
O problemie determinacji zapytań
dla języków regularnych

(About the query determinacy problem for regular languages)

Grzegorz Głuch

Praca magisterska

Promotor: prof. Jerzy Marcinkowski

Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

21 sierpnia 2018

Streszczenie

Celem pracy jest prezentacja problemu determinacji zapytań, historii jego ba-
dania, a także prezentacja współuzyskanych przez autora wyników. Praca składa się
z dwóch integralnych części. Pierwsza zawiera wprowadzenie do rozważanych zagad-
nień oraz jeden wynik o rozstrzygalności pewnego fragmentu problemu determina-
cji zapytań. Druga część to dwie załączone prace: ”Can One Escape Red Chains?
Regular Path Queries is Undecidable.” oraz ”The First Order Truth behind Un-
decidability of Regular Path Queries Determinacy.”, w których udowodniona jest
nierozstrzygalność dwóch wariantów problemu determinacji zapytań.

The aim of this work is to present a query determinacy problem, history of its
research, as well as the presentation of results co-created by the author. The work
consists of two integral parts. The first contains an introduction to the issues under
consideration and one result on the decidability of a certain fragment of the query
determinacy problem. The second part consists of two attached papers: ”Can One
Escape Red Chains? Regular Path Queries is Undecidable.” and ”The First Order
Truth behind Undecidability of Regular Path Queries Determinacy.”, in which the
undecidability of two variants of the query determinacy problem is proved.

Spis treści

1. Wprowadzenie 7

1.1. Wstęp . 7

1.2. Cel pracy . 7

2. Problem determinacji zapytań 9

2.1. Definicja problemu . 9

2.2. Motywacja . 9

2.3. Grafowe bazy danych . 11

2.4. Przykłady . 12

2.5. Uzyskane wyniki . 12

2.6. Wkład autorów . 13

3. Positive result 19

3.1. Preliminaries . 19

3.2. Characterization of determiniacy . 20

3.3. Automata . 22

3.3.1. Intuitions . 22

3.3.2. Construction . 23

3.4. Putting it all together . 26

Bibliografia 27

A Załącznik 1 29

B Załącznik 2 41

5

Rozdział 1.

Wprowadzenie

1.1. Wstęp

W ostatnich latach popularność zaczęły zyskiwać grafowe bazy danych. Są one
używane coraz częściej przy np. modelowaniu sieci społecznościowych w serwisach
takich jak Facebook, MySpace czy LinkedIn. W tego typu bazach dane modelowane
są jako grafy, gdzie wierzchołki reprezentują obiekty, a etykietowane krawędzie defi-
niują relacje między tymi obiektami.

Popularność grafowych baz danych motywuje rozważanie teoretycznych zagad-
nień, potencjalnie rozwiązanych już w tradycyjnym modelu relacyjnym, także w
modelu grafowym. Właśnie jeden z takich problemów jest przedmiotem tej pracy
magisterskiej.

Zajmiemy się tutaj Problemem determinacji zapytań. Wyobraźmy sobie
bazę danych D, do której nie mamy bezpośredniego dostępu. Mamy natomiast dostęp
do zbioru widoków Q = {Q1,Q2, . . .Qk}. Oprócz tego otrzymujemy zapytanie Q0.
Czy jesteśmy w stanie, niezależnie od D, obliczyć Q0 używając do tego jedynie
widoków z Q?

1.2. Cel pracy

Celem pracy jest prezentacja Problemu determinacji zapytań, omówienie
historii jego badania, a także prezentacja wyników współuzyskanych przez autora
dla modelu grafowych baz danych.

7

Rozdział 2.

Problem determinacji zapytań

2.1. Definicja problemu

?

D
Q1

Q2

Q3Q0

Q0(D)

Rysunek 2.1

Poniżej wprowadzamy formalną definicję problemu determinacji zapytań, która
abstrahuje od konkretnego modelu baz danych.

Instancją problemu jest zbiór zapytań Q = {Q1, . . .Qk}, i dodatkowe zapytanie Q0.
Pytamy czy Q determinuje Q0, co oznacza, że dla każdych dwóch struktur (in-
stancji baz danych) D1 i D2, takich że Q(D1) = Q(D2) dla każdego Q ∈ Q, zachodzi
również Q0(D1) = Q0(D2).

