}{\|\alpha(hq+r)\|} \right).$$

If $\|\alpha(hq+r)\| \in I(0)$, then we can use the fact that $\min\left(V, \frac{1}{\|\alpha(hq+r)\|}\right) \leqslant V$. If $\|\alpha(hq+r)\| \in I(s)$ for some $s \geqslant 1$, we have $\min\left(V, \frac{1}{\|\alpha(hq+r)\|}\right) \leqslant \frac{1}{\|\alpha(hq+r)\|} \leqslant \frac{q}{s}$. Since $\|\alpha(hq+r)\| \in I(s)$ for some $s < \frac{q}{2}$, we have

$$\sum_{r=1}^{q} \min\left(V, \frac{1}{\|\alpha(hq+r)\|}\right) \leqslant 8V + 8\sum_{1 \leqslant s < \frac{q}{2}} \frac{q}{s} \leqslant 8V + 24q \log q.$$

Lemma 8. Let α be a real number. If $\left|\alpha - \frac{a}{q}\right| \leqslant \frac{1}{q^2}$, where $q \geqslant 1$ and (a,q) = 1, then for any $U \geqslant 1$ and natural number n

$$\sum_{1 \le k \le U} \min\left(\frac{n}{k}, \frac{1}{\|\alpha k\|}\right) \le \left(\frac{32n}{q} + 24U + 30q\right) \log 4qU.$$

Proof. Let k = hq + r, where $1 \leqslant r \leqslant q$ and $0 \leqslant h < \frac{U}{q}$. Then

$$S = \sum_{1 \leqslant k \leqslant U} \min \left(\frac{n}{k}, \frac{1}{\|\alpha k\|} \right) \leqslant \sum_{0 \leqslant h < \frac{U}{a}} \sum_{r=1}^{q} \min \left(\frac{n}{hq+r}, \frac{1}{\|\alpha (hq+r)\|} \right).$$

If h = 0 and $1 \leqslant r \leqslant \frac{q}{2}$, then by Lemma 6 we have

$$\sum_{1 \leqslant r \leqslant \frac{q}{2}} \min \left(\frac{n}{r}, \frac{1}{\|\alpha r\|} \right) \leqslant \sum_{1 \leqslant r \leqslant \frac{q}{2}} \frac{1}{\|\alpha r\|} \leqslant 6q \log q.$$

Otherwise $\frac{1}{hq+r} < \frac{2}{(h+1)q}$ and thus

$$S \leqslant 6q \log q + \sum_{0 \leqslant h < \frac{U}{q}} \sum_{r=1}^{q} \min \left(\frac{2n}{(h+1)q}, \frac{1}{\|\alpha(hq+r)\|} \right)$$

Observe that

$$\sum_{0\leqslant h<\frac{U}{q}}\frac{1}{h+1}\leqslant 1+\log\left(\frac{U}{q}+1\right)\leqslant 2\log\left(\frac{U}{q}+2\right)\leqslant 2\log\left(U+2q\right)\leqslant 2\log 4Uq.$$

Let $V = \frac{2n}{(h+1)q}$. Then by Lemma 7

$$\begin{split} S &\leqslant 6q \log q + \sum_{0 \leqslant h < \frac{U}{q}} \sum_{r=1}^{q} \min \left(\frac{2n}{(h+1)q}, \frac{1}{\|\alpha(hq+r)\|} \right) \\ &\leqslant 6q \log q + \sum_{0 \leqslant h < \frac{U}{q}} \left(\frac{16n}{(h+1)q} + 24q \log q \right) \\ &\leqslant 6q \log q + \frac{16n}{q} \sum_{0 \leqslant h < \frac{U}{q}} \frac{1}{h+1} + 24 \left(\frac{U}{q} + 1 \right) q \log q \\ &\leqslant 6q \log q + \frac{32n}{q} \log 4qU + 24U \log q + 24q \log q \\ &\leqslant \left(\frac{32n}{q} + 24U + 30q \right) \log 4qU. \end{split}$$

Lemma 9. Let α be a real number. If $\left|\alpha - \frac{a}{q}\right| \leqslant \frac{1}{q^2}$, where $q \geqslant 1$ and (a,q) = 1, then for any real numbers U and n we have

$$\sum_{1 \le k \le U} \min\left(n, \frac{1}{\|\alpha k\|}\right) \leqslant \left(30q + 24U + 8n + \frac{8Un}{q}\right) \max(1, \log q)$$

Proof. We proceed as in the previous proof.

$$\sum_{1 \leqslant k \leqslant U} \min \left(n, \frac{1}{\|\alpha k\|} \right)$$

$$\leqslant \sum_{0 \leqslant h < \frac{U}{q}} \sum_{r=1}^{q} \min \left(n, \frac{1}{\|\alpha (hq+r)\|} \right)$$

$$\leqslant 6q \log q + \sum_{0 \leqslant h < \frac{U}{q}} (8n + 24q \log q)$$

$$\leqslant 6q \log q + \left(\frac{U}{q} + 1 \right) (8n + 24q \log q)$$

$$= 30q \log q + 24U \log q + \frac{8Un}{q} + 8n$$

$$\leqslant \left(30q + 24U + 8n + \frac{8Un}{q} \right) \max(1, \log q).$$

Definition 3.

$$\Delta_d(f)(x) = f(x+d) - f(x)$$

$$\Delta_{d_l,\dots,d_1} = \Delta_{d_l} \circ \Delta_{d_{l-1}} \circ \dots \circ \Delta_{d_1}$$

Lemma 10. Let N_1, N_2, N be integers such that $N_1 < N_2$ and $0 \le N_2 - N_1 \le N$. Let f be a real-valued function and

$$S(f) = \sum_{n=N_1+1}^{N_2} e(f(n)).$$

Then

$$|S(f)|^2 = \sum_{|d| < N} S_d(f),$$

where

$$S_d(f) = \sum_{n \in I(d)} e(\Delta_d(f)(n))$$
 and $I(d) = [N_1 + 1 - d, N_2 - d] \cap [N_1 + 1, N_2].$

Proof.

$$|S(f)|^{2} = S(f)\overline{S(f)}$$

$$= \sum_{m=N_{1}+1}^{N_{2}} e(f(m)) \sum_{n=N_{1}+1}^{N_{2}} \overline{e(f(n))}$$

$$= \sum_{n=N_{1}+1}^{N_{2}} \sum_{m=N_{1}+1}^{N_{2}} e(f(m) - f(n))$$

$$= \sum_{n=N_{1}+1}^{N_{2}} \sum_{d=N_{1}+1-n}^{N_{2}-n} e(f(n+d) - f(n))$$

$$= \sum_{n=N_{1}+1}^{N_{2}} \sum_{d=N_{1}+1-n}^{N_{2}-n} e(\Delta_{d}(f)(n))$$

Note that

$$\begin{cases} N_1 + 1 \leqslant n \leqslant N_2 \\ N_1 + 1 - n \leqslant d \leqslant N_2 - n \end{cases} \Leftrightarrow \begin{cases} N_1 + 1 \leqslant n \leqslant N_2 \\ N_1 + 1 - d \leqslant n \leqslant N_2 - d \\ -(N_2 - N_1 - 1) \leqslant d \leqslant N_2 - N_1 - 1 \end{cases}$$

and $N_2 - N_1 - 1 < N$. Therefore

$$|S(f)|^{2} = \sum_{d=-(N_{2}-N_{1}-1)}^{N_{2}-N_{1}-1} \sum_{n \in I(d)} e(\Delta_{d}(f)(n))$$

$$= \sum_{|d| < N} \sum_{n \in I(d)} e(\Delta_{d}(f)(n))$$

$$= \sum_{|d| < N} S_{d}(f).$$

Lemma 11. Let N_1, N_2, N, l be integers such that $l \ge 1$, $N_1 < N_2$ and $0 \le N_2 - N_1 \le N$. Let f be a real-valued function and

$$S(f) = \sum_{n=N_1+1}^{N_2} e(f(n)).$$

Then

$$|S(f)|^{2^l} \leqslant (2N)^{2^l-l-1} \sum_{|d_1| < N} \cdots \sum_{|d_l| < N} S_{d_l,\dots,d_1}(f),$$

where

$$S_{d_l,\dots,d_1}(f) = \sum_{n \in I(d_l,\dots,d_1)} e(\Delta_{d_l,\dots,d_1}(f)(n))$$

and $I(d_1, \ldots, d_1)$ is some interval of consecutive integers contained in $[N_1 + 1, N_2]$.

Proof. By induction on l. The case l=1 has been proven in the previous lemma. Assume that it is true for some $l \ge 1$. Using the inductive hypothesis and the Cauchy-Schwarz inequality we get

$$|S(f)|^{2^{l+1}} = \left(|S(f)|^{2^{l}}\right)^{2}$$

$$\leqslant \left((2N)^{2^{l-l-1}} \sum_{|d_{1}| < N} \cdots \sum_{|d_{l}| < N} |S_{d_{l},\dots,d_{1}}(f)|\right)^{2}$$

$$= (2N)^{2^{l+1}-2l-2} \left(\sum_{|d_{1}| < N} \cdots \sum_{|d_{l}| < N} |S_{d_{l},\dots,d_{1}}(f)|\right)^{2}$$

$$\leqslant (2N)^{2^{l+1}-2l-2} (2N)^{l} \sum_{|d_{1}| < N} \cdots \sum_{|d_{l}| < N} |S_{d_{l},\dots,d_{1}}(f)|^{2}$$

By the previous lemma there is an interval

$$I(d_{l+1}, d_l, \dots, d_1) \subseteq I(d_l, \dots, d_1) \subseteq [N_1 + 1, N_2]$$

such that

$$|S_{d_l,\dots,d_1}(f)|^2 = \sum_{|d_{l+1}| < N} S_{d_{l+1},d_l,\dots,d_1}(f),$$

and thus

$$|S(f)|^{2^{l+1}} \le (2N)^{2^{l+1}-(l+1)-1} \sum_{|d_1| < N} \cdots \sum_{|d_l| < N} \sum_{|d_{l+1}| < N} S_{d_{l+1},d_l,\dots,d_1}(f).$$

Lemma 12. Let $k \ge 1$ and $1 \le l \le k$. Then

$$\Delta_{d_{l},\dots,d_{1}}(x^{k}) = \sum_{\substack{j_{1}+\dots+j_{l}+j=k\\j\geqslant 0,j_{1},\dots,j_{l}\geqslant 1}} \frac{k!}{j!j_{1}!\dots j_{l}!} d_{1}^{j_{1}}\dots d_{l}^{j_{l}}x^{j} = d_{1}\dots d_{l}p_{k-l}(x),$$

where p_{k-l} is a of polynomial degree k-l with leading coefficient $\frac{k!}{(k-l)!}$. If d_1, \ldots, d_l are integers, then p_{k-l} has integer coefficients.

Proof. By induction on l. For l = 1 we have

$$\Delta_{d_1}(x^k) = (x+d_1)^k - x^k = \sum_{j=0}^{k-1} \binom{k}{j} d_1^{k-j} x^j = \sum_{\substack{j_1+j=k\\j\geqslant 0, j_1\geqslant 1}} \frac{k!}{j!j_1!} d_1^{j_1} x^j.$$

Let $1 \leq l \leq k-1$ and assume that the formula holds for l. Then

$$\Delta_{d_{l+1},d_{l},\dots,d_{1}}(x^{k}) = \Delta_{d_{l+1}} \left(\Delta_{d_{l},\dots,d_{1}}(x^{k}) \right)$$

$$= \sum_{\substack{j_{1}+\dots+j_{l}+m=k\\m\geqslant 0,j_{1},\dots,j_{l}\geqslant 1}} \frac{k!}{m!j_{1}!\dots j_{l}!} d_{1}^{j_{1}}\dots d_{l}^{j_{l}} \Delta_{d_{l+1}}(x^{m})$$

$$= \sum_{\substack{j_{1}+\dots+j_{l}+m=k\\m,j_{1},\dots,j_{l}\geqslant 1}} \frac{k!}{m!j_{1}!\dots j_{l}!} d_{1}^{j_{1}}\dots d_{l}^{j_{l}} \sum_{\substack{j_{l+1}+j=m\\j\geqslant 0,j_{l+1}\geqslant 1}} \frac{m!}{j!j_{l+1}!} d_{l+1}^{j_{l+1}}x^{j}$$

$$= \sum_{\substack{j_{1}+\dots+j_{l}+m=k\\m,j_{1},\dots,j_{l}\geqslant 1}} \sum_{\substack{j_{l+1}+j=m\\j\geqslant 0,j_{l+1}\geqslant 1}} \frac{k!}{j!j_{1}!\dots j_{l}!j_{l+1}!} d_{1}^{j_{1}}\dots d_{l}^{j_{l}} d_{l+1}^{j_{l+1}}x^{j}$$

$$= \sum_{\substack{j_{1}+\dots+j_{l}+j_{l+1}+j=k\\j\geqslant 0,j_{1},\dots,j_{l},j_{l+1}\geqslant 1}} \frac{k!}{j!j_{1}!\dots j_{l}!j_{l+1}!} d_{1}^{j_{1}}\dots d_{l}^{j_{l}} d_{l+1}^{j_{l+1}}x^{j}.$$

Since the multinomial coefficients $\frac{k!}{j!j_1!\cdots j_l!}$ are integers, it follows that p_{k-l} has integer coefficients, provided that d_1,\ldots,d_l are integers.

Corollary. Let $f(x) = \alpha x^k + \cdots + \alpha_0$. Then

$$\Delta_{d_{k-1},\dots,d_1}(f)(x) = d_1 \cdots d_{k-1} k! \alpha x + \beta.$$

Lemma 13. Let $1 \leq l \leq k$. If $|d_1|, \ldots, |d_l|, x \leq P$, then $\Delta_{d_l, \ldots, d_1}(x^k) \leq (l+1)^k P^k$.

