Uniwersytet Wroclawski

Wydzial Matematyki i Informatyki
Instytut Matematyczny
Indywidualne Studia Informatyczno-Matematyczne

Maciej Kucharski

Problem Waringa i metoda tukow
Hardy’ego-Littlewooda

Praca licencjacka

napisana pod kierunkiem
dr. hab. Mariusza Mirka

Wroctaw, 2018 r.



University of Wroclaw

Faculty of Mathematics and Computer Science
Mathematical Institute
Joint Studies in Computer Science and Mathematics

Maciej Kucharski

Waring’s problem and
the Hardy-Littlewood circle method

Bachelor’s thesis
written under the supervision of
dr. hab. Mariusz Mirek

Wroctaw, 2018



Contents

[3.2. The major arcs|

[3.3. The singular series| . . . . . . . ... Lo




1. Waring’s problem

Waring’s problem asks whether for each natural number k there exists an inte-
ger s such that any natural number is the sum of at most s kth powers. Since every
number can be represented as the sum of ones, this is equivalent to the question
if there exists s such that the equation

x’f_|_..._|_x];:N (1)

has any solutions in integers for all sufficiently large integers V.

Let 745(/N) be the number of solutions of equation (1j). We will follow the
method of Hardy, Littlewood and Ramanujan described in [I] to obtain the es-
timate of 7,. Let A be a set of non-negative integers and let f(z) = > ., 2.
Then

f(2) = Z ras(n)z",

where r44(n) is the number of representations of n as the sum of s elements of
A. Since elements of A are non-negative, if we want to recover r44(n), we can
truncate this series to get the polynomial p(z) = > 4ca. Then

a<N

sN
N
p(2)" =D rid (m)=",
m=0
where rgi)(m) is the number of representations of m as the sum of s elements of

A not exceeding N. For m < N we have 7"1(4]2 (m) =ras(m). If welet z = e(a) =
2mia

e T we get
F(a) = ple(a)) = Y e(aa)
acA
a<N
and
sN
F(a)® = Z rfs) (m)e(ma).
m=0
Since
1 e
/ e(ma)e(—na)da = ! ?f e :
0 0 ifm#n
we have

TA,S(N)z/O F(a)’e(—Na)da.
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If we want to apply this to Waring’s problem, we let A be the set of kth powers
and P = [N#]. Then

F(a) = Z e(aa) = Z e(an®)

a€A n=1
a<N

and

Pea(N) = ras(N) = /0 F(a)e(—aN)da.

Our aim is to estimate this integral.

2. Useful lemmas
First we establish some tools needed in the circle method.

Lemma 1. Let f be a continuously differentiable function and let U(t) =, ., u(n).
Let a and b be non-negative integers with a < b. Then

Proof. First observe that

n+1

fin+1) = f(n) = f(t)dt

n
and

UGS+ 1) - f) = [ U .



Therefore

= 3 U )~ S U@+ 1)
n=a+1 n=a
b—1
=U®)f(b) = Ula)f(a) = > _Um)(f(n+1)— f(n))
:jf n+1
—UmI0) - Ui [ s

Lemma 2. Let

be the gamma function.

1. Ifx >0, thenT(z) > L.
2. If v € [1,2], then I'(x) < 1.
Proof.

1

If 2 € (0,1), then we have

0 1
['(x) = / = temtdt > / t*le7tdt >
0 0

o |

If x > 1, then

0 %) 00 1
['(z) = / t*le7tdt > / t*leTtdt > / e~tdt = =
0 1 1 (&

2. Assume that z > 0 and compute the second derivative of I':

d2 [e’e) o] 2 00
I (x) = / t"letdt = / aa—t“etdt: / t*tog?(t)e tdt > 0.
0 0

T 42 2
dz x 0

Thus, I' is convex for z > 0. Noting that I'(1) = I'(2) = 1, we get the desired
result. ]



Theorem 3 (Dirichlet’s theorem). Let a and Q > 1 be real numbers. Then there
exist integers a and q such that 1 < ¢ < Q, (a,q) =1 and

1 1
<—<—

qQ

Proof. Let N = [Q]. Suppose that {qa} € [0
g < N. Taking a = [ga], we get

a
a__

1 e
W +1) for some positive integer

1
N+1

0< {qa} =qa—[ga] =qa—a <

and
- 1 - 1 g 1
g(N+1) qQ = ¢

) for some positive integer ¢ < N and if a = [qa] + 1,

Similarly, if {ga} € [&~

N+1
then
N oo {ga} +1<1
<H{ga} =qga—a .
N1 S
This implies that
a - 1 1 1
a{ —_— — E— JR—
d SaNTD) TS
Now suppose that {ga} € [N+1’ N+l> for all ¢ = 1,..., N. This means that there
i il

are N numbers lying in N — 1 intervals [, N+1) (i=1,...,N — 1) By the
pigeonhole principle, there exist integers i € [1, N — 1] and 1 g1 < g2 < N such

that ) 1
) 1+
{Q1Oé} {Q2Oé} {N T1'N+ 1)

Let ¢ =qo — q1 € [1, N — 1] and a = [g2a] — [¢1a]. Then

1
< —.
N+1°-0Q

g — a| = [(2a = [@20]) — (1 = [qra])| = {2} — {qra}] <

Definition 1. ||a|| = min(|n — o] : n € Z) = min({a}, {1 — a})

Observation.
1. ||+ B < |la]| + ||8|| for all real numbers o and /3.
2. |sinma| = sin 7 ||a| for all real numbers «.

Fact 4. I[f0 < a < %, then 2a < sinTa < Ta.
Definition 2. e(t) = ™



Lemma 5. For every real number o and all integers N1 < Ny

1 1
Smin (NQ—Nl,—> <Il'1111 <N2—N1,—) .
2|l el

Proof. Since |e(an)| < 1, we have

Na

Z e(an)

n=N1+1

N2

Z e(an)

n=N1+1

< Ny — Ny

If @ ¢ Z, then |la]| > 0 and e(a) # 1. We have

N2 ]\[2*]\[1*1
> elan)| = le(a(N1+1)) Y e(a)
n=N1+1 n=0
(a) =1 = e(a) =1
B 2 B 2
N |e(%) —e(‘Ta)’ ~ |2isin7al
B 1 B 1 1 1
sinmal — sinallaf| T 2l T o]

[]

Lemma 6. Let a be a real number and let ¢ and a be integers such that ¢ > 1 and

(a,q) =1. If

a—2 = then
q \ q27

1
E — < 6glogq
L, Tr]

~ \2

Proof. The lemma holds for ¢ = 1, so we can assume that ¢ > 2. For each integer

r there exist integers s(r) € [0, %] and m(r) such that

02+ (5w

q) = 1, it follows that s(r) = 0 if and only if » = 0 (mod ¢) and therefore
1] 1fr€[1 7). Letoz——:i2 where —1 < 0 < 1. Then

ar

q

q

Since (a,
1,

s(r) €

ar Or ar O
OéT:——F—Q:—_i__,
qg q q 2q
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where

20
o= = <ol <L
From the triangle inequality we have
far] = |2+ 2
ar|| = ||— + —
g 2
s(r)y ¢ H
=|m(r) &+ — + —
(r) . T2
C|sCr) O
¢ 2q
|- |2
q 2q
s(r) 1
q 2q
Let 1 <7y <7y < . We will show that s(ry) = s(r2) if and only if r| = ry. If
s(r) _ s(rs)
q q
then
+ (ﬂ — m(r1)> =+ (@ — m(rg))
q q
and

ary = tary (mod q).