Warto tu zauważyć, że instancją problemu są tu jedynie zapytania. Determina-
cja jest więc własnością samych zapytań, a nie baz danych. IntuicyjnieQ determinuje
Q0, gdy informacja zawarta w widokach jest wystarczająca do zdeterminowania wy-
niku zapytania Q0.

2.2. Motywacja

Problem, formalnie zdefiniowany w poprzedniej sekcji, jest czysto teoretyczny.
Został on jednak zidentyfikowany i wyabstrahowany na podstawie praktycznych za-

9

10 ROZDZIAŁ 2. PROBLEM DETERMINACJI ZAPYTAŃ

stosowań. Możemy tutaj myśleć o trzech aspektach: optymalizacji, integracji danych
i prywatności.

Optymalizacja. W pierwszym przypadku wyobraźmy sobie, że z powodów
wydajnościowych nie chcemy uzyskiwać dostępu do głównej bazy danych D. Mamy
natomiast efektywny dostęp do pewnego zbioru widoków tej bazy V = {V1, . . .Vk},
które powstały jako rezultat aplikacji zapytań Q = {Q1, . . .Qk} do D, a dokładniej
Vi ∶= Qi(D) dla każdego i. Możemy myśleć, że np. widoki znajdują się w pamięci
podręcznej komputera, a D znajduje się na dysku i czas dostępu do V jest znacznie
niższy do D. Innym przykładem powyższej sytuacji są ogromne, rozproszone bazy
danych, gdzie może się zdarzyć, że D przechowywane jest w częściach rozdzielonych
po wielu centrach obliczeniowych, a widoki z V znajdują się w tej samej lokalizacji,
z której chcemy wykonać zapytanie Q0. W powyższych przypadkach chcielibyśmy,
żeby Q determinowało Q0, bo to może oznaczać, że uda nam się obliczyć Q0(D)
jedynie na podstawie widoków V.

Integracja danych. Integracja danych to problem polegający na połączeniu
danych pochodzących z różnych źródeł i zapewnieniu użytkownikowi zunifikowanego
dostępu do tych danych. Ideałem dla użytkownika byłby tu taki dostęp do danych,
jakby pochodziły one z jednej bazy danych. W tym scenariuszu traktujemy bazowe
bazy danych jako widoki V globalnej, wirtualnej bazy D. W momencie gdy użyt-
kownik chce wykonać zapytanie Q0 do wirtualnej bazy D musimy zdecydować czy V
determinuje Q0 i jeśli tak to spróbować obliczyć wynik zapytania Q0 bezpośrednio
z widoków V.

Prywatność. Trzeci aspekt, czyli prywatność, może się pojawić w następującej
sytuacji. Potraktujmy informacje, jakie przechowuje o nas portal Facebook, jako
bazę danych D. Wśród tych danych znajdują się informacje o adresach, numerach
telefonu, preferencjach, historii zakupów itd.; część z nich to informacje poufne. Przez
V = {V1, . . .Vk} (gdzie Vi ∶= Qi(D)) możemy rozumieć np. informacje, do jakich
dostęp mają poszczególni użytkownicy, reklamodawcy czy pracownicy Facebook’a.
Portal społecznościowy powinien zapewnić, żeby na podstawie widoków V nie dało
się obliczyć wyników niektórych zapytań Q0. Nie chcielibyśmy np. żeby użytkownicy
niebędący naszymi przyjaciółmi mogli poznać nasze miejsce zamieszkania czy numer
telefonu. Jeśli twórcy Facebook’a zadbają o to, żeby Q nie determinowało Q0, dla
Q0 będących zapytaniami generującymi poufne dane, to zwiększą oni tym samym
prywatność użytkowników.

2.3. GRAFOWE BAZY DANYCH 11

2.3. Grafowe bazy danych

EveAlice

Bob
likes

likes

likes

knows

knows

Books Movies

Rysunek 2.2

W grafowych bazach danych dane modelowane są jako graf. Model ten w natu-
ralny sposób odpowiada danym takim jak sieci społecznościowe, struktura internetu
czy dane biologiczne. Takie bazy danych są mniej ekspresywne niż standardowe re-
lacyjne bazy, ale za to są one bardziej elastyczne. Grafowe bazy danych są ważnym
tematem badań i zastosowań już od ponad 20 lat.