Proof. By Lemma 12 we have

$$|\Delta_{d_{l},\dots,d_{1}}(x^{k})| = \left| \sum_{\substack{j_{1}+\dots+j_{l}+j=k\\j\geqslant 0,j_{1},\dots,j_{l}\geqslant 1}} \frac{k!}{j!j_{1}!\dots j_{l}!} d_{1}^{j_{1}}\dots d_{l}^{j_{l}} x^{j} \right|$$

$$\leq \sum_{\substack{j_{1}+\dots+j_{l}+j=k\\j\geqslant 0,j_{1},\dots,j_{l}\geqslant 1}} \frac{k!}{j!j_{1}!\dots j_{l}!} P^{j_{1}+\dots+j_{l}+j}$$

$$\leq \sum_{\substack{j_{1}+\dots+j_{l}+j=k\\j,j_{1},\dots,j_{l}\geqslant 0}} \frac{k!}{j!j_{1}!\dots j_{l}!} P^{k}$$

$$= (l+1)^{k} P^{k}.$$

Lemma 14. Let d(n) be the number of divisors of n. Then for any $\varepsilon > 0$ $d(n) \leq$ $d_{\varepsilon}n^{\varepsilon}$, where $d_{\varepsilon} = \frac{e^{\frac{1}{\varepsilon}}2^{1+\varepsilon}}{\varepsilon}$

Proof. Let $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, where p_1, \dots, p_k are primes. Then

$$d(n) = (\alpha_1 + 1) \cdots (\alpha_k + 1)$$

and

$$\frac{d(n)}{n^{\varepsilon}} = \prod_{j=1}^{k} \frac{\alpha_j + 1}{p_j^{\varepsilon \alpha_j}}$$

Now we can divide factors of the above product into two classes: 1. $p_j \geqslant e^{\frac{1}{\varepsilon}}$. Then $p_j^{\varepsilon \alpha_j} \geqslant e^{\alpha_j} \geqslant 1 + \alpha_j$, so $\frac{\alpha_j + 1}{p_j^{\varepsilon \alpha_j}} \leqslant 1$. Thus, the overall contribution of such factors is less then 1.

2. $p_i < e^{\frac{1}{\varepsilon}}$. Let $f(x) = \frac{x+1}{2\varepsilon x}$ for $x \ge 0$. Then

$$f'(x) = \frac{1 - \varepsilon(x+1)\log(2)}{2^{\varepsilon x}}$$

Solving f'(x) = 0 we get $x = \frac{1}{\varepsilon \log(2)} - 1$. It follows that

$$f\left(\frac{1}{\varepsilon \log(2)} - 1\right) = \frac{2^{\varepsilon}}{e\varepsilon \log(2)}$$

is the maximum of f and for every $1 \leq j \leq k$

$$\frac{\alpha_j+1}{p_i^{\varepsilon\alpha_j}}\leqslant \frac{\alpha_j+1}{2^{\varepsilon\alpha_j}}\leqslant \frac{2^\varepsilon}{e\varepsilon\log(2)}.$$

If we want to bound that product from above we can neglect factors of class 1 and estimate the number of factors of class 2 by $e^{\frac{1}{\varepsilon}}$. Thus

$$d(n) \leqslant e^{\frac{1}{\varepsilon}} \frac{2^{\varepsilon}}{e\varepsilon \log(2)} n^{\varepsilon} \leqslant \frac{e^{\frac{1}{\varepsilon}} 2^{\varepsilon}}{\varepsilon} n^{\varepsilon} = \frac{d_{\varepsilon}}{2} n^{\varepsilon}.$$

However, we double the constant so that this estimate is still valid if we count both positive and negative divisors.

Lemma 15. Let $k \ge 1$, $K = 2^{k-1}$ and $\varepsilon \ge 0$. Let $f(x) = \alpha x^k + \cdots + \alpha_0$ be a polynomial with real coefficients and

$$S(f) = \sum_{n=1}^{N} e(f(n)).$$

Then

$$\left| S(f) \right|^K \leqslant k(2N)^{K-1} + 2^{K-1} N^{K-k} d_{\frac{\varepsilon}{k^2}}^k (k!N)^{\varepsilon} \sum_{m=1}^{k!N^{k-1}} \min \left(N, \frac{1}{\|m\alpha\|} \right).$$

Proof. Applying Lemma 11 with $N_1 = 0$, $N_2 = N$, l = k - 1 we get

$$|S(f)|^K \leq (2N)^{K-k} \sum_{|d_1| < N} \cdots \sum_{|d_{k-1}| < N} |S_{d_{k-1},\dots,d_1}(f)|,$$

where

$$S_{d_{k-1},\dots,d_1}(f) = \sum_{n \in I(d_{k-1},\dots,d_1)} e(\Delta_{d_{k-1},\dots,d_1}(f)(n))$$

and $I(d_{k-1}, \ldots, d_1) = [N_1 + 1, N_2] \subseteq [1, N]$. Since |e(t)| = 1, we have $|S_{d_{k-1}, \ldots, d_1}(f)| \le N$. By Lemma 12

$$\Delta_{d_{k-1},\dots,d_1}(f)(x) = d_1 \cdots d_{k-1} k! \alpha x + \beta = \lambda x + \beta.$$

and by Lemma 5

$$|S_{d_{k-1},\dots,d_1}(f)| = \left| \sum_{n \in I(d_{k-1},\dots,d_1)} e(\Delta_{d_{k-1},\dots,d_1}(f)(n)) \right|$$

$$= \left| \sum_{n=N_1+1}^{N_2} e(\lambda n + \beta) \right|$$

$$= \left| \sum_{n=N_1+1}^{N_2} e(\lambda n) \right|$$

$$\leq \frac{1}{\|\lambda\|} = \frac{1}{\|d_1 \cdots d_{k-1} k! \alpha\|},$$

so we have

$$\left| S_{d_{k-1},\dots,d_1}(f) \right| \leqslant \min \left(N, \frac{1}{\|d_1 \cdots d_{k-1} k! \alpha\|} \right).$$

Therefore

$$|S(f)|^{K} \leqslant (2N)^{K-k} \sum_{|d_{1}| < N} \cdots \sum_{|d_{k-1}| < N} |S_{d_{k-1},\dots,d_{1}}(f)|$$

$$\leqslant (2N)^{K-k} \sum_{|d_{1}| < N} \cdots \sum_{|d_{k-1}| < N} \min\left(N, \frac{1}{\|d_{1} \cdots d_{k-1} k! \alpha\|}\right).$$

If $d_1 \cdots d_{k-1} = 0$, then min $\left(N, \frac{1}{\|d_1 \cdots d_{k-1} k! \alpha\|}\right) = N$. There are fewer than $(k-1)(2N)^{k-2}$ choices of d_1, \ldots, d_{k-1} such that $d_1 \cdots d_{k-1} = 0$, so

$$|S(f)|^{K} \leqslant (2N)^{K-k}(k-1)(2N)^{k-2}N$$

$$+ (2N)^{K-k} \sum_{1 \leqslant |d_{1}| < N} \cdots \sum_{1 \leqslant |d_{k-1}| < N} \min\left(N, \frac{1}{\|d_{1} \cdots d_{k-1}k!\alpha\|}\right)$$

$$\leqslant k(2N)^{K-1} + 2^{K-1}N^{K-k} \sum_{1 \leqslant d_{1} \leqslant N} \cdots \sum_{1 \leqslant d_{k-1} \leqslant N} \min\left(N, \frac{1}{\|d_{1} \cdots d_{k-1}k!\alpha\|}\right).$$

Since by Lemma 14 $d(m) \leq d_{\varepsilon}m^{\varepsilon}$, it follows that the number of choices of d_1, \ldots, d_{k-1} such that $m = d_1 \cdots d_{k-1}k!$ is at most $d(m)^{k-1} \leq (d_{\varepsilon}m^{\varepsilon})^{k-1}$. In our case $1 \leq d_1 \cdots d_{k-1}k! \leq k! N^{k-1}$, so

$$d(m)^{k-1}\leqslant (d_{\varepsilon}m^{\varepsilon})^{k-1}\leqslant d_{\varepsilon}^km^{\varepsilon k}=d_{\frac{\varepsilon}{k}}^km^{\varepsilon}\leqslant d_{\frac{\varepsilon}{k}}^k(k!N^k)^{\varepsilon}=d_{\frac{\varepsilon}{k^2}}^kk!^{\frac{\varepsilon}{k}}N^{\varepsilon}\leqslant d_{\frac{\varepsilon}{k^2}}^k(k!N)^{\varepsilon}.$$

Therefore

$$|S(f)|^{K} \leqslant k(2N)^{K-1} + 2^{K-1}N^{K-k} \sum_{1 \leqslant d_{1} \leqslant N} \cdots \sum_{1 \leqslant d_{k-1} \leqslant N} \min\left(N, \frac{1}{\|d_{1} \cdots d_{k-1}k!\alpha\|}\right)$$

$$\leqslant k(2N)^{K-1} + 2^{K-1}N^{K-k}d_{\frac{\varepsilon}{k^{2}}}^{k}(k!N)^{\varepsilon} \sum_{m=1}^{k!N^{k-1}} \min\left(N, \frac{1}{\|m\alpha\|}\right).$$

2.1. Weyl's inequality

Theorem 16 (Weyl's inequality). For $k \ge 2$ let $f(x) = \alpha x^k + \cdots + \alpha_0$ be a polynomial with real coefficients and suppose that there exist integers a and q such that $q \ge 1$, (a,q) = 1 and $\left|\alpha - \frac{a}{q}\right| \le \frac{1}{q^2}$. Let $K = 2^{k-1}$, $\varepsilon > 0$ and

$$S(f) = \sum_{n=1}^{N} e(f(n)).$$

Then

$$|S(f)| \leqslant 2N^{1+\varepsilon} \left(d^{k}_{\frac{\varepsilon}{2k^{2}K}} k!^{\varepsilon} \frac{2kK}{\varepsilon} \right)^{\frac{1}{K}} \left(\frac{30q}{N^{k}} + \frac{32k!}{N} + \frac{8k!}{q} \right)^{\frac{1}{K}}.$$

Proof. Since $|S(f)| \leq N$, the result follows if $q \geq N^k$. Thus, we will assume that $1 \leq q < N^k$. Then $\log q \leq k \log N \leq \frac{k}{\varepsilon} N^{\varepsilon}$. By Lemma 15 we have

$$|S(f)|^{K} \leqslant k(2N)^{K-1} + 2^{K-1}N^{K-k}d_{\frac{\varepsilon}{k^{2}}}^{k}(k!N)^{\varepsilon} \sum_{m=1}^{k!N^{k-1}} \min\left(N, \frac{1}{\|m\alpha\|}\right).$$

By Lemma 9 we have

$$\sum_{m=1}^{k!N^{k-1}} \min\left(N, \frac{1}{\|m\alpha\|}\right) \leqslant \left(30q + 24k!N^{k-1} + 8N + \frac{8k!N^k}{q}\right) \max(1, \log q)$$

$$\leqslant \left(30q + 32k!N^{k-1} + \frac{8k!N^k}{q}\right) \frac{k}{\varepsilon} N^{\varepsilon}$$

$$= \frac{k}{\varepsilon} N^{k+\varepsilon} \left(\frac{30q}{N^k} + \frac{32k!}{N} + \frac{8k!}{q}\right).$$

Therefore

$$\begin{split} |S(f)|^{K} &\leqslant k (2N)^{K-1} + 2^{K-1} N^{K-k} d_{\frac{\varepsilon}{k^{2}}}^{k} (k!N)^{\varepsilon} \sum_{m=1}^{k!N^{k-1}} \min \left(N, \frac{1}{\|m\alpha\|} \right) \\ &\leqslant k (2N)^{K-1} + 2^{K-1} N^{K-k} d_{\frac{\varepsilon}{k^{2}}}^{k} (k!N)^{\varepsilon} \frac{k}{\varepsilon} N^{k+\varepsilon} \left(\frac{30q}{N^{k}} + \frac{32k!}{N} + \frac{8k!}{q} \right) \\ &\leqslant 2^{K} N^{K+2\varepsilon} d_{\frac{\varepsilon}{k^{2}}}^{k} k!^{\varepsilon} \frac{k}{\varepsilon} \left(\frac{30q}{N^{k}} + \frac{32k!}{N} + \frac{8k!}{q} \right) \\ &= 2^{K} N^{K+\varepsilon} d_{\frac{\varepsilon}{2k^{2}}}^{k} k!^{\frac{\varepsilon}{2}} \frac{2k}{\varepsilon} \left(\frac{30q}{N^{k}} + \frac{32k!}{N} + \frac{8k!}{q} \right) \end{split}$$

Thus, taking Kth root and replacing ε with $\frac{\varepsilon}{K}$, we get

$$|S(f)| \leqslant 2N^{1+\varepsilon} \left(d^{k}_{\frac{\varepsilon}{2k^{2}K}} k!^{\frac{\varepsilon}{2K}} \frac{2kK}{\varepsilon} \right)^{\frac{1}{K}} \left(\frac{30q}{N^{k}} + \frac{32k!}{N} + \frac{8k!}{q} \right)^{\frac{1}{K}}$$

$$\leqslant 2N^{1+\varepsilon} \left(d^{k}_{\frac{\varepsilon}{2k^{2}K}} k!^{\varepsilon} \frac{2kK}{\varepsilon} \right)^{\frac{1}{K}} \left(\frac{30q}{N^{k}} + \frac{32k!}{N} + \frac{8k!}{q} \right)^{\frac{1}{K}}.$$