Since (a,q) = 1, we have r; = £ry (mod ¢) and r; =ry as 1 <ry <71y

ar

q

4
2

) e
q

2

(Ee -

1

and

1<r<d 1<r<g g 2q
1
Z 2s — 1
1<s<%

< 2¢(1+1ogq) < 6glogg.

o1

<

S

<

[\ Rl

<

b

g. Thus



a

Lemma 7. Let o be a real number. If ‘04 — a0 where ¢ = 1 and (a,q) = 1, then

for any V > 0 and natural number h

1
min —— | <8V + 24qlogg.
§: ( Hahq+ﬂH)

Proof. Let o = ¢ + 9 for some —1 < 6 < 1. Then

6h 6
(hq—H")—ah—l—%—i-—-i-—g
q q q
Oh 6h} 6
:ah—i-%—l——[ I+ }+—Z
q q q
:ah+ar+[9h]+5(r)7
q

where 9
_1<am={%}+é¥<z

For r =1,. ..,q let ' be an integer such that {a(hg+r)} = w —r'. Let
0<t<<1—2 If

1
t<{alhqg+r)} <t+ -,
q

then
qgt <ar—qr' +[0h]+0(r) < gt + 1.

It follows that
ar —qr' < qt —[0h)+1—0(r) < gt — [0h] + 2

and
ar —qr' = qt — [0h] — 6(r) > qt — [0h] — 2

Thus, ar — ¢r’ is in an interval containing exactly four distinct integers. If 1 <
r1 < re < q and ary — qry = are — qry, then ary = ary (mod ¢). Since (a,q) = 1,
r1 = ry (mod ¢) and r; = ry. Tt follows that for any ¢ € [0,1 — %] there are at most
four integers r € [1, g] such that

{a(hg+r)} €t t+ %]

Observe that
la(hg +7)|| € [t,t+ ]
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if and only if
{alhg+n)}eft.t+1] or 1—{a(hg+r)}€[tt+1]
The second relation is equivalent to

{alhg+r)} e [t',t +¢]

for0<t =1—2 —t 1- %. It follows that for any ¢t € [0,1 — %] there are at
most eight 1ntegers r € [1,q] such that ||a(hq + )| € [t,t + %}
For s =0,1,... let I(s) = [, qurl] Let us estimate the sum

me( TgaTn)

If ||a(hg + 7)|| € I(0), then we can use the fact that min (V

1
: Ha(hq+_r)ll) sV

If |[a(hq +7)|| € I(s) for some s > 1, we have min (V, Ha(h;+r)||> < ||Oé(h;+7“)|| <4
Since ||a(hg +r)|| € I(s) for some s < 4, we have
q 1 q
min |V, ——— | <8V 48 - <8V + 24qloggq.
2V ) <+ 2
[

<q12,whereq 1 and (a,q) =1,

Lemma 8. Let a be a real number. If ‘a — %

then for any U > 1 and natural number n

1 2
Y min (” ) < (3 n —|—24U+30q) log 4qU.
kT ||akl

1<k<U q

Proof. Let k= hq+r, Wherelgrgqand0<h<%. Then

S = Z mm(k o k||) Z me (hq+r IIa(thr?")H)

1<k<U 0<h< U r=1

If h=0and 1 <7 <, then by Lemma@we have

3 win (g ) € X gy < Gotons

1<r <‘1
11



Otherwise hq & < (hT and thus

1
S < 6glogq+ mln( )
IRDY Z (h+1)q’ [[a(hg+ 1)

0<h<U r=1

Observe that

U U
Z <l4log| —4+1) <2log| —+4+2) <2log(U +2q) < 2logdUg.
h+1 q q

O<h<7

Let V = (h+1) Then by Lemmaﬁ

q
2n 1
< 6g1 ' ’
S <6qlogg+ ) me((h+1)q ||a(hq+r)||>

32
< 6qlogq + o log 4qU + 24U log q + 24qlog q
q

32
< (—" 42U + 30q) log 4qU.
q

]

Lemma 9. Let o be a real number. If ‘oz -4 <4 -+ where ¢ > 1 and (a,q) =1,

then for any real numbers U and n we have

1 8U
Z min <n, —k) < (30(] + 24U + 8n + _n) max(1,log q)
ot leckl g

12



Proof. We proceed as in the previous proof.

> (v o)

1<k<U
<2 me( laf hq1+ r>||)
0<h<U r=1
<6qlogg+ Y (8n+ 24qlogq)
O<h<%

U
< 6qlog q + <— + 1> (8n + 24qlog q)
q
8U
— 30qlog g + 24U log g + 2 + 8n
q

8U
< (30q + 24U + 8n + _n) max(1,logq).
q

Definition 3.
Ai(f)(x) = flz +d) — f(z)

Ag.dy = Dg 0AQg,_, 000y

{ZREER) 1

Lemma 10. Let Ny, No, N be integers such that Ny < Ny and 0 < Ny — N7 < N.
Let f be a real-valued function and

S(f)= Y elfn)
Then
= > Sa(f)
|d|<N
where

Sa(f)= > e(Au(f)(n)) and I(d)=[N1+1—d No—d N[N +1 Ny
nel(d)

13



Proof.

= > elftm) Y e(f(n)
m=N1+1 n=N;+1

n= N1+1m Ni+1
No—n

:Z > elfn+d)— f(n))

n= N1+1d Ni+1-n
No—n

-y Y

n=N1+1d=Ni+1—n

Note that
Ni+1<n<N.
Ni+1<n<Ny o " 2
54 N1+1—d< < N; — d
N1+1—n<d<N2—n
—(Ng— Ny —1)<d< Ny— Ny — 1

and Ny — N; — 1 < N. Therefore

—Ni—1

[S(HIF = Z >

d=—(N2—Ni—1) nel(d)

:Z Ze

|d|<N nel(d)

]

Lemma 11. Let Ny, Ny, N,l be integers such that | > 1, Ny < Ny and 0 <
Ny — N1 < N. Let f be a real-valued function and

Na

Then



where

Sdl ~~~~~ di (f) = Z e(Adl ~~~~~ dy (f)(n>>
nel(dy,....dr)
and I(dy, ..., dy) is some interval of consecutive integers contained in [Ny + 1, Na|.