Definition 1 (Grafowa baza danych). Instancją grafowej bazy danych nad al-
fabetem Σ jest graf G = ⟨V,E⟩, gdzie wierzchołki V reprezentują obiekty, a etykie-
towane krawędzie E ⊂ V × V × Σ definiują relacje między obiektami V . Σ to zbiór
możliwych etykiet krawędzi, czyli równocześnie możliwych relacji między obiektami.

I w teorii i w praktyce w grafowych bazach danych używane są różne rodzaje
zapytań. Jednym z bardziej popularnych języków zapytań jest język RPQs (ang.
Regular-Path-Queries) i to właśnie na tym języku zapytań skupimy się w tej pracy.
RPQs to po prostu wyrażenia regularne nad alfabetem etykiet grafu. Wyrażenie
takie zwraca pary wierzchołków połączone ścieżką etykietowaną słowem z języka
definiowanego tym wyrażeniem. Jak tłumaczy [V16] RPQs to dobry język zapytań
dla grafowych baz danych, bo ma rozstrzygalny problem zawierania zapytań, a z
drugiej strony pozwala na łatwą nawigację po grafie. Pozwala on między innymi
na podążanie sekwencją krawędzi, której długość nie jest podana explicite. Jest to
możliwe dzięki rekursji zapewnionej przez wyrażenia regularne.

Definition 2 (Zapytanie). Zapytanie do grafowej bazy danych G = ⟨V,E⟩ nad Σ

to wyrażenie regularne Reg nad alfabetem Σ, które definiuje język regularny LReg.

Definition 3 (Wynik zapytania). Wynik zapytania Reg na bazie danych G =
⟨V,E⟩ to zbiór par wierzchołków z V połączonych słowem z LReg. FormalnieReg(G) =
{(u, v) ∈ V × V ∶ ∃ w ∈ LReg ∃ ścieżka w G z u do v etykietowana przez w}.

12 ROZDZIAŁ 2. PROBLEM DETERMINACJI ZAPYTAŃ

Przykład 1. Rozważmy grafową bazę danych widoczną na Rysunek 2.2. Załóżmy,
że chcemy się dowiedzieć jakie rzeczy lubią nasi przyjaciele, przyjaciele naszych
przyjaciół itd. W tym celu wykonujemy zapytanie knows+likes i otrzymujemy w
tym przypadku odpowiedź: {(Alice,Books), (Alice,Movies), (Bob,Movies)}.

2.4. Przykłady

W tej sekcji podajemy listę przykładów pozwalających lepiej zrozumieć problem
determinacji.

• Q0 ∈ Q Ô⇒ Q determinuje Q0.

Dowód. Załóżmy, że Q(D1) = Q(D2) dla każdego Q ∈ Q. Mamy wtedy w
szczególności, że Q0 ∈ Q, więc Q0(D1) = Q0(D2).

• Q = {ab, bc} nie determinuje Q0 = abc.

Dowód. Rozważmy bazę danych D1 złożoną ze ścieżki x0
aÐ→ x1

bÐ→ x2
cÐ→ x3 i

bazę D2 złożoną z dwóch rozłącznych ścieżek x0
aÐ→ u

bÐ→ x2, x1
bÐ→ v

cÐ→ x3.
Wtedy (ab)(D1) = {(x0, x2)} = (ab)(D2) i (bc)(D1) = {(x1, x3)} = (bc)(D2),
ale (abc)(D1) = {(x0, x3)} ≠ ∅ = (abc)(D2).

• Q = {a∗, b∗} determinuje Q0 = a∗b∗.

Dowód. (a∗b∗)(D) zwraca pary wierzchołków połączone ścieżką etykietowaną
słowem z języka a∗b∗. Każdą taką ścieżkę możemy podzielić na część etykie-
towaną a∗ i na część etykietowaną b∗. Mając więc wyniki (a∗)(D) i (b∗)(D)
obliczamy (a∗b∗)(D) jako {(x, z) ∶ ∃ y (x, y) ∈ (a∗)(D), (y, z) ∈ (b∗)(D)}.