The next two theorems are applications of Weyl's inequality:

Theorem 17. Let $k \ge 2$ and let $\frac{a}{q}$ be a rational number with $q \ge 1$ and (a, q) = 1. Then

$$|S(q,a)| = \left| \sum_{r=1}^{q} e\left(\frac{ax^k}{q}\right) \right| \leqslant 2\left(d_{\frac{\varepsilon}{2k^2K}}^k 60k!^{1+\varepsilon} \frac{2kK}{\varepsilon}\right)^{\frac{1}{K}} q^{1-\frac{1}{K}+\varepsilon}.$$

Proof. Let $f(x) = \frac{ax^k}{q}$, N = q and apply Weyl's inequality:

$$|S(q,a)| \leqslant 2q^{1+\varepsilon} \left(d^{k}_{\frac{\varepsilon}{2k^{2}K}} k!^{\varepsilon} \frac{2kK}{\varepsilon} \right)^{\frac{1}{K}} \left(\frac{30}{q^{k-1}} + \frac{32k!}{q} + \frac{8k!}{q} \right)^{\frac{1}{K}}$$
$$\leqslant 2 \left(d^{k}_{\frac{\varepsilon}{2k^{2}K}} 60k!^{1+\varepsilon} \frac{2kK}{\varepsilon} \right)^{\frac{1}{K}} q^{1-\frac{1}{K}+\varepsilon}.$$

Theorem 18. Let $k \geqslant 2$, $N \geqslant 2$ and let $\frac{a}{q}$ be a rational number with $q \geqslant 1$, (a,q) = 1 and $N^{\frac{1}{2}} \leqslant q \leqslant N^{k-\frac{1}{2}}$. Then there exists $\delta > 0$ such that

$$\left| \sum_{n=1}^{N} e\left(\frac{an^{k}}{q}\right) \right| \leqslant 2\left(d_{\frac{1-2\delta K}{4k^{2}K^{2}}}^{k} 60k!^{1+\frac{1}{2K}-\delta} \frac{4kK^{2}}{1-2\delta K}\right)^{\frac{1}{K}} N^{1-\delta}.$$

Proof. Apply Weyl's inequality with $f(x) = \frac{ax^k}{q}$:

$$|S(f)| \leqslant 2N^{1+\varepsilon} \left(d^{\frac{k}{2k^2K}} k!^{\varepsilon} \frac{2kK}{\varepsilon} \right)^{\frac{1}{K}} \left(\frac{30q}{N^k} + \frac{32k!}{N} + \frac{8k!}{q} \right)^{\frac{1}{K}}$$

$$\leqslant 2N^{1+\varepsilon} \left(d^{\frac{k}{2k^2K}} k!^{\varepsilon} \frac{2kK}{\varepsilon} \right)^{\frac{1}{K}} \left(\frac{30}{N^{\frac{1}{2}}} + \frac{32k!}{N} + \frac{8k!}{N^{\frac{1}{2}}} \right)^{\frac{1}{K}}$$

$$\leqslant 2 \left(d^{\frac{k}{2k^2K}} 60k!^{1+\varepsilon} \frac{2kK}{\varepsilon} \right)^{\frac{1}{K}} N^{1-\frac{1}{2K}+\varepsilon}$$

$$= 2 \left(d^{\frac{k}{1-2\delta K}} 60k!^{1+\frac{1}{2K}-\delta} \frac{4kK^2}{1-2\delta K} \right)^{\frac{1}{K}} N^{1-\delta}$$

for any $\delta < \frac{1}{2K}$, if we take $\varepsilon = \frac{1}{2K} - \delta$.

2.2. Hua's lemma

Theorem 19 (Hua's lemma). For $k \ge 2$ let $T(\alpha) = \sum_{n=1}^{N} e(\alpha n^{k})$. Then

$$\int_0^1 |T(\alpha)|^{2^k} d\alpha \leqslant h_k N^{2^k - k + \varepsilon}, \quad \text{where} \quad h_k = 2^{2^{k+1}} d_{\frac{\varepsilon}{k^2}}^k k^k.$$

Proof. We will prove by induction on j that

$$\int_0^1 |T(\alpha)|^{2^j} d\alpha \leqslant h_j N^{2^j - j + \varepsilon}, \quad \text{where} \quad h_j = 2^{2^{j+1}} d_{\frac{\varepsilon}{k^2}}^k k^j.$$

for $j = 1, \dots, k$. If j = 1, we have

$$\int_0^1 |T(\alpha)|^2 d\alpha = \int_0^1 T(\alpha)T(-\alpha)d\alpha = \sum_{n=1}^N \sum_{m=1}^N \int_0^1 e(\alpha(n^k - m^k))d\alpha = N.$$

Let $1 \leq j \leq k-1$ an assume that it is true for j. Let $f(x) = \alpha x^k$. By Lemma 12 $\Delta_{d_j,\dots,d_1}(f)(x) = \alpha d_j \cdots d_1 p_{k-j}(x)$, where p_{k-j} is a polynomial of degree k-j with

integer coefficients. Applying Lemma 11 with $N_1 = 0$, $N_2 = N$ and $S(f) = T(\alpha)$ we get

$$|T(\alpha)|^{2^{j}} \leqslant (2N)^{2^{j}-j-1} \sum_{|d_{1}| < N} \cdots \sum_{|d_{j}| < N} \sum_{n \in I(d_{j},\dots,d_{1})} e(\Delta_{d_{j},\dots,d_{1}}(f)(n))$$

$$\leqslant (2N)^{2^{j}-j-1} \sum_{|d_{1}| < N} \cdots \sum_{|d_{j}| < N} \sum_{n \in I(d_{j},\dots,d_{1})} e(\alpha d_{j} \cdots d_{1} p_{k-j}(n)),$$

where $I(d_j, \ldots, d_1)$ is an interval of consecutive integers contained in [1, N]. Thus

$$|T(\alpha)|^{2^j} \leqslant (2N)^{2^j - j - 1} \sum_{d} r(d) e(\alpha d), \tag{2}$$

where r(d) is the number of choices of $|d_1|, \ldots, |d_j| \leq N$ and $n \in I(d_j, \ldots, d_1)$ such that $d = d_1 \cdots d_j p_{k-j}(n)$. Since the degree of p_{k-j} is k-j, it follows that if $d \neq 0$, then by Lemma 13 $|d| \leq (j+1)^k N^k \leq k^k N^k$ and by Lemma 14 $d(n) \leq d_{\varepsilon} n^{\varepsilon}$, so

$$r(d) \leqslant d(d)^{j+1}(k-j) \leqslant (d_{\varepsilon} |d|^{\varepsilon})^k k = d_{\varepsilon}^k |d|^{\varepsilon k} k \leqslant d_{\varepsilon}^k (kN)^{\varepsilon k^2} k = d_{\frac{\varepsilon}{k^2}}^k (kN)^{\varepsilon} k.$$

If d=0, we get

$$r(0) \leqslant j(2N)^{j-1}N + (k-j)(2N)^{j} \leqslant k(2N)^{j}.$$

On the other hand

$$|T(\alpha)|^{2^{j}} = T(\alpha)^{2^{j-1}}T(-\alpha)^{2^{j-1}}$$

$$= \left(\sum_{x=1}^{N} e(\alpha x^{k})\right)^{2^{j-1}} \left(\sum_{y=1}^{N} e(\alpha y^{k})\right)^{2^{j-1}}$$

$$= \sum_{x_{1}=1}^{N} \cdots \sum_{x_{2^{j-1}}=1}^{N} \sum_{y_{1}=1}^{N} \cdots \sum_{y_{2^{j-1}}=1}^{N} e\left(\alpha \left(\sum_{i=1}^{2^{j-1}} x_{i}^{k} - \sum_{i=1}^{2^{j-1}} y_{i}^{k}\right)\right)$$

$$= \sum_{d} s(d)e(-\alpha d), \tag{3}$$

where s(d) is the number of representations of d in the form $d = \sum_{i=1}^{2^{j-1}} y_i^k - \sum_{i=1}^{2^{j-1}} x_i^k$ with $1 \le x_i, y_i \le N$. Then

$$\sum_{d} s(d) = |T(0)|^{2^{j}} = N^{2^{j}}.$$

By the inductive hypothesis

$$s(0) = \int_0^1 |T(\alpha)|^{2^j} d\alpha \leqslant h_j N^{2^j - j + \varepsilon}.$$

From (2) and (3) follows that

$$\begin{split} \int_0^1 |T(\alpha)|^{2^{j+1}} \, d\alpha &= \int_0^1 |T(\alpha)|^{2^j} \, |T(\alpha)|^{2^j} \, d\alpha \\ &\leqslant (2N)^{2^j-j-1} \int_0^1 \sum_{d'} r(d') e(\alpha d') \sum_{d} s(d) e(-\alpha d) d\alpha \\ &= (2N)^{2^j-j-1} \sum_{d} r(d) s(d) \\ &= (2N)^{2^j-j-1} r(0) s(0) + (2N)^{2^j-j-1} \sum_{d \neq 0} r(d) s(d) \\ &\leqslant (2N)^{2^j-j-1} k(2N)^j h_j N^{2^j-j+\varepsilon} + (2N)^{2^j-j-1} d_{\frac{\varepsilon}{k^2}}^k (kN)^\varepsilon k \sum_{d \neq 0} s(d) \\ &\leqslant (2N)^{2^{j+1}-(j+1)+\varepsilon} k h_j + (2N)^{2^j-j-1} N^\varepsilon N^{2^j} d_{\frac{\varepsilon}{k^2}}^k k^{1+\varepsilon} \\ &\leqslant (2N)^{2^{j+1}-(j+1)+\varepsilon} \left(k h_j + d_{\frac{\varepsilon}{k^2}}^k k^{1+\varepsilon}\right) \\ &= 2^{2^{j+1}-(j+1)+\varepsilon} \left(k 2^{2^{j+1}} d_{\frac{\varepsilon}{k^2}}^k k^j + d_{\frac{\varepsilon}{k^2}}^k k^{1+\varepsilon}\right) N^{2^{j+1}-(j+1)+\varepsilon} \\ &\leqslant 2^{2^{j+2}} d_{\frac{\varepsilon}{k^2}}^k k^{j+1} N^{2^{j+1}-(j+1)+\varepsilon} = h_{j+1} N^{2^{j+1}-(j+1)+\varepsilon}. \end{split}$$

2.3. Infinite products

Definition 4. Let $\alpha_1, \alpha_2, \ldots$ be a sequence of complex numbers and let $p_n = \prod_{k=1}^n \alpha_k$ be the *n*th partial product. We say that the infinite product $\prod_{n=1}^{\infty} \alpha_n$ converges to $\alpha \neq 0$ if

$$\prod_{n=1}^{\infty} \alpha_n = \lim_{n \to \infty} p_n = \alpha.$$

Fact 20. If $\prod_{n=1}^{\infty} \alpha_n$ converges, then $\lim_{n\to\infty} \alpha_n = 1$.

Proof.
$$\lim_{n\to\infty} \alpha_n = \lim_{n\to\infty} \frac{p_n}{p_{n-1}} = 1.$$

Lemma 21. Let $a_n \ge 0$ for all $n \ge 1$. Then $\prod_{n=1}^{\infty} (1 + a_n)$ converges if and only if $\sum_{n=1}^{\infty} a_n$ converges.

Proof. Let $s_n = \sum_{k=1}^n a_k$ and $p_n = \prod_{k=1}^n (1 + a_k)$. Observe that

$$0 \leqslant \sum_{k=1}^{n} a_k < \prod_{k=1}^{n} (1 + a_k) \leqslant \prod_{k=1}^{n} e^{a_k} = e^{\sum_{k=1}^{n} a_k},$$

that is

$$0 \leqslant s_n < p_n \leqslant e^{s_n}.$$

Since both sequences are increasing, it follows that $\{s_n\}$ converges if and only if $\{p_n\}$ converges.

Definition 5. We say that $\prod_{n=1}^{\infty} (1 + a_n)$ converges absolutely if $\prod_{n=1}^{\infty} (1 + |a_n|)$ converges.

Lemma 22. If $\prod_{n=1}^{\infty} (1+a_n)$ converges absolutely, then it converges.

Proof. Let

$$p_n = \prod_{k=1}^n (1 + a_k), \quad P_n = \prod_{k=1}^n (1 + |a_k|).$$

The sequence $\{P_n\}$ converges, so the series $\sum_{n=2}^{\infty} (P_n - P_{n-1})$ converges. Observe that

$$|p_n - p_{n-1}| = |a_n p_{n-1}| = \left| a_n \prod_{k=1}^{n-1} (1 + a_k) \right|$$

$$\leq |a_n| \prod_{k=1}^{n-1} (1 + |a_k|) = |a_n| P_{n-1} = P_n - P_{n-1}.$$

Therefore $\sum_{n=2}^{\infty} |p_n - p_{n-1}|$ converges, $\sum_{n=2}^{\infty} (p_n - p_{n-1})$ converges and so $\{p_n\}$ converges.

Now we prove that this limit is not zero. Since $\prod_{n=1}^{\infty}(1+a_n)$ converges absolutely, it follows from Lemma 21 that $\sum_{n=1}^{\infty}|a_n|$ converges and the sequence $\{a_n\}$ converges to zero. Therefore, for all sufficiently large integers n we have $|1+a_n|\geqslant \frac{1}{2}$ and $\left|-\frac{a_n}{1+a_n}\right|\leqslant 2\,|a_n|$. It follows that $\sum_{n=1}^{\infty}\left|-\frac{a_n}{1+a_n}\right|$ converges and $\prod_{n=1}^{\infty}\left(1-\frac{a_n}{1+a_n}\right)$ converges. Thus, the sequence

$$\prod_{k=1}^{n} \left(1 - \frac{a_k}{1 + a_k} \right) = \prod_{k=1}^{n} \frac{1}{1 + a_k} = \frac{1}{\prod_{k=1}^{n} (1 + a_k)} = \frac{1}{p_n}$$

converges to a finite limit and so the limit of the sequence $\{p_n\}$ is nonzero.