Proof. By induction on [. The case [ = 1 has been proven in the previous lemma.
Assume that it is true for some [ > 1. Using the inductive hypothesis and the
Cauchy-Schwarz inequality we get

ISP = (1stP)

‘d1|<N |di| <N

By the previous lemma there is an interval

I(dyyq1,dy, ... dy) S I(dy, ... dy) €[Ny + 1, No]

such that
2
’Sdl ,,,,, d1(f)| = Z Sdl+17dl ~~~~~ dl(f)7
ldiy1|<N
and thus
+1 1+1_
ISP < @NPTEDTENT N TN Savdian (F)-
|d1‘<N |dl|<N |dl+1‘<N
O
Lemma 12. Let k> 1 and 1 <1< k. Then
k k! J1 91 .J
Ngoa (@)= D, rdl e = dy e dippa (o),
ittditi=k ) it il
J>0 J1ed121
where pr_; is a of polynomial degree k—1 with leading coeﬂciczent Afdy, .. d;

are integers, then pp_; has integer coefficients.

15



Proof. By induction on [. For [ = 1 we have

k—1
k!
A (25) = (4 d)F — zz< )dk = 3 g
Jj= Ji+j=k j jl
j=0,71>1

Let 1 <1 <k —1 and assume that the formula holds for . Then

Adz-s-17dly---7d1 (xk) = Adz+1 (Adl7---7d1 (xk>)
k! .
= Y e d Ay ()
| 1 2dig
it sy T
m20,j1,....j1 =1

_ Z k! d]l o Z m! d]z+1 j
mlil. ! il +1
st tgtm=k b Jiprti=m It

mjis...J121 720514121

= Z Z ! d]l djldgfll xj

I
Ji4iitm=k ji1+j=m ik
m,J1,..,51 =1 j>0,Jz+1>1

L )

15.1...4,1 |
P _p ) JiJi41-
320,91, ,J1,J14121

Since the multinomial coefficients ﬁ are integers, it follows that p;_; has

integer coefficients, provided that dy, ..., d; are integers. O

Corollary. Let f(r) = az® + -+ «y. Then

Adk—17---7d1 (f)(l‘) = dl e dk—lk!afp + ﬁ
Lemma 13. Let 1 <1< k. If|dy],...,|d|,x < P, then Aq,..._a,(2%) < (I+1)FPF.
Proof. By Lemma [12| we have

k _ . jl jl .
|Adz,~~-,d1 (x )| = E Wdl ceedta?
gietgitg=h T
.7207]1""7.”21

Z ‘k! _ pirte ity
IR

u
itk j=k It
720,415,511

k!

|
it tiiti=k Ji
J7J17 73120

= (l+1)*P"

N

//\

16



]

Lemma 14. Let d(n) be the number of divisors of n. Then for any € > 0 d(n) <

et olte

€ J—
denf, where d. = <=

Proof. Let n = p{*---pp*, where py, ..., pg are primes. Then
d(n) = (a1 + 1)+ (o + 1)

and

d(n) o H Oéj + 1
- £Qtj
ne j=1 p;
Now we can divide factors of the above product into two classes:
1 . .
1. pj = e=. Then pjaj > e% > 14y, so O‘Jg—j]l < 1. Thus, the overall contribution
D;
of such factors is less then 1.

2. pj < et. Let f(z) = 2 for # > 0. Then

1 —e(z+1)log(2)
- QT

f'(x)

Solving f'(z) = 0 we get x = m — 1. It follows that

(e )~ e

is the maximum of f and for every 1 < j < k

a1 _a;+1_ %
EOlj

p;Y T 22 T eelog(2)

If we want to bound that product from above we can neglect factors of class 1
. 1
and estimate the number of factors of class 2 by e=. Thus

£ % €
d(n) < 652—716 < ﬁna = %ns.
eclog(2) € 2

However, we double the constant so that this estimate is still valid if we count
both positive and negative divisors. O]

Lemma 15. Let k > 1, K = 28" and ¢ > 0. Let f(x) = az® + - + ap be a
polynomial with real coefficients and

S(f) = _elf(n).

n=1

17



Then

kINk—1
1
K < k(@N)E-1 4 oK I NK-kgk (LIN)e in( N, — ).

Proof. Applying Lemma (11| with Ny =0, No = N, [ =k — 1 we get

‘S<f)‘K<(2N)K7k Z Z ‘Sdk—l ~~~~~ d1<f)

‘d1|<N |dk,1‘<N

Y

where

Streear ()= Y e(Bayar ())(0)

and I(dy_1,...,d;) = [N1+1, No] C [1, N]. Since |e(t)| = 1, we have [Sy, .4, (f)] <
N. By Lemma [12]

Adk Loeess dl(f)(l’) = d1 .. 'dk_lk'!OéI' + B = /\l’ + B

Sy ()] = Y edu . a ()
ne[(dk,I ..... d1)
Ny
= Z e(An + ﬁ)‘
n=N1+1
N2
= Z e(An)
n=N1+1
1 1
< = ;
Al lldy - - dr—iEle]]
so we have .
< i N’
‘Sdk,l ..... d1(f)| min ( Hdl dk—lk'aH)
Therefore

1
< (2N)E—F in( N .
@S e B i (N )



Ifd; - dp_ =0, then min (N, m) = N. There are fewer than (k — 1)(2N )2
choices of dy,...,d,_; such that d; ---dp_1 = 0, so

SO < @N)H(k = 1)(2N)* 2N

1
oN K-k in N
e S e S ()

1<|di|<N 1<|dg—1|<N
1
< k(2N)K-1 4 oK1 K-k in N, .
SAEN)TT A+ > Y min [dy - dp_1 Kl
1<di<N 1<dp_1<N

Since by Lemma d(m) < d.mf, it follows that the number of choices of
dy,...,d,_y such that m = d;---dj_1k! is at most d(m)*! < (dom®)¥~1. In
our case 1 < dy -+ - dj_1k! < kINF1, so

d(m)* 1 < (dem®)F ! < dPmF = dbm® < db (KINF)E = d~ kIR N® < d (KIN)E.
€ k k k2 %2

Therefore

1
S(HOIE < k(2N)E-1 4 oK-1 K-k in (N
1SN (2N)" + > 2. mm( da ~~-dk1k!a|\>

1<di1 <N 1<d 1 <N

EINk—1
1
< k(2N)E1 4 2K_1NK"“d’Z%(k!N)5 > min (N, m) .
m=1

2.1. Weyl’s inequality

Theorem 16 (Weyl's inequality). For k > 2 let f(z) = az® + -+ + ag be a
polynomial with real coefficients and suppose that there exist integers a and q such

that g > 1, (a,q) =1 and‘a—g gq%. Let K =21 ¢>0 and

S(f)=>_e(f(n)).

n=1

Then

1 1
2kK\ % (30g = 32k!  8k!\¥
1+e kg e ) gens ks
|S(f)] < 2N (d2k2Kk. . ) (Nk+ Nt q) :

Proof. Since |S(f)| < N, the result follows if ¢ > N*. Thus, we will assume that
1 <qg< N¥. Thenlogq < klogN < gNE. By Lemmawe have

EINk—1
1
IS(H)F < k@EN)E + 2K_1NK"“d’Z%(k!N)8 > min (N, W) .
m=1

19



By Lemma [9] we have

EINk-1

kIN*
Z min < ) <30q + 24KIN*1 1 8N + 8 > max(1,log q)
q
m=1
8kINF\ k
(30q+32k;'N’f 14 —) ZN°
q €
_k 30¢  32k!  8k!
— NFkte —+—).
€ (Nk N + q)
Therefore
kINF—1 1
K K-1 K—-177K—k gk .
< k(2N 28 TINTTEAE (KIN)® N, ——
SN < RN L) 3 min ()

k 30 32k!  8K!
< k(QN)Kfl +2K71NK7kdk%<k!N)egNk+s (_q 4=y _)
k

Nk N q
k (30g 32kl 8kl
< K AnTK+2¢ jk e’y
2f NEFE AL K ( ~F T v +—q)

<2k (30 32k! 8!
_QKNK+€dk k»l ==, =7

€ (Nk + N + q)

Thus, taking K'th root and replacing ¢ with =, we get

1 1
c 2kK\ % (30q 32k!  8EI\¥

1+4e ko plag 2 et Tt

1S(f)] < 2N <d2k2Kk.K - ) (Nk+ ~ q)

1 1
2K\ 5 (30 32k! 8KI\¥
1+¢ k e e cen b
< 2N (d%gKk. 8) ( k+N+q) .