2.5. Uzyskane wyniki

Wyniki współuzyskane przez autora umieszczone są w dwóch pracach: ”Can One
Escape Red Chains? Regular Path Queries is Undecidable.” (Załącznik 1, [GMO18])
i ”The First Order Truth behind Undecidability of Regular Path Queries Determi-
nacy.” (Załącznik 2, [GMO18a]) oraz w Rozdziale 3.

W [GMO18] pokazujemy, że Problem Determinacji Zapytań dla RPQs (Re-
gular Path Queries) jest nierozstrzygalny. Zamyka to tym samym problem posta-
wiony ponad 15 lat temu w [CGLV02]. W [GMO18a], budując na technikach zapre-
zentowanych w pierwszej pracy, udowadniamy nierozstrzygalność dla skończonych
RPQs. Dokładniej pokazujemy, że gdy instancje Problemu Determinacji Zapytań

2.6. WKŁAD AUTORÓW 13

Q = {Q1, . . .Qk} i Q0 definiowane są wyrażeniami regularnymi definiującymi skoń-
czone języki, to problem dalej jest nierozstrzygalny. Natomiast w Rozdziale 3. po-
kazujemy, że Problem Determinacji Zapytań jest rozstrzygalny gdy wszystkie wyra-
żenia z Q = {Q1, . . .Qk} definiują języki jednosłowowe.

2.6. Wkład autorów

W tej sekcji spróbujemy opisać wkład każdego z autorów w uzyskane wyniki.
Najłatwiej byłoby przypisać autorom lematy, dowody, czy definicje, których są twór-
cami. Niestety jest to niemożliwe, gdyż poszczególne fragmenty zawarte w pracach
są finalnym produktem miesięcy prób i błędów. Dowody i notacje przechodziły wiele
zmian, więc nie sposób przypisać ich jednoznacznie któremuś z autorów. Co więcej,
w czasie badań powstały wyniki, które pozwoliły na lepsze zrozumienie problemu, a
nie zostały umieszczone w końcowych pracach. Wartość zawarta w tych pośrednich
rezultatach nie powinna być pominięta przy opisie wkładu każdego z autorów. Bio-
rąc to wszystko pod uwagę spróbujemy tu opisać historię badań wraz ze wskazaniem
ważniejszych momentów i przełomów.

W celu ułatwienia odnoszenia się do poszczególnych autorów zastosujemy kon-
wencję, gdzie piszemy:

• ”J.”, gdy mówimy o prof. Jerzym Marcinkowskim,

• ”P.”, gdy mówimy o Panu Piotrze Ostropolskim-Nalewaji,

• ”G.”, gdy mówimy o Grzegorzu Głuchu.

Badania rozpoczęliśmy od analizy prac o tematyce związanej z problemem de-
terminacji dla zapytań regularnych. Na początku zaznajomiliśmy się z [A11], gdzie
rozstrzygalność została udowodniona, gdy wszystkie języki z Q oraz język Q0 są
jednosłowowe, oraz z [GM15] gdzie nierozstrzygalność została pokazana dla zapytań
koniunkcyjnych. Już od tego momentu zaadoptowaliśmy ideę Red-Green Chase’a z
pracy [GM15], która pozwala sprowadzić problem determinacji do badania ewolu-
cji pewnej czerwono-zielonej struktury. Ewolucja tej struktury może być rozumiana
jako pewna gra dwuosobowa (nazwana Escape), grana pomiędzy Fugitive’em, a Cro-
codile’em, w której trakcie w wyniku ruchów graczy budowana jest stopniowo pewna
baza danych. Fugitive dąży do zbudowania bazy danych będącej kontrprzykładem
na determinację, a Crocodile próbuje przeszkodzić Fugitive’owi. Rozumowanie w ter-
minach tej gry było obecne w rozważaniach aż do końca.