Definition 6. A function f is multiplicative if f(mn) = f(m)f(n) for any relatively prime positive integers m and n.

Lemma 23. Let f be a multiplicative function that is not identically zero. If the series $\sum_{n=1}^{\infty} f(n)$ converges absolutely, then

$$\sum_{n=1}^{\infty} f(n) = \prod_{p \in \mathbb{P}} \left(1 + \sum_{n=1}^{\infty} f(p^n) \right).$$

Proof. Since $\sum_{n=1}^{\infty} f(n)$ converges absolutely, the series $a_p = \sum_{n=1}^{\infty} f(p^n)$ converges absolutely for every prime p. Also, the series

$$\sum_{p \in \mathbb{P}} |a_p| = \sum_{p \in \mathbb{P}} \left| \sum_{n=1}^{\infty} f(p^n) \right|$$

$$\leqslant \sum_{p \in \mathbb{P}} \sum_{n=1}^{\infty} |f(p^n)|$$

$$\leqslant \sum_{n=1}^{\infty} |f(n)|$$

converges, so

$$\prod_{p \in \mathbb{P}} (1 + a_p) = \prod_{p \in \mathbb{P}} \left(1 + \sum_{n=1}^{\infty} f(p^n) \right)$$

converges absolutely and by Lemma 22 it converges.

Let $\varepsilon > 0$ and let N_0 be an integer such that $\sum_{n=N_0}^{\infty} |f(n)| < \varepsilon$. Let P(n) denote the greatest prime factor of n. Let $N \ge N_0$. It follows that

$$\prod_{\substack{p \in \mathbb{P} \\ p \leqslant N}} \left(1 + \sum_{n=1}^{\infty} f(p^n) \right) = \sum_{P(n) \leqslant N} f(n)$$

and

$$\left| \sum_{n=1}^{\infty} f(n) - \prod_{\substack{p \in \mathbb{P} \\ p \leqslant N}} \left(1 + \sum_{n=1}^{\infty} f(p^n) \right) \right| = \left| \sum_{n=1}^{\infty} f(n) - \sum_{P(n) \leqslant N} f(n) \right|$$

$$= \left| \sum_{P(n) > N} f(n) \right| \leqslant \sum_{P(n) > N} |f(n)| \leqslant \sum_{n > N} |f(n)| \leqslant \varepsilon.$$

3. The circle method

In this section, let $k \ge 2$, $s \ge 2^k + 1$, $N \ge 2^k$, $P = [N^{\frac{1}{k}}]$ and

$$F(\alpha) = \sum_{m=1}^{P} e(\alpha m^k).$$

Then

$$r_{k,s}(N) = \int_0^1 F(\alpha)^s e(-\alpha N) d\alpha.$$

We want to estimate this integral. In order to do this, we will use Hardy's and Littlewood's decomposition of unit interval [0, 1] into major and minor arcs.

Definition 7. Let $0 < \nu < \frac{1}{5}$ and let a and q be integers such that $1 \leqslant q \leqslant P^{\nu}$, $0 \leqslant a \leqslant q$ and (a,q)=1. Then

$$\mathfrak{M}(q,a) = \left\{ \alpha \in [0,1] : \left| \alpha - \frac{a}{q} \right| \leqslant \frac{1}{P^{k-\nu}} \right\}$$

is a major arc and

$$\mathfrak{M} = \bigcup_{1 \leqslant q \leqslant P^{\nu}} \bigcup_{\substack{a=0 \\ (a,q)=1}}^{q} \mathfrak{M}(q,a)$$

is the set of major arcs.

$$\mathfrak{m} = [0,1] \setminus \mathfrak{M}$$

is the set of minor arcs.

Lemma 24. The major arcs are pairwise disjoint.

Proof. Let $\frac{a}{q} \neq \frac{a'}{q'}$ and suppose that there exists $\alpha \in \mathfrak{M}(q,a) \cap \mathfrak{M}(q',a')$. Then $|aq'-a'q| \geqslant 1$ and

$$\begin{split} \frac{1}{P^{2\nu}} &\leqslant \frac{1}{qq'} \\ &\leqslant \left| \frac{a}{q} - \frac{a'}{q'} \right| \\ &\leqslant \left| \alpha - \frac{a}{q} \right| + \left| \alpha - \frac{a'}{q'} \right| \\ &\leqslant \frac{2}{P^{k-\nu}} \end{split}$$

which is a contradiction for $P \ge 2$ and $k \ge 2$.

Lemma 25. $\lambda(\mathfrak{M}) \leqslant \frac{2}{P^{k-3\nu}}$, where λ is the Lebesgue measure.

Proof. $\lambda(\mathfrak{M}(1,0)) = \lambda(\mathfrak{M}(1,1)) = \frac{1}{P^{k-\nu}}$ and for $q \geqslant 2$, (a,q) = 1 we have $\lambda(\mathfrak{M}(q,a)) = \frac{2}{P^{k-\nu}}$. Thus

$$\lambda(\mathfrak{M}) = \frac{2}{P^{k-\nu}} + \sum_{2 \leqslant q \leqslant P^{\nu}} \sum_{\substack{a=0 \ (a,q)=1}}^{q} \frac{2}{P^{k-\nu}} \leqslant \sum_{1 \leqslant q \leqslant P^{\nu}} \sum_{\substack{a=0 \ (a,q)=1}}^{q} \frac{2}{P^{k-\nu}}$$

$$= \frac{2}{P^{k-\nu}} \sum_{1 \leqslant q \leqslant P^{\nu}} \varphi(q) \leqslant \frac{2}{P^{k-\nu}} \sum_{1 \leqslant q \leqslant P^{\nu}} q$$

$$\leqslant \frac{2}{P^{k-\nu}} \frac{P^{\nu}(P^{\nu} + 1)}{2} \leqslant \frac{2}{P^{k-3\nu}}.$$

3.1. The minor arcs

Theorem 26. Let $k \ge 2$ and $s \ge 2^k + 1$. Then there exists $\delta_1 > 0$ such that

$$\left| \int_{\mathfrak{m}} F(\alpha)^s e(-N\alpha) d\alpha \right| \leqslant \left(2^K d_{\frac{\nu}{4k^2K^2}}^k 60k!^{1+\frac{\nu}{2K}} \frac{4kK^2}{\nu} \right)^{\frac{s-2^k}{K}} h_k' P^{s-k-\delta_1},$$

where

$$h_k' = 2^{2^{k+1}} d_{\frac{\nu}{2Kk^2}}^k k^k$$

Proof. By Dirichlet's theorem with $Q=P^{k-\nu}$, for each number α there exists a rational number $\frac{a}{q}$ with $1\leqslant q\leqslant P^{k-\nu}$ and (a,q)=1 such that

$$\left|\alpha - \frac{a}{q}\right| \leqslant \frac{1}{qP^{k-\nu}} \leqslant \min\left(\frac{1}{P^{k-\nu}}, \frac{1}{q^2}\right).$$

If $\alpha \in \mathfrak{m}$, then $\alpha \notin \mathfrak{M}(1,0) \cup \mathfrak{M}(1,1)$, so

$$\frac{1}{P^{k-\nu}} < \alpha < 1 - \frac{1}{P^{k-\nu}}$$

and $1 \leqslant a \leqslant q-1$. Suppose that $q \leqslant P^{\nu}$. Then, since $\left|\alpha - \frac{a}{q}\right| \leqslant \frac{1}{P^{k-\nu}}$, it follows that $\alpha \in \mathfrak{M}(q,a) \subseteq \mathfrak{M}$, which is a contradiction. Therefore $P^{\nu} < q \leqslant P^{k-\nu}$.

Let $K = 2^{k-1}$. By Weyl's inequality with $f(x) = \alpha x^k$, we have

$$|F(\alpha)| \leqslant 2P^{1+\varepsilon} \left(d^{\frac{\varepsilon}{2k^2K}} k!^{\varepsilon} \frac{2kK}{\varepsilon} \right)^{\frac{1}{K}} \left(\frac{30q}{P^k} + \frac{32k!}{P} + \frac{8k!}{q} \right)^{\frac{1}{K}}$$

$$\leqslant 2P^{1+\varepsilon} \left(d^{\frac{\varepsilon}{2k^2K}} k!^{\varepsilon} \frac{2kK}{\varepsilon} \right)^{\frac{1}{K}} \left(\frac{30P^{k-\nu}}{P^k} + \frac{32k!}{P} + \frac{8k!}{P^{\nu}} \right)^{\frac{1}{K}}$$

$$\leqslant 2 \left(d^{\frac{\varepsilon}{2k^2K}} 60k!^{1+\varepsilon} \frac{2kK}{\varepsilon} \right)^{\frac{1}{K}} P^{1+\varepsilon-\frac{\nu}{K}}.$$

From Hua's lemma we have

$$\left| \int_{\mathfrak{m}} F(\alpha)^{s} e(-n\alpha) d\alpha \right| = \left| \int_{\mathfrak{m}} F(\alpha)^{s-2^{k}} F(\alpha)^{2^{k}} e(-n\alpha) d\alpha \right|$$

$$\leqslant \int_{\mathfrak{m}} |F(\alpha)|^{s-2^{k}} |F(\alpha)|^{2^{k}} d\alpha$$

$$\leqslant \sup_{\alpha \in \mathfrak{m}} |F(\alpha)|^{s-2^{k}} \int_{0}^{1} |F(\alpha)|^{2^{k}} d\alpha$$

$$\leqslant \left(2 \left(d \frac{k}{2k^{2}K} 60k!^{1+\varepsilon} \frac{2kK}{\varepsilon} \right)^{\frac{1}{K}} P^{1+\varepsilon-\frac{\nu}{K}} \right)^{s-2^{k}} h_{k} P^{2^{k}-k+\varepsilon}$$

Taking $\varepsilon = \frac{\nu}{2K}$ and $\delta_1 = \frac{\nu(s-2^k)}{K} - (s-2^k+1)\varepsilon > 0$, we get

$$\left|\int_{\mathfrak{m}}F(\alpha)^{s}e(-n\alpha)d\alpha\right|\leqslant \left(2^{K}d_{\frac{\nu}{4k^{2}K^{2}}}^{k}60k!^{1+\frac{\nu}{2K}}\frac{4kK^{2}}{\nu}\right)^{\frac{s-2^{k}}{K}}h_{k}'P^{s-k-\delta_{1}}.$$

3.2. The major arcs

Lemma 27. Let $v(\beta) = \sum_{m=1}^{N} \frac{1}{k} m^{\frac{1}{k}-1} e(\beta m)$. If $|\beta| \leq \frac{1}{2}$, then

$$|v(\beta)| \le 4 \min\left(P, |\beta|^{-\frac{1}{k}}\right).$$

Proof. Let $f(x) = \frac{1}{k}x^{\frac{1}{k}-1}$ for x > 0. f is positive, decreasing and continuously differentiable. We have

$$|v(\beta)| \leqslant \sum_{m=1}^{N} \frac{1}{k} m^{\frac{1}{k}-1} \leqslant \int_{1}^{N} \frac{1}{k} x^{\frac{1}{k}-1} dx + f(1) < N^{\frac{1}{k}} \leqslant 2P.$$

If
$$|\beta| \leqslant \frac{1}{N}$$
, then $P \leqslant N^{\frac{1}{k}} \leqslant |\beta|^{-\frac{1}{k}}$ and $|v(\beta)| \leqslant 2 \min\left(P, |\beta|^{-\frac{1}{k}}\right)$.
If $\frac{1}{N} < |\beta| \leqslant \frac{1}{2}$, then $|\beta|^{-\frac{1}{k}} < N^{\frac{1}{k}} \leqslant 2P$. Let $M = \left[\frac{1}{|\beta|}\right]$. Then

$$M \leqslant \frac{1}{|\beta|} < M + 1 \leqslant N.$$

Let $U(t)=\sum_{1\leqslant n\leqslant t}$. By Lemma 5 we have $|U(t)|\leqslant \frac{1}{2||\beta||}=\frac{1}{2|\beta|}$ and by Lemma 1

$$\begin{split} \left| \sum_{m=M+1}^{N} \frac{1}{k} m^{\frac{1}{k}-1} \right| &= \left| f(N)U(N) - f(M)U(M) - \int_{M}^{N} U(t)f'(t)dt \right| \\ &\leqslant \frac{1}{2\left|\beta\right|} \left(f(N) + f(M) - \int_{M}^{N} f'(t)dt \right) \\ &= \frac{f(M)}{\left|\beta\right|} \leqslant \frac{1}{k\left|\beta\right|} \left(\frac{1}{2\left|\beta\right|} \right)^{\frac{1}{k}-1} \leqslant \frac{1}{\left|\beta\right|^{\frac{1}{k}}}. \end{split}$$

Therefore

$$|v(\beta)| \leqslant \sum_{m=1}^{M} \frac{1}{k} m^{\frac{1}{k}-1} + \sum_{m=M+1}^{N} \frac{1}{k} m^{\frac{1}{k}-1}$$

$$\leqslant M^{\frac{1}{k}} + \frac{1}{|\beta|^{\frac{1}{k}}}$$

$$\leqslant \frac{2}{|\beta|^{\frac{1}{k}}} \leqslant 4 \min\left(P, |\beta|^{-\frac{1}{k}}\right).$$

Lemma 28. Let a and q be integers such that $1 \leqslant q \leqslant P^{\nu}$, $0 \leqslant a \leqslant q$ and (a,q)=1. Let

$$S(q, a) = \sum_{r=1}^{q} e\left(\frac{ar^k}{q}\right).$$

If $\alpha \in \mathfrak{M}(q, a)$, then

$$F(\alpha) = \frac{S(q, a)}{q} v \left(\alpha - \frac{a}{q}\right) \pm 30 P^{2\nu},$$

where $\pm x$ denotes any number in the interval [-x, x].