The next two theorems are applications of Weyl’s inequality:

Theorem 17. Let k >

2 and let ¢ be a rational number with ¢ > 1 and (a,q) = 1.
Then

g k
S (ﬂ) <2 <d’“ 60k'1+€2kK> gR e
r=1 q ’ €
Proof. Let f(z) = @, N = q and apply Weyl’s inequality
q

1
2kK 30 32k! 8K\ ¥
stwal <u (ds ) (o 2

2k2K I k—1 q q

<2 (d’f ] 60k'1+52kK) e
9

2k2K

15(g, a)| =

20



]

Theorem 18. Let k > 2, N > 2 and let % be a rational number with ¢ > 1,
(a,q) =1 and Nz < g < N¥=2. Then there exists § > 0 such that

N k 2 \ ¥
Z € (ﬂ) <d1 26K 60k5'1+7_6 kK ) " Nl_é.
n=1 q

k

4k2 K2 1-20K
Proof. Apply [Weyl’s inequality| with f(z) = et

! !
|<)|<2N1+f<dk e 2IC) (M 3 o)
q

2k2K c
. kK \ ¥ 32k! 8K
) (55
Nz N2

£
(dk‘ 60k'1+8 2kK) K Nl

=]
==

==

€
1
4kK? \ ¥
—9 d ) k,l-s———& N1—5
( Logurs O 1— 20K
forany(5<QK,lfwetakeszﬁ—(S. n

2.2. Hua’s lemma

Theorem 19 (Hua’s lemma). For k > 2 let T(a) = SN e(an*). Then
/ T (cx heN? 752 where by =27 db KE.
k
Proof. We will prove by induction on j that
1 ; o - A
/ IT(a)|” da < h;N¥ 9% where h; = 2% d% k7.
0 K

foryj=1,...,k. If j =1, we have

[ ae = [ Ty - 53 [t~ mpia = x.

Let 1 < j < k—1 an assume that it is true for j. Let f(x) = ax®. By Lemma
,,,,, i, (f)(x) = ad; - - - dipy—;(z), where py_; is a polynomial of degree k — j with

21



integer coefficients. Applying Lemma (L1 with Ny = 0, Ny = N and S(f) = T'(«)
we get

T(@))” <N 3 3 3 (A (f)(0)

|di|<N  |dj|<N nel(dj,....d1)

SENPIE YT >0 Y0 eladydipe(n),

|d1|<N |dj|<N nel(dj,...,d1)

where I(d;, ..., d;) is an interval of consecutive integers contained in [1, N]. Thus
IT(a)” < (2N)* 2 ridjelad) (2)
where r(d) is the number of choices of |dy,...,|d;| < N and n € I(d;,...,dy)

such that d = d; - - - d;py_;(n). Since the degree of pr—j is k — j, it follows that if
d # 0, then by Lemma |d] < (j+1)*N* < k*N* and by Lemma|14|d(n) < d.n°,
SO

r(d) < d(dYH (k- §) < (de |df)*k = d* |d]™ k < d*(kN)*k = dk (kN)k.
If d =0, we get
7(0) < J(2N)IN + (k — j)(2N)! < k(2N

On the other hand

T(a) = T(a)”" T(=a)*"
N 2 N 271
= (Z e((m:k)> (Z e(ayk)>
r=1 y=1
N N N N 271 27—1
DI DD DD DI O DOEED o
x1=1 ZTyj—1=1y1=1 Ygi—1=1 i=1 =1

where s(d) is the number of representations of d in the form d = 22] ' K ZZ |k
with 1 < x;,y; < N. Then

S s(d) = [T(0))” = N?.

d
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By the inductive hypothesis

From and follows that

/O ()P do = / () |7(0)? da
<N [ S r@etad) Y s(ae
— @N)P Y r(@)s(d)

d

= (2N)¥ I 71r(0)5(0) + (2N)¥ 1N r(d)s(d)

d#0

< (2N)? RN b N 71 4 (2N)Y 1R (kN)TE Y s(d)
g d#0
< (2N)2j+1—(j+1)+ak,hj + (2N)2j_j_1N£N2jdki/{1+a
K2

< @N)PTIRE (ny o db k1)

— 92" U+ (lg22”1d’c K+ d k1+5> NPT+ +e

j+2 j+1_ j+1_
< 92 dlz% LIt N2 (G+D)+e _ hj+1N2 (j+1)+e

2.3. Infinite products

Definition 4. Let a1, as,... be a sequence of complex numbers and let p, =
[1;_, ax be the nth partial product. We say that the infinite product [[7; a,
converges to a # 0 if

o0

||an: lim p, = a.
n—oo

n=1

Fact 20. IfH _1 Qy, converges, then lim, o o, = 1.

Proof. lim,,_, ,, = lim,,_, pp—"l = 1. O
e

Lemma 21. Let a, > 0 for alln > 1. Then [[,_ (1 + a,) converges if and only

if Y00 an converges.
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Proof. Let s, =Y ,_, a; and p, = [[,_,(1 + ai). Observe that

n

0< zn:ak < ﬁ(l +ay) < [ e = eXi=ren,
k=1 k=1

k=1
that is
0<s, <p, <e™.
Since both sequences are increasing, it follows that {s,} converges if and only if

{pn} converges. O

Definition 5. We say that [[)~ (1 + a,) converges absolutely if T])" (1 + |ay])
converges.

Lemma 22. If [[°2,(1+ a,) converges absolutely, then it converges.

Proof. Let

n

pn:H(l_l'ak)v P, =

k=1

=

(1 + ’&k‘)

b
Il

1

The sequence {P,} converges, so the series »
that

T8

o(Py — P,_1) converges. Observe

1

an | 1 (14 ag)
1

3
|

|pn _pn—1| = |anpn—1| =

B
Il

n—1
< lao| [T+ |ak]) = lan] Py = P = Py
k=1

Therefore >, |pn — Pn1| converges, > > ,(pn — pn—1) converges and so {p,}
converges.