Pierwszą strategię walki z problemem zaproponował G. Zauważmy, że każde
wyrażenie regularne złożone jest z liter z pewnego alfabetu Σ oraz operatorów ∗,+, ●
(gdzie ● to konkatenacja). Dopuszczając jedynie pewny podzbiór operatorów można

14 ROZDZIAŁ 2. PROBLEM DETERMINACJI ZAPYTAŃ

zmniejszyć ekspresywność wyrażeń. Np. wyrażenia używające jedynie operatora kon-
katenacji definiują dokładnie języki jednosłowowe. Zaproponowane podejście pole-
gało na rozwiązywaniu następujących problemów: Czy dla podzbiorów operatorów
A,B ⊂ {∗,+, ●} rozstrzygalny jest problem determinacji, gdy języki z Q używają
jedynie operatorów z A, a język Q0 używa jedynie operatorów z B? Zauważmy, że
gdy A oraz B zawierają wszystkie operatory to otrzymujemy dokładnie problem
determinacji. Zauważmy też, że gdy A = B = {●} to otrzymujemy dokładnie problem
rozważany w [A11], który wiemy, że jest rozstrzygalny. Manipulując więc zbiorami
A i B jesteśmy w stanie przechodzić od problemów prostych, przez trudniejsze, aż
do docelowego problemu determinacji.

Strategia ta zaowocowała umiarkowanym sukcesem. Dosyć łatwo udowodniona
została rozstrzygalność dla szeregu konfiguracji zbiorów A i B, np. gdy A = ∅ lub
B = {∗}. Najważniejszym wynikiem w tej fazie było udowodnienie przez G. roz-
strzygalności, gdy A = {●} i B = {∗,+, ●}, co uogólnia wynik z [A11]. Dowód tego
rezultatu znajduje się w Rozdziale 3. Trudności z dowodzeniem rozstrzygalności za-
częły się pojawiać już, gdy w A znajdował się więcej niż jeden operator. Co ciekawe
owe trudności w pewnym stopniu zostały wyjaśnione przez pracę ”The First Order
Truth behind Undecidability of Regular Path Queries Determinacy.”, gdzie pokazu-
jemy, że problem determinacji jest już nierozstrzygalny, gdy A = B = {+, ●} (czyli
gdy języki są skończone).

Kolejnym etapem badań było rozważanie sytuacji gdzie A = {∗,+, ●} i B = {●},
czyli gdy Q0 jest jednym słowem, a na języki z Q nie ma nałożonych żadnych re-
strykcji. Teraz wierzymy, że ten problem jest nierozstrzygalny, ale w tamtym czasie
mieliśmy nadzieję na rozstrzygalność. Pierwszym osiągnięciem była tu redukcja pro-
blemu do A = {+, ●},B = {●}, czyli eliminacja nieskończonych języków z Q. Dalej
udowodniliśmy rozstrzygalność, gdy języki z Q były skończone i każde słowo z ję-
zyka miało tę samą długość. Wynik ten otrzymaliśmy przy pomocy idei ”czarnych
kolumn” stworzonej przez J. już w [GM15]. Ważnym wydarzeniem na tym etapie
było udowodnienie przez P. NP-trudności problemu, gdy A = {+, ●},B = {●}. Jednak
nie sama NP-trudność była tu ważna, a fakt, że udało się zakodować 3-kolorowanie
grafu w ewolucji Red-Green Chase’a w nietrywialny sposób. Ten rezultat pokazał
nam jak wymusić pewien nietrywialny, kontrolowany mechanizm w problemie de-
terminacji. Analiza tego wyniku była jednak niezwykle skomplikowana i narzędzia,
które do tamtej pory stworzyliśmy, nie były wystarczające do poprawy rezultatu.

Nasze doświadczenia do tamtej pory mówiły nam, że obecność słów różnej dłu-
gości w językach z Q jest kluczem do rozwiązania problemu. W celu zbadania tego
fenomenu zaczęliśmy studiować pracę [F15], gdzie autor pokazuje ”przybliżoną” de-
terminację, gdy A = {+, ●} i B = {●} i gdy alfabet jest jednoliterowy. ”Przybliżona”
determinacja oznacza, że podany w tej pracy algorytm jest w stanie rozstrzygać de-
terminację jedynie, gdy długość słowa Q0 jest odpowiednio duża w stosunku do słów
z Q. Niestety nie udało nam się dokładnie zrozumieć narzędzi użytych w tej pracy.
Co więcej, zaczęła rosnąć nasza wiara w to, że problem determinacji jest nierozstrzy-

2.6. WKŁAD AUTORÓW 15

galny i byliśmy przekonani, że techniki z [F15] nie pomogą nam w jej udowodnieniu.
Z powyższych powodów porzuciliśmy ten kierunek poszukiwań.