Proof. Let $\beta = \alpha - \frac{a}{q}$. Then $|\beta| \leqslant P^{\nu-k}$ and

$$\begin{split} F(\alpha) - \frac{S(q, a)}{q} v(\beta) &= \sum_{m=1}^{P} e(\alpha m^{k}) - \frac{S(q, a)}{q} \sum_{m=1}^{N} \frac{1}{k} m^{\frac{1}{k} - 1} e(\beta m) \\ &= \sum_{m=1}^{P} e\left(\frac{am^{k}}{q}\right) e(\beta m^{k}) - \frac{S(q, a)}{q} \sum_{m=1}^{N} \frac{1}{k} m^{\frac{1}{k} - 1} e(\beta m) \\ &= \sum_{m=1}^{N} u(m) e(\beta m), \end{split}$$

where

$$u(m) = \begin{cases} e\left(\frac{am}{q}\right) - \frac{S(q,a)}{q} \frac{1}{k} m^{\frac{1}{k}-1} & \text{if } m \text{ is a } k \text{th power} \\ -\frac{S(q,a)}{q} \frac{1}{k} m^{\frac{1}{k}-1} & \text{otherwise.} \end{cases}$$

Let $y \ge 1$. Since $|S(q, a)| \le q$, we have

$$\sum_{1 \leqslant m \leqslant y} e\left(\frac{am^k}{q}\right) = \sum_{r=1}^q e\left(\frac{ar^k}{q}\right) \sum_{\substack{1 \leqslant m \leqslant y \\ m \equiv r \pmod{q}}} 1$$
$$= S(q, a) \left(\frac{y}{q} \pm 1\right)$$
$$= y \frac{S(q, a)}{q} \pm q.$$

Furthermore, for $t \ge 1$, we have

$$\begin{split} U(t) &= \sum_{1 \leqslant m \leqslant t} u(m) \\ &= \sum_{1 \leqslant m \leqslant t^{\frac{1}{k}}} e\left(\frac{am^k}{q}\right) - \frac{S(q,a)}{q} \sum_{1 \leqslant m \leqslant t} \frac{1}{k} m^{\frac{1}{k}-1} \\ &= t^{\frac{1}{k}} \frac{S(q,a)}{q} \pm q - \frac{S(q,a)}{q} (t^{\frac{1}{k}} \pm 1) = \pm 2q. \end{split}$$

Finally, by Lemma 1

$$\left| \sum_{m=1}^{N} u(m)e(\beta m) \right| = \left| e(\beta N)U(N) - 2\pi i\beta \int_{1}^{N} e(\beta t)U(t)dt \right|$$

$$\leqslant 2q + 4\pi \left| \beta \right| q \int_{1}^{N} 1dt$$

$$\leqslant q(2 + 4\pi \left| \beta \right| N)$$

$$\leqslant P^{\nu}(2 + 8\pi P^{\nu - k} P^{k}) \leqslant 30P^{2\nu}.$$

Theorem 29. Let

$$\mathfrak{S}(N,Q) = \sum_{1 \leqslant q \leqslant Q} \sum_{\substack{a=1 \\ (a,q)=1}}^{q} \left(\frac{S(q,a)}{q} \right)^{s} e\left(-\frac{Na}{q} \right)$$

and

$$J^*(N) = \int_{-P^{\nu-k}}^{P^{\nu-k}} v(\beta)^s e(-N\beta) d\beta.$$

Then

$$\int_{\mathfrak{M}} F(\alpha)^s e(-N\alpha) d\alpha = \mathfrak{S}(N, P^{\nu}) J^*(N) \pm 4^{s+2} s P^{s-k-\delta_2},$$

where $\delta_2 = 1 - 5\nu > 0$.

Proof. Let $\alpha \in \mathfrak{M}(q,a)$, $\beta = \alpha - \frac{a}{a}$ and

$$V = V(\alpha, q, a) = \frac{S(q, a)}{q} v\left(\alpha - \frac{a}{q}\right) = \frac{S(q, a)}{q} v(\beta).$$

Since $|S(q, a)| \leq q$, by Lemma 27 we have $|V| \leq |v(\beta)| \leq 4P$. Let $F = F(\alpha)$. Then $|F| \leq P$ and $|F - V| \leq 30P^{2\nu}$ by Lemma 28. It follows that

$$|F^{s} - V^{s}| = |F - V| |F^{s-1} + F^{s-2}V + \dots + FV^{s-2} + V^{s-1}|$$

$$\leq 30P^{2\nu}(4P)^{s-1}s \leq 2 \cdot 4^{s+1}sP^{s-1+2\nu}.$$

Since $\lambda(\mathfrak{M}) \leqslant 2P^{3\nu-k}$ by Lemma 25, it follows that

$$\int_{\mathfrak{M}} |F^s - V^s| \, d\alpha \leqslant 4P^{3\nu - k} 4^{s+1} s P^{s-1+2\nu} = 4^{s+2} s P^{s-k-\delta_2},$$

where $\delta_2 = 1 - 5\nu > 0$. Therefore

$$\int_{\mathfrak{M}} F(\alpha)^s e(-N\alpha) d\alpha = \int_{\mathfrak{M}} V(\alpha, q, a)^s e(-N\alpha) d\alpha \pm 4^{s+2} s P^{s-k-\delta_2}$$

$$= \sum_{1 \leqslant q \leqslant P^{\nu}} \sum_{\substack{a=0 \ (a,q)=1}}^q \int_{\mathfrak{M}(q,a)} V(\alpha, q, a)^s e(-N\alpha) d\alpha \pm 4^{s+2} s P^{s-k-\delta_2}.$$

If $q \geqslant 2$

$$\int_{\mathfrak{M}(q,a)} V(\alpha,q,a)^s e(-N\alpha) d\alpha$$

$$= \int_{\frac{a}{q}-P^{\nu-k}}^{\frac{a}{q}+P^{\nu-k}} V(\alpha,q,a)^s e(-N\alpha) d\alpha$$

$$= \int_{-P^{\nu-k}}^{P^{\nu-k}} V\left(\beta + \frac{a}{q},q,a\right)^s e\left(-N\left(\beta + \frac{a}{q}\right)\right) d\beta$$

$$= \left(\frac{S(q,a)}{q}\right)^s e\left(-\frac{Na}{q}\right) \int_{-P^{\nu-k}}^{P^{\nu-k}} v(\beta)^s e(-N\beta) d\beta$$

$$= \left(\frac{S(q,a)}{q}\right)^s e\left(-\frac{Na}{q}\right) J^*(N).$$

If
$$q = 1$$
, we have $V(\alpha, 1, 0) = v(\alpha)$ and $V(\alpha, 1, 1) = v(\alpha - 1)$. Therefore

$$\int_{\mathfrak{M}(1,0)} V(\alpha, q, a)^s e(-N\alpha) d\alpha + \int_{\mathfrak{M}(1,1)} V(\alpha, q, a)^s e(-N\alpha) d\alpha$$

$$= \int_0^{P^{\nu-k}} v(\alpha)^s e(-N\alpha) d\alpha + \int_{1-P^{\nu-k}}^1 v(\alpha-1)^s e(-N\alpha) d\alpha$$

$$= J^*(N).$$

Finally,

$$\begin{split} &\int_{\mathfrak{M}} F(\alpha)^s e(-N\alpha) d\alpha \\ &= \sum_{2\leqslant q\leqslant P^{\nu}} \sum_{\substack{a=1\\ (a,q)=1}}^q \left(\frac{S(q,a)}{q}\right) e\left(-\frac{Na}{q}\right) J^*(N) + J^*(N) \pm 4^{s+2} s P^{s-k-\delta_2} \\ &= \sum_{1\leqslant q\leqslant P^{\nu}} \sum_{\substack{a=1\\ (a,q)=1}}^q \left(\frac{S(q,a)}{q}\right) e\left(-\frac{Na}{q}\right) J^*(N) \pm 4^{s+2} s P^{s-k-\delta_2} \\ &= \mathfrak{S}(N,P^{\nu}) J^*(N) \pm 4^{s+2} s P^{s-k-\delta_2}. \end{split}$$

Theorem 30. Let

$$J(N) = \int_{-\frac{1}{2}}^{\frac{1}{2}} v(\beta)^s e(-\beta N) d\beta.$$

There exists $\delta_3 > 0$ such that $|J(N)| \leq 16P^{s-k}$ and $J^*(N) = J(N) \pm 8P^{s-k-\delta_3}$.

Proof. By Lemma 27

$$\begin{split} |J(N)| &\leqslant 8 \int_0^{\frac{1}{2}} \min \left(P, |\beta|^{-\frac{1}{k}} \right)^s d\beta \\ &= 8 \int_0^{\frac{1}{N}} \min \left(P, |\beta|^{-\frac{1}{k}} \right)^s d\beta + 8 \int_{\frac{1}{N}}^{\frac{1}{2}} \min \left(P, |\beta|^{-\frac{1}{k}} \right)^s d\beta \\ &\leqslant 8 \int_0^{\frac{1}{N}} P^s d\beta + 8 \int_{\frac{1}{N}}^{\frac{1}{2}} \beta^{-\frac{s}{k}} d\beta \\ &\leqslant 8 P^{s-k} + 8 \frac{\left(\frac{1}{2}\right)^{1-\frac{s}{k}} - \left(\frac{1}{N}\right)^{1-\frac{s}{k}}}{1 - \frac{s}{k}} \\ &= 8 P^{s-k} + 8 k \frac{N^{\frac{s}{k}-1} - 2^{\frac{s}{k}-1}}{s-k} \\ &\leqslant 16 P^{s-k} \end{split}$$

and

$$|J(N) - J^*(N)| = \int_{P^{\nu - k} \leqslant |\beta| \leqslant \frac{1}{2}} v(\beta)^s e(-N\beta) d\beta$$

$$\leqslant 2 \int_{P^{\nu - k}}^{\frac{1}{2}} |v(\beta)|^s d\beta$$

$$\leqslant 8 \int_{P^{\nu - k}}^{\frac{1}{2}} \beta^{-\frac{s}{k}} d\beta$$

$$= 8k \frac{\left(P^{k - \nu}\right)^{\frac{s}{k} - 1} - 2^{\frac{s}{k} - 1}}{s - k}$$

$$\leqslant 8P^{s - k - \delta_3},$$

where $\delta_3 = v\left(\frac{s}{k} - 1\right) > 0$.

Lemma 31. Let α and β be real numbers such that $0 < \beta < 1$ and $\alpha \geqslant \beta$. Then

$$\sum_{m=1}^{N-1} m^{\beta-1} \left(N-m\right)^{\alpha-1} = N^{\alpha+\beta-1} \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} \pm \frac{2N^{\alpha-1}}{\beta}.$$

Proof. Let $g(x) = x^{\beta-1}(N-x)^{\alpha-1}$. g is positive and differentiable on (0,N) and integrable on [0,N]. Moreover, we have

$$\int_0^N g(x)dx = \int_0^N x^{\beta - 1} (N - x)^{\alpha - 1} dx$$
$$= N^{\alpha + \beta - 1} \int_0^1 t^{\beta - 1} (1 - t)^{\alpha - 1} dt$$
$$= N^{\alpha + \beta - 1} \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}.$$

If $\alpha \geqslant 1$, then

$$g'(x) = g(x) \left(\frac{\beta - 1}{x} - \frac{\alpha - 1}{N - x} \right) < 0,$$

so g is decreasing on (0, N) and

$$\int_{1}^{N} g(x)dx < \sum_{m=1}^{N-1} g(m) < \int_{0}^{N-1} g(x)dx.$$

Therefore

$$0 < \int_0^N g(x)dx - \sum_{m=1}^{N-1} g(m)$$

$$< \int_0^1 g(x)dx$$

$$= \int_0^1 x^{\beta - 1} (N - x)^{\alpha - 1} dx$$

$$\leq N^{\alpha - 1} \int_0^1 x^{\beta - 1} dx = \frac{N^{\alpha - 1}}{\beta}.$$

If $0 < \beta \le \alpha < 1$, then g has a local minimum at

$$c = \frac{(\beta - 1)N}{\alpha + \beta - 2} \in \left[\frac{N}{2}, N\right].$$

This means that g is decreasing for $x \in (0, c)$, therefore

$$\sum_{m=1}^{[c]} g(m) < \int_0^c g(x) dx$$

and

$$\sum_{m=1}^{[c]} g(m) \geqslant \int_{1}^{[c]} g(x)dx + g([c])$$

$$\geqslant \int_{1}^{c} g(x)dx$$

$$\geqslant \int_{0}^{c} g(x)dx - \frac{N^{\alpha - 1}}{\beta}.$$

If $x \in (c, N)$, then g is increasing, so

$$\sum_{m=[c]+1}^{N-1} g(m) < \int_{c}^{N} g(x) dx$$

and

$$\sum_{m=[c]+1}^{N-1} g(m) \geqslant \int_{[c]+1}^{N-1} g(x)dx + g([c]+1)$$

$$\geqslant \int_{c}^{N-1} g(x)dx$$

$$\geqslant \int_{c}^{N} g(x)dx - \frac{N^{\beta-1}}{\alpha}.$$

Therefore

$$0 < \int_0^N g(x) dx - \sum_{m=1}^{N-1} g(m) \leqslant \frac{N^{\alpha - 1}}{\beta} + \frac{N^{\beta - 1}}{\alpha} \leqslant \frac{2N^{\alpha - 1}}{\beta}.$$