Now we prove that this limit is not zero. Since [[’~ (1 + a,) converges ab-
solutely, it follows from Lemma [21 that > 7 |a,| converges and the sequence
{a,} converges to zero. Therefore, for all sufficiently large integers n we have

11+ a,| > 5 and ‘—J_Zn < 2ay|. Tt follows that 77 |—332-| converges and
| <1 — lizn) converges. Thus, the sequence

- a | 1 1

11 (1 _ Tk ) =11 - _ =

k=1 1+ ax k=1 L+ay, Hk:l(l +ar)  pa
converges to a finite limit and so the limit of the sequence {p,} is nonzero. O]

Definition 6. A function f is multiplicative if f(mn) = f(m)f(n) for any rela-
tively prime positive integers m and n.
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Lemma 23. Let f be a multiplicative function that is not identically zero. If the

series y -, f(n) converges absolutely, then

d =11 (1 + Zf(p”)) :

peP

Proof. Since Y| f(n) converges absolutely, the series a, = -, f(p") converges

absolutely for every prime p. Also, the series

o= [

peP peP |n=1

<N Y

peP n=1

<> 1f(n)

converges, SO

[[a+a,)= H(1+Zf )

peP peP

converges absolutely and by Lemma [22] it converges.
Let ¢ > 0 and let Ny be an integer such that »7° \ |f(n)| < e. Let P(n)

denote the greatest prime factor of n. Let N > Ny. It follows that

1T <1+Zf(p”>> Y fn
peP n=1 P(n)<N

and

d fm =11 (1+Zf<p">> =D )= > fn)
n=1 n=1 n=1 P(n)<N

peP
p<N

— | Y < S 1wl < Y I <

P(n)>N P(n)>N n>N
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3. The circle method

In this section, let k > 2, s > 2% +1, N > 2¥, P = [N#] and

F(a) = Z e(amk).

m=1
Then )
Tk,s(N) :/ F(a)’e(—aN)da.
0
We want to estimate this integral. In order to do this, we will use Hardy’s and
Littlewood’s decomposition of unit interval [0, 1] into major and minor arcs.

Definition 7. Let 0 < v < % and let a and ¢ be integers such that 1 < g < P,
0<a<qand (a,q) =1. Then

a 1
M(q,a) = el0,1]: |la——| <
@) ={acnafo-2 < 5l
is a major arc and
q
m = U Mg
1<g<P?¥ a=0
(a,9)=1
is the set of major arcs.
m=1[0,1]\ M

is the set of minor arcs.

Lemma 24. The major arcs are pairwise disjoint.

’

Proof. Let ¢ # & and suppose that there exists o € M(q,a) NIM(¢',a’). Then

lag’ — a’q| > 1 and

1 1
g I
PZV qq/
a d
<li g
q q
a a
Sla——|+|a——
q
2
~ Pk—y
which is a contradiction for P > 2 and k > 2. O
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Lemma 25. A\(M
Proof. \(M(1 (1,1)) = = and for ¢
ANDM(q,a)) = 57

>
2<q< P (aaq)o
2

) < =3, where A is the Lebesgue measure
0)) = A

2, (a,q) = 1 we have

Pk: v

1<q<P¥ a=0
(a,9)=1
= Pk—r/ Z < Pk—u Z q
1<q<PY 1<q<PY
2 P”(P” + 1) 2
g Pk—v 2 g Pk—31/' 0

3.1. The minor arcs
Theorem 26. Let k > 2 and s >

A}w@fd—wam@

where

> 28 1 1. Then there exists 9 > 0 such that
< (2K d*

s_ok
o 4kK2\ K

14+ 5% / s—k—01
4JW&M!2K > ) h P

hy=22"dk
Proof. By [Dirichlet’s theorem| with Q

k,k:

2Kk2

a
o — —

rational number ¢ with 1 < ¢ < P*™ and (a, q) = 1 such that

PE=v_ for each number « there exists a
Q) =

< 1
q| = qPtr
If & € m, then a ¢ M

. 1 1
min m, ? .
1,0)uM(L,1), so
1

N

and 1 <

_a

< g — 1. Suppose that ¢ < P¥. Then, since ’oz
that a € m(q, ) C 9, which is a contradiction. Therefore P¥ < ¢ <
Let K = 2k1,

21 %, it follows
Pk v
By |Weyl s inequality| with f(z) = ax*,
|F(a)] < 2P (

we have
1
e k!€2kK) K (@ 32k!
2k2K c

. .+8m)i
PrT P T g

1
< 2pite (dka k'E%K "

) (30}*V%_32k!+_8kf>§
WK € Pk p ' pv
1
92 (dk’ 6Ok|1+6 QkK) K Pl-i-&—%‘
2k2K I
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From [Hua’s Temmal we have

/ F(0)* 2 F(a)* e(—na)da
< [ IP@) P)* da

/mF(Oz)Se(—na)da

< sup |F(a)]” 2 / |F(« dea
aem

s—2F
(2 (dk 60k'1+6 QkK) PH_E_IV() hkPQk—k—i-s

2k2K IS

Taking € = 5% and 6; = (S%Qk) — (s =2+ 1)e > 0, we get

_ok

9 5—27
< <2de . 60k!1+z?<%) " hy PR,

4k2 K2 1%

/m F(a)*e(—na)da

3.2. The major arcs

Lemma 27. Let v(3) = S0 _ Lmi~te(Bm). If |B] < &, then
0(8)] < 4min (P,8]7F).

Proof. Let f(x) = %x%_l for x > 0. f is positive, decreasing and continuously
differentiable. We have

e pn

m=1

Eﬂ»—t

N
1 1 1
- / Lok lde 4 (1) < N < 2P

wIH

If 18] < &, then P < Nt < [8]7F and [o(8)] < 2min (P, [8]7F).
If L < |8 < L, then |8 * < Nt < 2P. Let M = [ﬁ] Then

1
ML —<M+1<N.

15l
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Let U(t) = > 1cher- By Lemmawe have |U(t)] < m = m and by Lemma

>

m=M+1

1_
mk

= e - sonuon - [ owroa

\1|<f( - [ o)

M) 1 ( )_1<
Bl k(B \2]8 8%

N
1+Z

m=M-+1

wIH

Therefore

=
=
/AN
[]=
=
3
WIH
a-\H

3
1§

1
1
|B]*
- < 4min (P, |ﬁ\_%) O

+

N

Lemma 28. Let a and q be integers such that 1 < g < P”, 0 < a < ¢q and
(a,q) = 1. Let

If « € M(q,a), then

Pla) = 229, <a - g) +30P%,

where £x denotes any number in the interval [—x, x].

Proof. Let = a —¢. Then |5] < P"* and




where

otherwise.

{e a_> — S(‘L“)%m%—l if m is a kth power

1<m<y
m=r (mod q)

= S(q,a) (% + 1)

lgmét% q q 1<m<t
_ 8@y S0 ),
q q
Finally, by Lemma
N N
Z u(m)e(ﬁm)‘ = le(BN)U(N) — 2m'6/ e(ﬂt)U(t)dt’
m=1 1
N

<2q+47r|ﬁ|q/ 1dt
1

q(2+4m|B| N)

<
< PY(24 87 PY7FPR) < 30P%.