W tym momencie naszych badań, mniej więcej w tym samym czasie, nastąpiły
dwa przełomy. Pierwszy z nich to hipoteza, a tak naprawdę pytanie postawione przez
G. na temat tzw. ”sprężynek”, a drugi to narzędzie wymyślone przez P. do kontroli
ewolucji czerwono-zielonej struktury. Pierwsze spostrzeżenie dotyczy pozornie pro-
stej sytuacji, gdy w Q znajdują się 3 języki takie jak np. {ab, b, bc}, a słowo abc jest
podsłowem pewnego słowa z Q0. Powyższa konfiguracja prowadzi, niezależnie od ru-
chów Fugitive’a, do pewnej nieskończonej struktury, którą nazwaliśmy ”sprężynką”.
Przez pewien czas byliśmy przekonani, że ta nieskończona struktura nie wnosi nic
do problemu, a jest jedynie artefaktem wynikającym ze struktury gry. Jednak po
paru nieudanych próbach udowodnienia tego faktu okazało się, że owe ”sprężynki”
mogą być kluczem do problemu determinacji. Stało się tak, ponieważ P. odkrył pe-
wien mechanizm pozwalający na zabranianie wybranych podstruktur w bazie danych
tworzonych przez graczy. Ten mechanizm zaaplikowany do ”sprężynki” pozwolił na
symulowanie działania deterministycznego skończonego automatu w grze Escape. To
odkrycie pokazało nam jak kodować pewne obliczenia w ewolucji gry. Na tym etapie
były to jedynie obliczenia DFA, ale idee zawarte w stworzonych narzędziach dawały
nadzieje na więcej.

W tym momencie byliśmy już mocno przekonani co do nierozstrzygalności pro-
blemu determinacji i zaczęliśmy próby tworzenia redukcji z nierozstrzygalnych pro-
blemów. Pierwszym celem było wymuszenie w grze Escape powstania pewnej dwu-
wymiarowej struktury, która miałaby służyć jako ”plansza”, na której odbywa się
obliczenie. Można myśleć, że na tej ”planszy” mogłaby być zapisana cała historia ob-
liczeń pewnej maszyny Turinga. Pierwszą próbą stworzenia takiej dwuwymiarowej
struktury było zastosowanie wielu ”sprężynek” obok siebie, które razem tworzy-
łyby pewną dużą nieskończoną (potencjalnie dwuwymiarową) strukturę. Podejście
to, na początku wydawało się bardzo obiecujące, ale zawierało szereg problemów.
Po pierwsze powstała struktura była nieskończona, co znacząco utrudniało analizę.
Po drugie, po dokładniejszych badaniach okazało się, że owa struktura nie ma wcale
natury czysto dwuwymiarowej, a wręcz przeciwnie jest niezwykle skomplikowaną
siatką.

Na tym etapie z pomocą przyszedł J., który wyabstrahował esencję zalet ”sprę-
żynek” i zaproponował metodę na stworzenie bardzo prostej siatki dwuwymiarowej.
Polegała ona na wybraniu języka Q0 jako (ab)+ i dodaniu do Q dwóch języków
{ab, ba}. Taka konfiguracja języków spowodowała, że zależnie od pierwszego ruchu
Fugitive’a (który można utożsamić z wybraniem liczby k ∈ N) w grze tworzona była
dokładnie kwadratowa siatka wymiaru k × k. Ta siatka stała się ”planszą”, której
poszukiwaliśmy.

Teraz potrzebowaliśmy już tylko zakodować w owej siatce jakiś problem nieroz-
strzygalny. Na potrzeby tego opracowania możemy myśleć, że jest to problem stopu

16 ROZDZIAŁ 2. PROBLEM DETERMINACJI ZAPYTAŃ

dla maszyn Turinga. W tym celu zastosowaliśmy mechanizm zabraniania podstruk-
tur stworzony przez P.. Do końca dowodu potrzeba było jeszcze parę technicznych
narzędzi i spostrzeżeń. Trudno byłoby je tu dokładnie opisać bez wprowadzania
wielu pojęć, dlatego ograniczymy się jedynie do wymienia osiągnięć i ich autorów.

• J. zaproponował mechanizm, który umożliwił rozróżnianie pomiędzy wymia-
rami siatki,

• G. zauważył jak znacząco uprościć analizę,

• P. zaprojektował bardzo ważną metodę wymuszania pierwszego ruchu Fugi-
tive’a.