Theorem 32. If $s \ge 2$, then

$$J(N) = \frac{\Gamma\left(1 + \frac{1}{k}\right)^s}{\Gamma\left(\frac{s}{k}\right)} N^{\frac{s}{k} - 1} \pm c_s N^{\frac{s-1}{k} - 1}, \quad where \quad c_s = (5e)^{s-2} \prod_{j=1}^{s-2} \Gamma\left(\frac{j}{k}\right).$$

Proof. Let

$$J_s(N) = \int_{-\frac{1}{2}}^{\frac{1}{2}} v(\beta)^s e(-N\beta) d\beta$$

for $s \ge 2$. We will compute this integral by induction on s. Since

$$v(\beta) = \sum_{m=1}^{N} \frac{1}{k} m^{\frac{1}{k}-1} e(\beta m),$$

it follows that

$$v(\beta)^{s} = \frac{1}{k^{s}} \sum_{m_{1}=1}^{N} \cdots \sum_{m_{s}=1}^{N} (m_{1} \cdots m_{s})^{\frac{1}{k}-1} e((m_{1} + \cdots + m_{s})\beta)$$

and

$$J_s(N) = \frac{1}{k^s} \sum_{m_1=1}^N \cdots \sum_{m_s=1}^N (m_1 \cdots m_s)^{\frac{1}{k}-1} \int_{-\frac{1}{2}}^{\frac{1}{2}} e((m_1 + \cdots + m_s - N)\beta) d\beta$$
$$= \frac{1}{k^s} \sum_{\substack{m_1 + \cdots + m_s = N \\ 1 < m \le N}} (m_1 \cdots m_s)^{\frac{1}{k}-1}.$$

For s=2, if we apply Lemma 31 with $\alpha=\beta=\frac{1}{k}$, we get

$$J_2(N) = \frac{1}{k^2} \sum_{m=1}^{N-1} m^{\frac{1}{k}-1} (N-m)^{\frac{1}{k}-1}$$

$$= \frac{1}{k^2} \frac{\Gamma(\frac{1}{k})^2}{\Gamma(\frac{2}{k})} N^{\frac{2}{k}-1} \pm \frac{2}{k} N^{\frac{1}{k}-1}$$

$$= \frac{\Gamma(1+\frac{1}{k})^2}{\Gamma(\frac{2}{k})} N^{\frac{2}{k}-1} \pm N^{\frac{1}{k}-1}$$

as desired.

Let $s \ge 2$ and suppose that the theorem holds for s. Then

$$J_{s+1}(N) = \int_{-\frac{1}{2}}^{\frac{1}{2}} v(\beta)^{s+1} e(-N\beta) d\beta$$

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} v(\beta) v(\beta)^{s} e(-N\beta) d\beta$$

$$= \int_{-\frac{1}{2}}^{\frac{1}{2}} \sum_{m=1}^{N} \frac{1}{k} m^{\frac{1}{k}-1} e(\beta m) v(\beta)^{s} e(-N\beta) d\beta$$

$$= \sum_{m=1}^{N} \frac{1}{k} m^{\frac{1}{k}-1} \int_{-\frac{1}{2}}^{\frac{1}{2}} v(\beta)^{s} e(-(N-m)\beta) d\beta$$

$$= \sum_{m=1}^{N} \frac{1}{k} m^{\frac{1}{k}-1} J_{s}(N-m)$$

$$= \frac{\Gamma\left(1 + \frac{1}{k}\right)^{s}}{\Gamma\left(\frac{s}{k}\right)} \sum_{m=1}^{N-1} \frac{1}{k} m^{\frac{1}{k}-1} (N-m)^{\frac{s}{k}-1} \pm \sum_{m=1}^{N} \frac{1}{k} m^{\frac{1}{k}-1} c_{s}(N-m)^{\frac{s-1}{k}-1}.$$

Applying Lemma 31 with $\alpha = \frac{s}{k}$, $\beta = \frac{1}{k}$ to the first term and with $\alpha = \frac{s-1}{k}$, $\beta = \frac{1}{k}$ to the second term, we get

$$\sum_{m=1}^{N-1} \frac{1}{k} m^{\frac{1}{k}-1} (N-m)^{\frac{s}{k}-1} = \frac{1}{k} \frac{\Gamma\left(\frac{s}{k}\right) \Gamma\left(\frac{1}{k}\right)}{\Gamma\left(\frac{s+1}{k}\right)} N^{\frac{s+1}{k}-1} \pm 2N^{\frac{s}{k}-1}$$

and

$$\sum_{m=1}^{N-1} \frac{1}{k} m^{\frac{1}{k}-1} (N-m)^{\frac{s-1}{k}-1} = \frac{1}{k} \frac{\Gamma\left(\frac{s-1}{k}\right) \Gamma\left(\frac{1}{k}\right)}{\Gamma\left(\frac{s}{k}\right)} N^{\frac{s}{k}-1} \pm 2N^{\frac{s-1}{k}-1}$$

Putting it together, we get

$$J_{s+1}(N) = \frac{\Gamma\left(1 + \frac{1}{k}\right)^{s}}{\Gamma\left(\frac{s}{k}\right)} \left(\frac{1}{k} \frac{\Gamma\left(\frac{s}{k}\right) \Gamma\left(\frac{1}{k}\right)}{\Gamma\left(\frac{s+1}{k}\right)} N^{\frac{s+1}{k}-1} \pm 2N^{\frac{s}{k}-1}\right)$$

$$\pm c_{s} \left(\frac{1}{k} \frac{\Gamma\left(\frac{s-1}{k}\right) \Gamma\left(\frac{1}{k}\right)}{\Gamma\left(\frac{s}{k}\right)} N^{\frac{s}{k}-1} \pm 2N^{\frac{s-1}{k}-1}\right)$$

$$= \frac{\Gamma\left(1 + \frac{1}{k}\right)^{s+1}}{\Gamma\left(\frac{s+1}{k}\right)} N^{\frac{s+1}{k}-1}$$

$$\pm \left(2N^{\frac{s}{k}-1} \frac{\Gamma\left(1 + \frac{1}{k}\right)^{s}}{\Gamma\left(\frac{s}{k}\right)} + \frac{c_{s}}{k} \frac{\Gamma\left(\frac{s-1}{k}\right) \Gamma\left(\frac{1}{k}\right)}{\Gamma\left(\frac{s}{k}\right)} N^{\frac{s}{k}-1} + 2c_{s}N^{\frac{s-1}{k}-1}\right)$$

Using Lemma 2, we estimate the error term:

$$\begin{split} &2N^{\frac{s}{k}-1}\frac{\Gamma\left(1+\frac{1}{k}\right)^{s}}{\Gamma\left(\frac{s}{k}\right)} + \frac{c_{s}}{k}\frac{\Gamma\left(\frac{s-1}{k}\right)\Gamma\left(\frac{1}{k}\right)}{\Gamma\left(\frac{s}{k}\right)}N^{\frac{s}{k}-1} + 2c_{s}N^{\frac{s-1}{k}-1} \\ &\leqslant \left(2\frac{\Gamma\left(1+\frac{1}{k}\right)^{s}}{\Gamma\left(\frac{s}{k}\right)} + c_{s}\frac{\Gamma\left(\frac{s-1}{k}\right)\Gamma\left(1+\frac{1}{k}\right)}{\Gamma\left(\frac{s}{k}\right)} + 2c_{s}\right)N^{\frac{s}{k}-1} \\ &\leqslant \left(2e + ec_{s}\Gamma\left(\frac{s-1}{k}\right) + 2c_{s}\right)N^{\frac{s}{k}-1} \\ &\leqslant \left(2ec_{s}\Gamma\left(\frac{s-1}{k}\right) + ec_{s}\Gamma\left(\frac{s-1}{k}\right) + 2ec_{s}\Gamma\left(\frac{s-1}{k}\right)\right)N^{\frac{s}{k}-1} \\ &= 5ec_{s}\Gamma\left(\frac{s-1}{k}\right)N^{\frac{s}{k}-1} = c_{s+1}N^{\frac{s}{k}-1}. \end{split}$$

3.3. The singular series

Definition 8. We define the *singular series* as

$$\mathfrak{S}(N) = \sum_{q=1}^{\infty} A_N(q),$$

where

$$A_N(q) = \sum_{\substack{a=1\\(a,q)=1}}^{q} \left(\frac{S(q,a)}{q}\right)^s e\left(\frac{-Na}{q}\right).$$

Lemma 33. The singular series converges absolutely and uniformly with respect to N.

Proof. Let $0 < \varepsilon < \frac{1}{sK}$. Since $s \ge 2^k + 1 = 2K + 1$, we have

$$\frac{s}{K} - 1 - s\varepsilon \geqslant 1 + \frac{1}{K} - s\varepsilon = 1 + \delta_4,$$

where $\delta_4 = \frac{1}{K} - s\varepsilon > 0$. By Theorem 17

$$|A_N(q)| \leqslant 2^s \left(d_{\frac{\varepsilon}{2k^2 K}}^k 60k!^{1+\varepsilon} \frac{2kK}{\varepsilon} \right)^{\frac{s}{K}} \frac{q}{q^{\frac{s}{K} - s\varepsilon}} \leqslant 2^s \left(d_{\frac{1-\delta_4 K}{2k^2 K^2 s}}^k 60k!^{1+\frac{1-\delta_4 K}{Ks}} \frac{2kK^2 s}{1-\delta_4 K} \right)^{\frac{s}{K}} \frac{1}{q^{1+\delta_4}}.$$

Lemma 34. Let q and r be integers such that (q,r) = 1. Then

$$S(qr, ar + bq) = S(q, a)S(r, b).$$

Proof. Since (q,r) = 1, $\{xr : 1 \le x \le q\} = \{1,\ldots,q\}$ and $\{yq : 1 \le y \le r\} = \{1,\ldots,r\}$. Every residue modulo qr can be written uniquely as xr + yq, where $1 \le x \le q$ and $1 \le y \le r$, so

$$S(qr, ar + bq) = \sum_{m=1}^{qr} e\left(\frac{(ar + bq)m^k}{qr}\right)$$

$$= \sum_{x=1}^q \sum_{y=1}^r e\left(\frac{(ar + bq)(xr + yq)^k}{qr}\right)$$

$$= \sum_{x=1}^q \sum_{y=1}^r e\left(\frac{(ar + bq)}{qr} \sum_{l=0}^k \binom{k}{l} (xr)^l (yq)^{k-l}\right)$$

$$= \sum_{x=1}^q \sum_{y=1}^r e\left(\frac{(ar + bq)}{qr} ((xr)^k + (yq)^k)\right)$$

$$= \sum_{x=1}^q \sum_{y=1}^r e\left(\frac{a(xr)^k}{q}\right) e\left(\frac{b(yq)^k}{r}\right)$$

$$= \sum_{x=1}^q e\left(\frac{ax^k}{q}\right) \sum_{y=1}^r e\left(\frac{by^k}{r}\right)$$

$$= S(q, a)S(r, b).$$

Lemma 35. If (q, r) = 1, then $A_N(qr) = A_N(q)A_N(r)$.

Proof. If (c, qr) = 1, then $c \equiv ar + bq \pmod{q}$, where (a, q) = (b, r) = 1. From Lemma 34 we have

$$A_{N}(qr) = \sum_{\substack{c=1\\(c,qr)=1}}^{qr} \left(\frac{S(qr,c)}{qr}\right)^{s} e\left(-\frac{cN}{qr}\right)$$

$$= \sum_{\substack{a=1\\(a,q)=1}}^{q} \sum_{\substack{b=1\\(b,r)=1}}^{r} \left(\frac{S(qr,ar+bq)}{qr}\right)^{s} e\left(-\frac{(ar+bq)N}{qr}\right)$$

$$= \sum_{\substack{a=1\\(a,q)=1}}^{q} \sum_{\substack{b=1\\(b,r)=1}}^{r} \left(\frac{S(q,a)}{q}\right)^{s} \left(\frac{S(r,b)}{r}\right)^{s} e\left(-\frac{aN}{q}\right) e\left(-\frac{bN}{r}\right)$$

$$= \sum_{\substack{a=1\\(a,q)=1}}^{q} \left(\frac{S(q,a)}{q}\right)^{s} e\left(-\frac{aN}{q}\right) \sum_{\substack{b=1\\(b,r)=1}}^{r} \left(\frac{S(r,b)}{r}\right)^{s} e\left(-\frac{bN}{r}\right)$$

$$= A_N(q)A_N(r).$$

Definition 9. For any positive integer q, let $M_N(q)$ be the number of solutions of the congruence

$$x_1^k + \dots + x_s^k \equiv N \pmod{q},$$

where x_i are integers from the interval [1, q].