Theorem 29. Let




and

JH(N) = / v(B)e(~NB)dp.

_Pl/—k
Then
/ F(a)’e(—Na)da = &(N, P")J*(N) + 45+28P57k—627
n
where 65 = 1 — 5v > 0.
Proof. Let o € M(q,a), f=a — % and

vszx%@:ﬁﬁzwv(a—ﬂ):Jﬂ%@va

Since |S(g,a)| < ¢, by Lemma [27] we have |V| < [v(8)| < 4P. Let F = F(a).
Then |F| < P and |F — V| < 30P% by Lemma 2§ It follows that

[F*= Vo = |[F=V||FP + PPV 4 4 FV 2+ Vo
< 30P¥(4P)* s < 2- 47 s P,
Since A(9M) < 2P3~* by Lemma , it follows that

/ |F5 . Vs| d(lf < 4P3V—k4s+lsps—1+2u — 4S+QSPS_k_62,
m
where 93 = 1 — 5v > 0. Therefore

/ F(a)'e(—Na)da =/ V(a,q,a)°e(~Na)da £ 4°+2sps—+=5:
n m

Z Z/ V(a, q,a)’e(—Na)da £ 45125 ps=F02,

1<g<P? a=0
(a,q)=1

Ifg>2

V _ —
- q q
(i
(s ()
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If ¢ =1, we have V (o, 1,0) = v(a) and V (e, 1,1) = v(a — 1). Therefore

/ V(a,q,a)se(—Na)da+/ V(a, q,a)’e(—Na)da
M(1,0)

M(1,1)

pr=Fk 1
= / v(a)’e(—Na)da —|—/ v(a —1)°e(—Na)da
0 1-pv—Fk
= J*(N).
Finally,

/m Fla) e(—Na)da
-y oy (e

2<q<PY a=1
(a,q)=1

55 () ()

1<qg<P? a=1
(a,q)=1

= S(N, P")J*(N) £ 45125 ps—h02,

N
) <__a> JH(N) 4 JH(N) £ 47725 Prhbe
q

Theorem 30. Let .
Iy = [ opye-omyis

There exists 63 > 0 such that |J(N)| < 16P*~% and J*(N) = J(N) & 8P +%,
Proof. By Lemma

|J(N)|<8/ min (P 18] %> 8

0
- 8/0N min (P, |ﬁ|—%>sd5 + 8/12 win (P, |m—%)sdﬁ

<8/Npscw+8/25—idﬂ
0 ~

1—3 1—3
51 _ o1
_gpihy gt T2
s—k
< 16P*F
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and

J(N) = J (V)] = / v(B)e(~NB)dp

PY=R<|Bl<;

<2 @

=

<8 pidp

pr—k

(pk—u)%—l _ 931
s—k

< 8Ps—k:—§37

= 8k

Whereégzv(%—1)>0. O

Lemma 31. Let o and 8 be real numbers such that 0 < 8 <1 and o > 8. Then

N-1
61 (novael _ yasp—1 L@D(B) | 2N
T;m (N —m)* " = N** F(oz—i—ﬁ)i 7

Proof. Let g(z) = 271 (N — x)*~L. g is positive and differentiable on (0, N) and
integrable on [0, N]. Moreover, we have

/ON g(x)dr = /ON 2P7H(N — ) e

1
0

et L@)I(B)
=N ['(a+B)

If > 1, then




Therefore
N-1

o<1fg@Mx—g;mm>
< /Olg(x)dx

1
:/ 2NN — 2)* lda
0
Nafl
8

1
< N“l/ 22 Vdy =
0

If 0 < B < a< 1, then g has a local minimum at
_ BN
a+pB—2 27

This means that g is decreasing for z € (0, ¢), therefore

N].

[c] c

> gm) < [ alayte

and

[c

g(m) >

—

m=

c Na—l
> [ g(x)dx 5
If x € (¢, N), then g is increasing, so
N-1 N
> g < [ gla)da
m=[c]+1 ¢

and




Therefore

-1

N N a—1 B—1 a—1
N N 2N

0< / z)dr — g m) < + < .
. 9( ) m:1g< ) 3 a 3

Theorem 32. If s > 2, then

I(1+1)

s—2
J(N) = NiT' £ e, N1 where o= (5e) [T ().
j=1

Proof. Let

and

JS(N):%Z Z(ml---ms)i-l/_2 e((my 4 -+ +my, — N)B)dp

mi+--+ms=N
1<m; <N

For s = 2, if we apply Lemma [31| with oo = § = %, we get




as desired.
Let s > 2 and suppose that the theorem holds for s. Then

Jon(N) = / " u(B) T e(~NB)d

- / v(B)(B)e(~NB)dp

m=1

N
:ZEmE Js(N —m)

m=1

F(1+% Lo i Nl 1y

Applying Lemmawith a=7, 3= % to the first term and with o = %, b=
to the second term, we get

N-1 )
L. . 1T (L) o .
m=1 %
and .
s—1 1
Zl % ) ;1 — lm]\[%—l :tQNSEI_l
’ ET()
Putting it together, we get
S\ (L )
Jn(v) = LD %F(k)si(k)Ns;_lﬂNk_l)
r(3) L (=)
s=1\ (1
. (EF( k )SF (k)Nk—1iQN~k_1>
kooT(3)
s+1
TN
NG
1)% s—1 1
i(m-w(ltk) NGOGV )
L (3) r(3)
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Using Lemma [2] we estimate the error term:

k
1)% s=1 1
<(;(Fltk) LT >r<1+k>+268>N;1

< (26+ecs (Tl
< (2663 (Tl) +

3.3. The singular series

Definition 8. We define the singular series as

= Anlg)

o (4)(39),

a=1
(a,q)=1

where

Lemma 33. The singular series converges absolutely and uniformly with respect
to N.

Proof. Let0<5<— Since s > 2¥ 41 = 2K + 1, we have

1
%—1—35 > 14— —se =144,

where 64 = % — se > 0. By Theorem

2K\ ¥
|AN(q)‘ < 28 (dkf60k'1+5 ) qsq — g 23 (dl 5k 60k'1+

2k2K £ K~ 2 K2s — (54

2kK2 )K 1
q

1+64 :

]
Lemma 34. Let q and r be integers such that (q,r) = 1. Then

S(qr,ar + bq) = S(q,a)S(r,b).
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Proof. Since (q,r) = 1, {zr: 1 <z <q} ={1,....,qtand {yg: 1 <y <r} =
{1,...,r}. Every residue modulo gr can be written uniquely as zr + yq, where
I<r<gand 1 <y <r,so

S(qr,ar + bg) = ie (M)

_mzlz ( §:+bq xr—i-yCI) )
- ZZ ( ) Z () <xr>l<yq>’f-’>
- ZZ (R o + ) )
Ly (e, ()

o=1 y=1 q "

Lemma 35. If (¢,7) =1, then Ax(qr) = An(q)An(r).