W tym momencie twierdzenie o nierozstrzygalności problemu determinacji dla języ-
ków regularnych zostało już udowodnione.

Dalej zadaliśmy sobie pytanie, czy problem pozostaje nierozstrzygalny, gdy
ograniczymy się do języków skończonych (czyli gdy A = {+, ●} i B = {+, ●}). Zadzi-
wiające jest, że dzięki nabytym doświadczeniom zdołaliśmy udowodnić nierozstrzy-
galność tego problemu jedynie w tydzień. Rozwiązując tę wersję problemu, chcieliśmy
oczywiście zachować jak najwięcej pomysłów i technik z ogólnego przypadku. Jednak
w porównaniu do poprzedniej pracy musieliśmy tu rozwiązać dwa nowe problemy
wynikające z tego, że możemy używać tylko języków skończonych. Po pierwsze, gdy
języki są skończone. to mechanizm stworzony przez P. jest w stanie zabraniać je-
dynie skończonych podstruktur. Do udowodnienia nierozstrzygalności potrzebujemy
jednak móc tworzyć struktury o dowolnie dużym rozmiarze, pojawia się więc pro-
blem, jak kontrolować ich ewolucję. Po drugie, język Q0 = (ab)+, który w pewnej
formie przetrwał w finalnej pracy, odpowiada wyborowi przez Fugitive’a rozmiaru
siatki. Nieskończoność tego języka jest tu kluczowa, bo każde słowo z języka odpo-
wiada jednemu rozmiarowi siatki, a chcemy przecież pozwolić na tworzenia siatek
dowolnego rozmiaru.

Ideę rozwiązania pierwszego problemu zaproponował J.. Pomysł polegał na tym,
że struktura, która będzie powstawać w ciągu gry, będzie mogła być dowolnie duża,
ale odległości wszystkich wierzchołków do dwóch wyróżnionych wierzchołków a i b
będą ograniczone przez stałą. Zostało to zrealizowane za pomocą tzw. ”sięgaczy”,
czyli krawędzi, które łączą a i b ze wszystkimi innymi wierzchołkami. Co ciekawe
narzędzie bardzo podobne do technik użytych w ”sięgaczach” pozwoliło rozwiązać
też drugi problem. To narzędzie to konstrukcja języków w Q i Q0, która wymuszała
w grze stworzenie nieskończonej dwuwymiarowej siatki. Połączenie tych dwóch tech-
nik dało juz poszukiwaną nierozstrzygalność dla skończonych języków. Co ciekawe
redukcji dokonywaliśmy w tym momencie z problemuMortality dla maszyn Turinga,
problemu bardzo rzadko używanego w podobnego typu redukcjach. Później znaleź-
lismy jednak sposób jak uprościć rozumowanie i pozwolić Fugitive’owi na wybór
rozmiaru siatki, a nie zmuszać go do stworzenia nieskończonej struktury. To uprosz-
czenie i pomysł J. na użycie idei rekursywnej nieseparowalności pewnych podzbiorów

2.6. WKŁAD AUTORÓW 17

maszyn Turinga złożyły się na wersję dowodu, którą umieściliśmy w pracy ”The First
Order Truth behind Undecidability of Regular Path Queries Determinacy.”.

Chapter 3.

Positive result

In this chapter we are going to prove the following theorem:

Theorem 4. Query Determinacy Problem for Regular Path Queries is decidable
when each Qi ∈ Q is a one word language and Q0 is a regular language.

This theorem is a generalization of a result from [A11]:

Theorem 5. Query Determinacy Problem for Regular Path Queries is decidable
when each Qi ∈ Q and Q0 is a one word language.

3.1. Preliminaries

Structures. When we say “structure” we always mean a directed graph with edges
labeled with letters from some signature/alphabet Σ. In other words every structure
we consider is relational structure D over some signature Σ consisting of binary
predicate names. Letters D and G are used to denote structures.

For two structures G and G′ over Σ, with sets of vertices V and V ′, a function
h ∶ V → V ′ is (as always) called a homomorphism if for each two vertices ⟨x, y⟩
connected by an edge with label E ∈ Σ in G there is an edge connecting ⟨h(x), h(y)⟩,
with the same label E, in G′.