Lemma 36. Let $s \ge 2^k + 1$. For every prime p, the series

$$\chi_N(p) = 1 + \sum_{h=1}^{\infty} A_N(p^h)$$

converges and

$$\chi_N(p) = \lim_{h \to \infty} \frac{M_N(p^h)}{p^{h(s-1)}}.$$

Proof. The convergence of the series follows from Lemma 33. If (a,q)=d, then

$$S(q,a) = \sum_{x=1}^{q} e\left(\frac{ax^k}{q}\right) = \sum_{x=1}^{q} e\left(\frac{\frac{a}{d}x^k}{\frac{q}{d}}\right) = d\sum_{x=1}^{\frac{q}{d}} e\left(\frac{\frac{a}{d}x^k}{\frac{q}{d}}\right) = dS\left(\frac{q}{d}, \frac{a}{d}\right).$$

Since

$$\frac{1}{q} \sum_{a=1}^{q} e\left(\frac{am}{q}\right) = \begin{cases} 1 & \text{if } m \equiv 0 \pmod{q} \\ 0 & \text{if } m \not\equiv 0 \pmod{q}, \end{cases}$$

it follows that for any integers x_1, \ldots, x_s

$$\frac{1}{q} \sum_{a=1}^{q} e\left(\frac{a(x_1^k + \dots + x_s^k - N)}{q}\right) = \begin{cases} 1 & \text{if } x_1^k + \dots + x_s^k \equiv N \pmod{q} \\ 0 & \text{if } x_1^k + \dots + x_s^k \not\equiv N \pmod{q}, \end{cases}$$

$$M_{N}(q) = \sum_{x_{1}=1}^{q} \cdots \sum_{x_{s}=1}^{q} \frac{1}{q} \sum_{a=1}^{q} e\left(\frac{a(x_{1}^{k} + \cdots x_{s}^{k} - N)}{q}\right)$$

$$= \frac{1}{q} \sum_{a=1}^{q} \sum_{x_{1}=1}^{q} \cdots \sum_{x_{s}=1}^{q} e\left(\frac{a(x_{1}^{k} + \cdots x_{s}^{k} - N)}{q}\right)$$

$$= \frac{1}{q} \sum_{a=1}^{q} \sum_{x_{1}=1}^{q} e\left(\frac{ax_{1}^{k}}{q}\right) \cdots \sum_{x_{s}=1}^{q} e\left(\frac{ax_{s}^{k}}{q}\right) e\left(\frac{-aN}{q}\right)$$

$$= \frac{1}{q} \sum_{a=1}^{q} S(q, a)^{s} e\left(\frac{-aN}{q}\right)$$

$$= \frac{1}{q} \sum_{d|q} \sum_{\substack{a=1 \ (a,q)=d}}^{q} S(q, a)^{s} e\left(\frac{-aN}{q}\right)$$

$$= \frac{1}{q} \sum_{d|q} \sum_{\substack{a=1 \ (a,q)=d}}^{q} d^{s} S\left(\frac{q}{d}, \frac{a}{d}\right)^{s} e\left(\frac{-\frac{a}{d}N}{\frac{q}{d}}\right)$$

$$= \frac{1}{q} \sum_{d|q} \sum_{\substack{a=1 \ (a,q)=d}}^{q} q^{s} \left(\frac{S\left(\frac{q}{d}, \frac{a}{d}\right)}{\frac{q}{d}}\right)^{s} e\left(\frac{-\frac{a}{d}N}{\frac{q}{d}}\right)$$

$$= q^{s-1} \sum_{d|q} A_{N} \left(\frac{q}{d}\right).$$

Therefore

$$\sum_{d|q} A_N\left(\frac{q}{d}\right) = q^{1-s} M_N(q)$$

for $q \geqslant 1$. If we take $q = p^h$, we have

$$1 + \sum_{j=1}^{h} A_N(p^j) = \sum_{d|p^h} A_N\left(\frac{p^h}{d}\right) = p^{h(1-s)} M_N(p^h)$$

and

$$\chi_N(p) = \lim_{h \to \infty} \left(1 + \sum_{j=1}^h A_N(p^j) \right) = \lim_{h \to \infty} p^{h(1-s)} M_N(p^h).$$

Lemma 37. If $s \ge 2^k + 1$, then

$$\mathfrak{S}(N) = \prod_{p \in \mathbb{P}} \chi_N(p).$$

Moreover,

$$\mathfrak{S}(N) \leqslant 2^{s} \left(d_{\frac{1-\delta_{4}K}{2k^{2}K^{2}s}}^{k} 60k!^{1+\frac{1-\delta_{4}K}{Ks}} \frac{2kK^{2}s}{1-\delta_{4}K} \right)^{\frac{s}{K}} \left(1 + \frac{1}{\delta_{4}} \right).$$

for all N.

Proof. From Lemma 33 we know that the series $\sum_{q=1}^{\infty} A_N(q)$ converges absolutely and from Lemma 35 we know that A_N is multiplicative. Thus, Lemma 23 implies that $\mathfrak{S}(N) = \prod_{p \in \mathbb{P}} \chi_N(p)$. Using estimates from the proof of Lemma 33 we get

$$\mathfrak{S}(N) \leqslant c \sum_{q=1}^{\infty} \frac{1}{q^{1+\delta_4}} \leqslant c \left(1 + \int_1^{\infty} \frac{1}{x^{1+\delta_4}} dx \right) = c \left(1 + \frac{1}{\delta_4} \right),$$

where

$$c = 2^{s} \left(d_{\frac{1-\delta_{4}K}{2k^{2}K^{2}s}}^{k} 60k!^{1+\frac{1-\delta_{4}K}{Ks}} \frac{2kK^{2}s}{1-\delta_{4}K} \right)^{\frac{s}{K}}.$$

Lemma 38. There exists a prime $\left(\frac{4c}{\delta_4 \log 2}\right)^{\frac{1}{\delta_4}} \leqslant p_0 \leqslant 2\left(\frac{4c}{\delta_4 \log 2}\right)^{\frac{1}{\delta_4}}$ such that

$$\frac{1}{2} \leqslant \prod_{\substack{p \in \mathbb{P} \\ p > p_0}} \chi_N(p)$$

for all N.

Proof. From Lemma 33 we know that

$$|A_N(q)| \leqslant \frac{c}{q^{1+\delta_4}},$$

where

$$c = 2^{s} \left(d_{\frac{1-\delta_{4}K}{2k^{2}K^{2}s}}^{k} 60k!^{1+\frac{1-\delta_{4}K}{Ks}} \frac{2kK^{2}s}{1-\delta_{4}K} \right)^{\frac{s}{K}}.$$

Therefore

$$|\chi_N(p) - 1| \leqslant \sum_{j=1}^{\infty} |A_N(p^j)| \leqslant c \sum_{j=1}^{\infty} \frac{1}{p^{j(1+\delta_4)}} = \frac{c}{p^{1+\delta_4}} \frac{1}{1 - \frac{1}{p^{1+\delta_4}}} \leqslant \frac{2c}{p^{1+\delta_4}}$$

and

$$1 - \frac{2c}{p^{1+\delta_4}} \leqslant \chi_N(p)$$

for all N and p. Now it suffices to find a prime p_0 such that $\frac{1}{2} \leqslant \prod_{\substack{p \in \mathbb{P} \\ p > p_0}} \left(1 - \frac{2c}{p^{1+\delta_4}}\right)$ which, by continuity of logarithm, is equivalent to $\log \frac{1}{2} \leqslant \sum_{\substack{p \in \mathbb{P} \\ p > p_0}} \log \left(1 - \frac{2c}{p^{1+\delta_4}}\right)$. Let us estimate the right-hand side of the last inequality. We will use the fact that $\frac{x}{x+1} < \log(1+x)$ for all x > -1. Replacing x with $-\frac{1}{x}$, we get $\frac{1}{1-x} < \log\left(1 - \frac{1}{x}\right)$. Thus

$$0 \geqslant \sum_{\substack{p \in \mathbb{P} \\ p > p_0}} \log \left(1 - \frac{2c}{p^{1+\delta_4}} \right)$$

$$\geqslant \sum_{n=p_0+1}^{\infty} \log \left(1 - \frac{2c}{n^{1+\delta_4}} \right)$$

$$\geqslant \int_{p_0}^{\infty} \log \left(1 - \frac{2c}{x^{1+\delta_4}} \right) dx$$

$$\geqslant \int_{p_0}^{\infty} \frac{1}{1 - \frac{x^{1+\delta_4}}{2c}} dx$$

$$\geqslant -4c \int_{p_0}^{\infty} \frac{1}{x^{1+\delta_4}} dx$$

$$= -\frac{4c}{\delta_4 p_0^{\delta_4}} \geqslant \log \frac{1}{2}.$$

Solving the last inequality, we get

$$p_0 \geqslant \left(\frac{4c}{\delta_4 \log 2}\right)^{\frac{1}{\delta_4}}.$$

Definition 10. Let p be a prime and let $k = p^{\tau}k_0$, where $\tau \ge 0$ and $(p, k_0) = 1$. We define

$$\gamma = \begin{cases} \tau + 1 & \text{if } p > 2\\ \tau + 2 & \text{if } p = 2. \end{cases}$$

Fact 39. Let a, b, r be integers. Then $r \equiv 0 \pmod{(a,b)}$ if and only if there exists an integer v such that $av \equiv r \pmod{b}$.

Proof. Assume that $av \equiv r \pmod{b}$. This means that b|av - r, so (a,b)|av - r. But (a,b)|a, so $r \equiv 0 \pmod{(a,b)}$.

Let d = (a, b) and assume that $r \equiv 0 \pmod{d}$. Let r_0 , a_0 and b_0 be integers such that $r = r_0 d$, $a = a_0 d$ and $b = b_0 d$. Then $(a_0, b_0) = 1$. We want to find v such that b|av - r. This is equivalent to $b_0|a_0v - r_0$, which in turn means that there

exist integers v and w such that $a_0v - b_0w = r_0$. This is true, since a_0 and b_0 are relatively prime.

Lemma 40. Let $h \ge 3$. Then the subgroup of $\mathbb{Z}_{2^h}^*$ consisting of numbers congruent to 1 modulo 4 is a cyclic group of order 2^{h-2} and 5 is its generator.

Proof. We want to show that $5^{2^{h-2}} \equiv 1 \pmod{2^h}$ and $5^{2^{h-3}} \not\equiv 1 \pmod{2^h}$, which is equivalent to $2^h |5^{2^{h-2}} - 1$ and $2^h \nmid 5^{2^{h-3}} - 1$.

$$5^{2^{h-2}} - 1 = \left(5^{2^{h-3}}\right)^2 - 1$$

$$= \left(5^{2^{h-3}} - 1\right) \left(5^{2^{h-3}} + 1\right)$$

$$= \left(5^{2^{h-4}} - 1\right) \left(5^{2^{h-4}} + 1\right) \left(5^{2^{h-3}} + 1\right)$$

$$= 4 \left(5^{2^0} + 1\right) \cdots \left(5^{2^{h-3}} + 1\right)$$

Each factor except the first one is congruent to 2 modulo 4 and so the conclusion follows. \Box

Lemma 41. Let m be an integer not divisible by p. If the congruence $x^k \equiv m \pmod{p^{\gamma}}$ is solvable, then the congruence $y^k \equiv m \pmod{p^h}$ is solvable for every $h \geqslant \gamma$.

Proof. First assume that p is an odd prime. For $h \ge \gamma = \tau + 1$, we have

$$(k, \varphi(p^h)) = (k_0 p^{\tau}, (p-1)p^{h-1}) = (k_0, p-1)p^{\tau} = (k, \varphi(p^{\gamma})).$$

 $\mathbb{Z}_{p^h}^*$ is a cyclic group of order $\varphi(p^h)=(p-1)p^h$. Let g be a generator of this group. Let $x^k\equiv m\pmod{p^\gamma}$. Then (x,p)=1 and there exist integers r and u such that $x\equiv g^u\pmod{p^h}$ and $m\equiv g^r\pmod{p^h}$. Since $h\geqslant \gamma$, we have $x\equiv g^u\pmod{p^\gamma}$ and $m\equiv g^r\pmod{p^\gamma}$. and so $ku\equiv r\pmod{\varphi(p^\gamma)}$. By Fact 39 $r\equiv 0\pmod{(k,\varphi(p^\gamma))}$ and $r\equiv 0\pmod{(k,\varphi(p^h))}$. Again by Fact 39 there exists an integer v such that $kv\equiv r\pmod{\varphi(p^h)}$. If we let $y=g^v$, then $y^k\equiv m\pmod{p^h}$.

Now assume that p=2. Then m and x are odd. If k is odd, then $\tau=0$ and $\gamma=2$. Note that $\{y^k \bmod 2^h: y=1,3,\dots 2^h-1\}=\{1,3,\dots,2^h-1\}$, since if $y_1^k\equiv y_2^k\pmod 2^h$, then $2^h|y_1^k-y_2^k=(y_1-y_2)(y_1^{k-1}+\dots+y_2^{k-1})$. Therefore the congruence $y^k\equiv m\pmod 2^h$ is solvable for all $h\geqslant 1$. If k is even, then $\tau\geqslant 1,\ \gamma\geqslant 3$ and $m\equiv x^k\equiv 1\pmod 4$. Also, $x^k=(-x)^k$, so we may assume that $x\equiv 1\pmod 4$. By Lemma 40, we can choose integers r and u such that $m\equiv 5^r\pmod 2^h$ and $x\equiv 5^u\pmod 2^h$. Then $x^k\equiv m\pmod 2^\gamma$ is equivalent to $ku\equiv r\pmod 2^{\gamma-2}$ and by Fact 39 r is divisible by $(k,2^{\gamma-2})=2^{\gamma-2}=(k,2^{h-2})$. Again by Fact 39 there exists an integer v such that $kv\equiv r\pmod 2^{h-2}$. If we let $y=5^v$, then $y^k\equiv m\pmod 2^h$.