Proof. 1f (¢,qr) = 1, then ¢ = ar + bg (mod q), where (a,q) = (b,r) = 1. From
Lemma [34] we have

An(qr) = i (%)se(_ﬂ>

c=1 qr
(e,qr)=1
B I . <S(qrar+bq) ( a,r—l—qu)
a=1 b=1
(a,q)=1 (b,r)=1
-2 () () () ()
a=1 b=1 r
(a,9)=1 (b,r)=1
q

5 () £ ()

1 (b,r)=1
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= An(q)An(r).
Il

Definition 9. For any positive integer ¢, let My(gq) be the number of solutions of

the congruence
k ko
zy 4+ -+ 2 = N (mod q),

where x; are integers from the interval [1, ¢].

Lemma 36. Let s > 2% + 1. For every prime p, the series

xv(p) =1+ Av(p")

converges and
. My (")
o p) = i e

h—o00

Proof. The convergence of the series follows from Lemma If (a,q) = d, then

Since
1 ifm=0 (modyq)

éz(Ym) - {o it m#0 (mod g),

it follows that for any integers x1,...,x;

a(x’f—|—~--+:c'§—N)> B

1 q
5;6( q

1 ifaf+.- 428 =N (mod q)
0 ifab+---+2¥# N (mod q),
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SO

-3y gy (M )

r1=1 :vs—l

P HPRDWC

a= 1:v1 1 zs=1

SR () ()

alxll rs=1 q q

M (ma
1 (g a\s [—4N
2 X es(38) ()
dlq (azl_
a,q)=d
I v (SEDY) (N
- 52 Z q ( q )
dlq (a=£ d d
a,q)=d
()
dlq
Therefore q
ZAN (ZZ) = ¢ *Mn(q)
dlq
for ¢ > 1. If we take ¢ = p”, we have
h ' ph
L+ Ax(p)=) Ax (E) ="My (")
j=1 dlph

and

Lemma 37. If s > 2 4+ 1, then



Moreover,

2K2 3 1
GS(N) < <d154K60k'1+ h ) <1+—).

2k2K?2 - (54 (54
for all N.

Proof. From Lemma [33| we know that the series Z;il An(q) converges absolutely
and from Lemma [35| we know that Ay is multiplicative. Thus, Lemma [23| implies
that S(N) = [[,cp X (p). Using estimates from the proof of Lemma [33 we get

6(N><czq1+54<0<1+/1 de>zc<1+§_4>’

where

1 1
Lemma 38. There exists a prime ( 44‘: )54 <po <2 (54 ing) " such that

for all N.
Proof. From Lemma [33] we know that

C

[An(g)| < m7

where .
c=2° (d1 s GORITT e 2kK2 )K
2k2K2s - 54

Therefore

> 1 2c

xn(p) — 11 < Z [An (v’ Czp] o) 1+54 1— S e

]:1 pl+54
and 5

c

1 - R < xn(p)
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for all N and p. Now it suffices to find a prime p, such that % < ] per (1 — ﬁ)
pP>po

which, by continuity of logarithm, is equivalent to log% <D per log (1 — Iﬁ;)

P>po

Let us estimate the right-hand side of the last inequality. We will use the fact that
—2- < log(1+ ) for all z > —1. Replacing z with —1, we get-1- < log (1 —1).

x+1 7
Thus
2c
0> S tog (1- -5
peP
P>po
> 2c
n=po

o 2c

> /po log (1— $1+64> dx
o 1

[
po 1 — 5

2c

>~ 1
Po

4c - 1
= — > log —.
54]984 & 2

Solving the last inequality, we get
1
S 4c 4
Po = <5410g2) ‘

Definition 10. Let p be a prime and let k = pTkq, where 7 > 0 and (p, ko) = 1.
We define

[]

T+ 1 ifp>2
7= T+2 ifp=2.

Fact 39. Let a, b, r be integers. Then r =0 (mod (a,b)) if and only if there exists
an integer v such that av = r (mod b).

Proof. Assume that av = r (mod b). This means that blav — r, so (a,b)|av — r.
But (a,b)|a, so =0 (mod (a,b)).

Let d = (a,b) and assume that » = 0 (mod d). Let 79, ap and by be integers
such that r = rod, a = apd and b = bpd. Then (ag, by) = 1. We want to find v such
that blav — r. This is equivalent to by|agv — ro, which in turn means that there

42



exist integers v and w such that agv — bgw = ry. This is true, since ay and by are
relatively prime. O

Lemma 40. Let h > 3. Then the subgroup of Z3, consisting of numbers congruent
to 1 modulo 4 is a cyclic group of order 2% and 5 is its generator.

Proof. We want to show that 52"° = 1 (mod 2") and 52"° # 1 (mod 2"), which
is equivalent to 2*5%" " — 1 and 2" 52" — 1.

2
52h72 . 1 _ (52}173) _1

= (577 1) (57 + 1)
- (52h‘4 - 1) (52h‘4 + 1) (52’“3 + 1)

—4 (520 + 1) (52h‘3 + 1)

Each factor except the first one is congruent to 2 modulo 4 and so the conclusion
follows. o

Lemma 41. Let m be an integer not divisible by p. If the congruence z* = m (mod p?)
is solvable, then the congruence y* = m (mod p") is solvable for every h > 7.

Proof. First assume that p is an odd prime. For h > v =7+ 1, we have

(k")) = (kop™, (p — V") = (ko,p — D)p” = (k, 0(p")).

Zy), is a cyclic group of order o(p") = (p—1)p". Let g be a generator of this group.
Let 2¥ = m (mod p”). Then (z,p) = 1 and there exist integers r and u such that
r = g* (mod p") and m = g" (mod p"). Since h > v, we have z = g* (mod p7) and
m = ¢" (mod p?). and so ku = r (mod ¢(p?)). By Fact BYr = 0 (mod (k, ¢(p)))
and r = 0 (mod (k, p(p"))). Again by Fact [39] there exists an integer v such that
kv =r (mod p(p")). If we let y = g%, then y* = m (mod p").

Now assume that p = 2. Then m and z are odd. If k is odd, then 7 = 0 and
v = 2. Note that {y* mod 2" : y = 1,3,...2" — 1} = {1,3,...,2" — 1}, since
if y¥ = y& (mod 2"), then 2"|yf — & = (y1 — y2)(yf ' + -+ + 95~ 1). Therefore
the congruence y* = m (mod 2") is solvable for all h > 1. If k is even, then
7>1,v>3and m = 2¥ = 1 (mod 4). Also, 2* = (—z)*, so we may assume
that + = 1 (mod 4). By Lemma we can choose integers r and u such that
m = 5" (mod 2") and x = 5 (mod 2"). Then z* = m (mod 27) is equivalent to
ku = r (mod 2772) and by Fact [39] r is divisible by (k,2772) = 272 = (k,2"2).
Again by Fact [39 there exists an integer v such that kv = r (mod 2"2). If we let
y = 5, then y* = m (mod 2"). O
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Lemma 42. Let p be prime. If there exist integers ay, ..., as, not all divisible by
p, such that
af + .- +a" =N (mod p),

then

> ! 0
XN(p)/Zm> .