Lemma 42. Let p be prime. If there exist integers a_1, \ldots, a_s , not all divisible by p, such that

$$a_1^k + \dots + a_s^k \equiv N \pmod{p^{\gamma}},$$

then

$$\chi_N(p) \geqslant \frac{1}{p^{\gamma(s-1)}} > 0.$$

Proof. Suppose that $p \nmid a_1$. Let $h > \gamma$. For each i = 2, ..., s there exist $p^{h-\gamma}$ distinct integers $1 \leqslant x_i \leqslant p^h$ such that $x_i \equiv a_i \pmod{p^{\gamma}}$. Since the congruence

$$x_1^k \equiv N - x_2^k - \dots - x_s^k \pmod{p^{\gamma}}$$

is solvable with $x_1 = a_1$, it follows from Lemma 41 that the congruence

$$x_1^k \equiv N - x_2^k - \dots - x_s^k \pmod{p^k}$$

is also solvable. Thus

$$M_N(p^h) \geqslant p^{(h-\gamma)(s-1)}$$

and by Lemma 36

$$\chi_N(p) = \lim_{h \to \infty} \frac{M_N(p^h)}{p^{h(s-1)}} \geqslant \frac{1}{p^{\gamma(s-1)}} > 0.$$

Lemma 43. If $s \ge 2k$ for odd p or $s \ge 4k$ for even p, then

$$\chi_N(p) \geqslant p^{\gamma(1-s)} > 0.$$

Proof. By Lemma 42 it suffices to show that the congruence

$$a_1^k + \dots + a_s^k \equiv N \pmod{p^{\gamma}}$$
 (4)

is solvable in integers a_i not all divisible by p. If N is not divisible by p and the congruence is solvable, then at least one of the integers a_i is not divisible by p. If N is divisible by p, then it suffices to show that the congruence

$$a_1^k + \dots + a_{s-1}^k + 1^k \equiv N \pmod{p^\gamma}$$

has a solution in integers. This is equivalent to solving

$$a_1^k + \dots + a_{s-1}^k \equiv N - 1 \pmod{p^{\gamma}}.$$

In this case (N-1,p)=1. Therefore, it suffices to prove that, for N relatively prime to p, the congruence

$$a_1^k + \dots + a_s^k \equiv N \pmod{p^{\gamma}}$$

is solvable in integers with $s \ge 2k-1$ if p is odd and with $s \ge 4k-1$ if p is even.

Let p be an odd prime and g be a generator of the group $\mathbb{Z}_{p^{\gamma}}^*$. The order of g is $\varphi(p^{\gamma}) = (p-1)p^{\gamma-1} = (p-1)p^{\tau}$. Let (m,p) = 1. The integer m is a kth power residue modulo p^{γ} if and only if there exists an integer x such that $x^k \equiv m \pmod{p^{\gamma}}$. Let $m \equiv g^r \pmod{p^{\gamma}}$. Then m is a kth power modulo p^{γ} if and only if there exists an integer v such that $x \equiv g^v \pmod{p^{\gamma}}$ and $kv \equiv r \pmod{(p-1)p^{\tau}}$. Since $k = k_0 p^{\tau}$ with $(k_0, p) = 1$, it follows from Fact 39 that this congruence is solvable if and only if $r \equiv 0 \pmod{(k_0, p-1)p^{\tau}}$, so there are

$$\frac{\varphi(p^{\gamma})}{(k_0, p-1)p^{\tau}} = \frac{p-1}{(k_0, p-1)}$$

distinct kth powers modulo p^{γ} . Let s(N) be the smallest integer s for which the congruence (4) is solvable and let C(j) denote the set of all residues N modulo p^{γ} relatively prime to p such that s(N) = j. If (m, p) = 1, then the congruence

$$x_1^k + \cdots x_s^k \equiv N \pmod{p^{\gamma}}$$

is solvable if and only if the congruence

$$x_1^k + \cdots x_s^k \equiv m^k N \pmod{p^\gamma}$$

is solvable, since we can multiply or divide both sides by m^k . This means that the sets C(j) are closed under multiplication by kth powers, so, if C(j) is non-empty, then $|C(j)| \geqslant \frac{p-1}{(k_0,p-1)}$. Let n be the largest integer such that the set C(n) is non-empty. Let j < n and let N be the smallest integer relatively prime to p such that s(N) > j. Since p is an odd prime, it follows that N-i is relatively prime to p for i=1 or 2 and $s(N-i) \leqslant j$. Since $N=(N-1)+1^k$ and $N=(N-2)+1^k+1^k$, it follows that

$$j+1 \leqslant s(N) \leqslant s(N-i) + 2 \leqslant j+2$$

and so s(N-i)=j or j-1. This implies that no two consecutive sets C(j) are empty for $j=1,\ldots,n$ and so the number of non-empty sets C(j) is at least $\frac{n+1}{2}$. Since the sets C(j) are pairwise disjoint, it follows that

$$(p-1)p^{\tau} = \varphi(p^{\gamma}) = \sum_{\substack{j=1 \ C(j) \neq \emptyset}}^{n} |C(j)| \geqslant \frac{n+1}{2} \frac{p-1}{(k_0, p-1)}$$

and so

$$n \leq 2(k_0, p-1)p^{\tau} - 1 \leq 2k - 1.$$

Therefore, $s(N) \leq 2k-1$ if p is an odd prime and N is relatively prime to p.

Now let p=2. If k is odd, then every odd integer is a kth power modulo 2^{γ} (proved in the proof of Lemma 41), so s(N)=1 for all odd integers N. If k is even, then $k=2^{\tau}k_0$ with $\tau \geqslant 1$ and $\gamma=\tau+2$. We can assume that $1 \leqslant N \leqslant 2^{\gamma}-1$. If

$$s = 2^{\gamma} - 1 = 4 \cdot 2^{\tau} - 1 \leqslant 4k - 1,$$

then the congruence (4) can be solved by setting $a_i = 1$ for i = 1, ..., N and $a_i = 0$ for i = N + 1, ..., s. Therefore, $s(N) \leq 4k - 1$ if p = 2 and N is odd.

Theorem 44.

$$c_1 \leqslant \mathfrak{S}(N) \leqslant c_2$$

where

$$c_1 = \frac{1}{2} \left(4k \left(\frac{4c}{\delta_4 \log 2} \right)^{\frac{1}{\delta_4}} \right)^{2\left(\frac{4c}{\delta_4 \log 2}\right)^{\frac{1}{\delta_4}} (1-s)}$$

and

$$c_2 = 2^s \left(d_{\frac{1-\delta_4 K}{2k^2 K^2 s}}^k 60k!^{1+\frac{1-\delta_4 K}{K s}} \frac{2kK^2 s}{1-\delta_4 K} \right)^{\frac{s}{K}} \left(1 + \frac{1}{\delta_4} \right).$$

Moreover,

$$\mathfrak{S}(N,P^{\nu}) = \mathfrak{S}(N) \pm \frac{c}{\delta_4} P^{-\nu \delta_4}.$$

Proof. From Lemma 37 we have the upper bound. By Lemma 38, there exists a prime $\left(\frac{4c}{\delta_4\log 2}\right)^{\frac{1}{\delta_4}} \leqslant p_0 \leqslant 2\left(\frac{4c}{\delta_4\log 2}\right)^{\frac{1}{\delta_4}}$ such that $\frac{1}{2} \leqslant \prod_{\substack{p \in \mathbb{P} \\ p > p_0}} \chi_N(p)$ for all N. Since by Lemma 43

$$\chi_N(p) \geqslant p^{\gamma(1-s)} > 0$$

for all primes p and all N, it follows that

$$\mathfrak{S}(N) = \prod_{p \in \mathbb{P}} \chi_N(p) \geqslant \frac{1}{2} \prod_{\substack{p \in \mathbb{P} \\ p \leqslant p_0}} \chi_N(p)$$

$$\geqslant \frac{1}{2} \prod_{\substack{p \in \mathbb{P} \\ p \leqslant p_0}} p^{\gamma(1-s)} \geqslant \frac{1}{2} \prod_{\substack{p \in \mathbb{P} \\ p \leqslant p_0}} (2kp)^{(1-s)}$$

$$\geqslant \frac{1}{2} (2kp_0)^{p_0(1-s)}$$

$$\geqslant \frac{1}{2} \left(4k \left(\frac{4c}{\delta_4 \log 2}\right)^{\frac{1}{\delta_4}}\right)^{2\left(\frac{4c}{\delta_4 \log 2}\right)^{\frac{1}{\delta_4}}(1-s)} = c_1 > 0,$$

where

$$c = 2^{s} \left(d_{\frac{1-\delta_{4}K}{2k^{2}K^{2}s}}^{k} 60k!^{1+\frac{1-\delta_{4}K}{Ks}} \frac{2kK^{2}s}{1-\delta_{4}K} \right)^{\frac{s}{K}}.$$

To prove the last part, note that by Lemma 33, we have

$$|\mathfrak{S}(N) - \mathfrak{S}(N, P^{\nu})| \leqslant \sum_{q > P^{\nu}} |A_N(q)| \leqslant c \sum_{q > P^{\nu}} \frac{1}{q^{1+\delta_4}} \leqslant c \int_{P^{\nu}}^{\infty} \frac{1}{x^{1+\delta_4}} dx = \frac{c}{\delta_4 P^{\nu \delta_4}}$$

Theorem 45 (Hardy–Littlewood). Let $k \ge 2$ and $s \ge 2^k + 1$. Let $r_{k,s}(N)$ denote the number of representations of N as the sum of s kth powers of positive integers. There exists $\delta > 0$ such that

$$r_{k,s}(N) = \mathfrak{S}(N)\Gamma \left(1 + \frac{1}{k}\right)^{s} \Gamma \left(\frac{s}{k}\right)^{-1} N^{\frac{s}{k}-1}$$

$$\pm 2\left(c_{s} + 8c_{2} + \frac{24c}{\delta k} + 4^{s+2}s + mh'_{k}\right) N^{\frac{s}{k}-1-\delta},$$

with

$$c_1 \leqslant \mathfrak{S}(N) \leqslant c_2,$$

where

$$m = \left(2^{K} d_{\frac{\delta}{4kK^{2}}}^{k} 60k!^{1 + \frac{1}{10K}} \frac{4K^{2}}{\delta}\right)^{\frac{s-2^{\kappa}}{K}}$$

$$h'_{k} = 2^{2^{k+1}} d_{\frac{\delta}{2K^{2}}}^{k} k^{k}$$

$$c = 2^{s} \left(d_{\frac{1-\delta K}{2k^{2}K^{2}s}}^{k} 60k!^{1 + \frac{1}{Ks}} \frac{2kK^{2}}{1 - \delta K}s\right)^{\frac{s}{K}}$$

$$c_{1} = \frac{1}{2} \left(4k \left(\frac{4c}{\delta \log 2}\right)^{\frac{1}{\delta}}\right)^{2\left(\frac{4c}{\delta \log 2}\right)^{\frac{1}{\delta}}(1-s)}$$

$$c_{2} = c \left(1 + \frac{1}{\delta}\right)$$

$$d_{\varepsilon} = \frac{e^{\frac{1}{\varepsilon}}2^{1+\varepsilon}}{\varepsilon}$$

$$c_{s} = (5e)^{s-2} \prod_{j=1}^{s-2} \Gamma\left(\frac{j}{k}\right).$$

Proof. Let $\delta_0 = \min(1, \delta_1, \delta_2, \delta_3, \nu \delta_4)$ and $\delta = \frac{\delta_0}{k}$. Note that $\delta_0 \leq \nu \delta_4 \leq \nu$. By Theorem 26, Theorem 29, Theorem 30, Theorem 32, Theorem 44 we have

$$\begin{split} r_{k,s}(N) &= \int_0^1 F(\alpha)^s e(-N\alpha) d\alpha \\ &= \int_{\mathfrak{M}} F(\alpha)^s e(-N\alpha) d\alpha + \int_{\mathfrak{m}} F(\alpha)^s e(-N\alpha) d\alpha \\ &= \mathfrak{S}(N, P^{\nu}) J^*(N) \pm 4^{s+2} s P^{s-k-\delta_2} \pm m h_k' P^{s-k-\delta_1} \\ &= \left(\mathfrak{S}(N) \pm \frac{c}{\delta_4} P^{-\nu\delta_4}\right) \left(J(N) \pm 8 P^{s-k-\delta_3}\right) \pm 4^{s+2} s P^{s-k-\delta_2} \pm m h_k' P^{s-k-\delta_1} \\ &= \mathfrak{S}(N) J(N) \\ &\pm 8 c_2 P^{s-k-\delta_3} \pm \frac{16c}{\delta_4} P^{s-k-\nu\delta_4} \pm \frac{8c}{\delta_4} P^{s-k-\delta_3-\nu\delta_4} \\ &\pm 4^{s+2} s P^{s-k-\delta_2} \pm m h_k' P^{s-k-\delta_1} \\ &= \mathfrak{S}(N) J(N) \pm \left(8 c_2 + \frac{24c}{\delta_0} + 4^{s+2} s + m h_k'\right) P^{s-k-\delta_0} \\ &= \mathfrak{S}(N) \frac{\Gamma\left(1 + \frac{1}{k}\right)^s}{\Gamma\left(\frac{s}{k}\right)} N^{\frac{s}{k}-1} \\ &\pm c_s N^{\frac{s-1}{k}-1} \pm 2 \left(8 c_2 + \frac{24c}{\delta_0} + 4^{s+2} s + m h_k'\right) N^{\frac{s}{k}-1-\frac{\delta_0}{k}} \\ &= \mathfrak{S}(N) \frac{\Gamma\left(1 + \frac{1}{k}\right)^s}{\Gamma\left(\frac{s}{k}\right)} N^{\frac{s}{k}-1} \pm 2 \left(c_s + 8c_2 + \frac{24c}{\delta k} + 4^{s+2} s + m h_k'\right) N^{\frac{s}{k}-1-\delta} \end{split}$$

References

[1] M. B. Nathanson, Additive Number Theory: The Classical Bases, Springer-Verlag, New York, 1996.