Proof. Suppose that p { a;. Let h > «. For each i = 2,...,s there exist p"~7
distinct integers 1 < x; < p" such that x; = a; (mod p?). Since the congruence

¥ =N -2k —.. — 2% (mod p?)
is solvable with x; = a4, it follows from Lemma [41| that the congruence
¥ =N —ab — ... —2F (mod p")

is also solvable. Thus
MN(ph) > p(h—v)(s—l)

and by Lemma

My (p" 1
Xn(p) = lim M)

h—soo ph(s—l) = p'y(s—l) > 0.

Lemma 43. If s > 2k for odd p or s > 4k for even p, then
xn(p) =p" 7 > 0.
Proof. By Lemma [42] it suffices to show that the congruence
ay +---+af = N (mod p") (4)

is solvable in integers a; not all divisible by p. If N is not divisible by p and the
congruence is solvable, then at least one of the integers a; is not divisible by p. If
N is divisible by p, then it suffices to show that the congruence

ai +---+a, +1F =N (mod p7)
has a solution in integers. This is equivalent to solving
a¥ 4. +a* =N -1 (mod p?).

In this case (N — 1,p) = 1. Therefore, it suffices to prove that, for N relatively
prime to p, the congruence

a¥ 4+ ---+a" =N (mod p")

44



is solvable in integers with s > 2k — 1 if p is odd and with s > 4k — 1 if p is even.

Let p be an odd prime and g be a generator of the group Z;,. The order of
gis p(p?) = (p—1)p"~t = (p—1)p". Let (m,p) = 1. The integer m is a kth
power residue modulo p” if and only if there exists an integer x such that z* =
m (mod p”). Let m = ¢" (mod p?). Then m is a kth power modulo p” if and only
if there exists an integer v such that z = ¢* (mod p”) and kv = r (mod (p—1)p7).
Since k = kop” with (ko,p) = 1, it follows from Fact that this congruence is

solvable if and only if r = 0 (mod (ko,p — 1)p”), so there are

o(p”) p—1

(k()?p - 1)pT (kl)?p - 1)

distinct kth powers modulo p”. Let s(/V) be the smallest integer s for which the
congruence is solvable and let C(j) denote the set of all residues N modulo p”
relatively prime to p such that s(N) = j. If (m,p) = 1, then the congruence

2 + - 2F = N (mod p)
is solvable if and only if the congruence
¥ 42 =mFN (mod p?)

is solvable, since we can multiply or divide both sides by m¥. This means that the
sets C(j) are closed under multiplication by kth powers, so, if C(j) is non-empty,
then |C(j)| > (kail). Let n be the largest integer such that the set C(n) is
non-empty. Let 7 < n and let NV be the smallest integer relatively prime to p such
that s(/V) > j. Since p is an odd prime, it follows that NV —i is relatively prime to p
fori=1or2and s(N—i) < j. Since N = (N—1)+1Fand N = (N —2)+ 1%+ 1%,
it follows that
JH1<s(N)<s(N—i)+2<j+2

and so s(N — i) = j or j — 1. This implies that no two consecutive sets C(j) are
empty for j = 1,...,n and so the number of non-empty sets C'(7) is at least ”TH
Since the sets C'(j) are pairwise disjoint, it follows that

(=1 =)= > \C(m?n;l(kip_—ll)

7j=1
C(5)#0

and so
n < 2(ko,p—1)p" — 1< 2k — 1.

Therefore, s(N) < 2k — 1 if p is an odd prime and N is relatively prime to p.
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Now let p = 2. If k is odd, then every odd integer is a kth power modulo 27
(proved in the proof of Lemmat1]), so s(N) = 1 for all odd integers N. If k is even,
then £k = 27ky with 7 > 1 and v = 7 4+ 2. We can assume that 1 < N <27 — 1. If

s=2"—1=4-2" - 1< 4k — 1,

then the congruence can be solved by setting a; = 1fori=1,..., N and a; =0

fori =N +1,...,s. Therefore, s(N) < 4k —1if p=2 and N is odd. ]
Theorem 44.
c1 <K G(N) < e,
where )
4c I —s
1 o\ A 2ae) 0
C1 = = 4k
2 6410g2
and .
- 2kK?s \ ¥ 1
— 95 ((dk . G0k RE PR T 1)
“ ( Er e - 04 KK * 04
Moreover,

S(N,P") = &(N) + 5313—”54.
4

Proof. From Lemma [37] we have the upper bound. By Lemma there exists a
1 1
prime (54i4§g2> "< pp <2 (54f§g2> " such that 5 < Il per xn(p) for all N. Since
pP>Po

by Lemma

xn(p) = p 9 >0

for all primes p and all N, it follows that

s(V) = [Txv) > 5 [T (o)

pEP pEP
P<Po

1 1

- (1-s) < = (1-s)

>2||p7 >2||(27€p)
peP pEP

P<PO P<Po

1 s
> 5 (Qk,po)l)o(l )

1
Sy (2 3 2((stgz) " (1-9) — >0
~ 2 d4log 2 —a-n
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where

(dl 55 GOKITH “‘“ﬂ)K

2k2K2s — 54

To prove the last part, note that by Lemma |33, we have

4 001 c
S~ 8NP < Y Ixl <e Y i <o [ e = oo

Q>PV q>Pl/

]

Theorem 45 (Hardy-Littlewood). Let k > 2 and s > 2% + 1. Let 1 s(N) denote
the number of representations of N as the sum of s kth powers of positive integers.
There exists 6 > 0 such that

s(N) = S(N)T (1 ; %)sr (2) " i

24c S
+2 (Cs + 8¢y + 5e T 45+25 4 mh’) Ni—1-0

with
a < 6(N) < e
where

k

4[(2)5}2

" (Qde . 60k TR

4kK?2
k+1
hpy=2%"d"s K
2Kk

S

y 2kK? K
— o (b GORIRS
’ ( e 0T 1—5KS)

B 5

1

fry 1 —
Co C( +6)

% 1+e
d. = &2
€
s—2
&= 0o [T ()
j=1



Proof. Let dg = min(1,d7,09,03,104) and 6 = %0. Note that 6y < vdy < v. By
Theorem [26], Theorem [29, Theorem [30, Theorem [32], Theorem [44] we have

Tkﬁ(N):/o F(a)’e(—Na)da

_ /m F(a)*e(—Na)da + / F(a)*e(—Na)da

m

= 6<N, PV)J*(N> + 48+28P37k752 + mh;gpsfkftsl

= &(N)J(N)

= (G(N) + 6£P—V64) (J(N) + 8Ps—k—53) + 4s+28Ps—k—62 + mh;ﬂps—k—dl

:I: 802Ps—k—53 + @Ps—k—ucﬂl + 8_CPS—k—§3—l/§4
04 04

+ 4s+2spsfk762 + mh;PSikiél
24
= 6<N)J(N) + (862 —+ 5_6 + 4s+28 4 mh;€> Psfk:fég
0
MNi—l
r(3)
é_l_éq

s—1 24
+e,NE 142 (802 + 5—6 + 45 25 4 mh%) NE= 7%
0

— &(N)

I(1+1)

r ;)

24c¢

= (W) ok

N&=t 42 (cs + 8¢y + + 45725 4 mh%) N&—19
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