Chains and chain queries. Given a set of binary predicate names Σ and a word
w = a1a2 . . . an over Σ∗ we define a chain query w(x0, xn) as a conjunctive query:

∃x1,...,xn−1a1(x0, x1) ∧ a2(x1, x2) ∧ . . . an(xn−1, xn).

We use the notation w[x0, xn] to denote the canonical structure (“frozen body”)
of query w(x0, xn) – the structure consisting of elements x0, x1, . . . xn and atoms
a1(x0, x1), a2(x1, x2), . . . an(xn−1, xn).

19

20 CHAPTER 3. POSITIVE RESULT

Regular path queries. For a regular language Q over Σ we define a query, which
is also denoted by Q, as:

Q(x, y) = ∃w∈Qw(x, y)

In other words such a query Q looks for a path in the given graph labeled with
any word from Q and returns the endpoints of that path.

We use letters Q and L to denote regular languages and Q and L to denote
sets of regular languages. The notation Q(D) has the natural meaning: Q(D) =
{⟨x, y⟩ ∣D ⊧ Q(x, y)}.

Definition 6 (Our2NFA-ε). Our two-way nondeterministic finite automaton with
ε-moves is a 5-tuple M = (S,Σ, δ, a, r) where:

• S is a set of states,

• Σ is the alphabet,

• δ ∶ S×(Σ∪{ε})→ 2S×{left,stay,right} It differs from a typical 2NFA in that after
reading a letter we can move to the left letter, the right letter or stay at the
same letter. It doesn’t change the expressivity of these automata but simplifies
construction in Section 3.3.

• a ∈ S is the start state and the only accepting state,

• r ∈ S is the reject state.

Let w = a1a2 . . . an be a word. Automaton starts reading the input w with the
head over a1 and then proceeds according to the transition function δ. M accepts w
if and only if there exists an execution such that after reading an for the first time
M is in state a and during this execution the head never moves to the left of the
first letter a1 (that is during this execution the head always stays within the range
of the input a1a2 . . . an).

Observation 1. As Our2NFA-ε automata are only slightly modified versions of
general 2NFA-ε automata all languages recognized by Our2NFA-ε automata are
regular.

3.2. Characterization of determiniacy

In this section, in the spirit of ideas from [A11], we will characterize determi-
nacy in terms of connectivity of some graphs and inclusion of some languages. This
characterization is what will be used for proving determinacy, as it will be shown in
Section 3.4.

3.2. CHARACTERIZATION OF DETERMINIACY 21

Definition 7. For a set of words A and a word w = a1a2 . . . an let GAw = ⟨V,E⟩ be
an undirected graph such that:

• V = {0,1,2, . . . , n},

• (i, j) ∈ E⇔ w[i + 1, j] ∈ A, where w[i, j] = aiai+1 . . . aj for 1 ≤ i ≤ j ≤ n.

We say that GAw is connected if vertices 0 and n belong to the same connected
component.

The following Lemma is a result from [A11] that charactarizes determinacy in
terms of a graph GQQ0

.

Lemma 8. When all Qi ∈ Q and Q0 are one word languages then Q determines Q0

if and only if GQQ0
is connected.

Definition 9. For a set of words A over Σ we define a language LA = {w ∈ Σ∗ ∶
GAw is connected}.

Lemma 10. If Q determines w for each w ∈ Q0, for regular language Q0 then Q
determines Q0.

Proof. Let D1 and D2 be such that Q(D1) = Q(D2). Then Q0(D1) = {⟨x, y⟩ ∣ D1 ⊧
Q0(x, y)} = ⋃w∈Q0

{⟨x, y⟩ ∣ D1 ⊧ w(x, y)} = ⋃w∈Q0
{⟨x, y⟩ ∣ D2 ⊧ w(x, y)} = {⟨x, y⟩ ∣ D2 ⊧

Q0(x, y)} = Q0(D2)

The following Lemma is in the spirit of Lemma 8. It characterizes determinacy
in terms of the language LQ.

Lemma 11. When all Qi ∈ Q are one word languages and Q0 is a regular language
then Q determines Q0 if and only if Q0 ⊂ LQ.

Proof. For the ”if” direction we will use Lemma 10 and show that Q determines w
for each w ∈ LQ. Let w ∈ LQ, in particular it means that GQw is connected which by
Lemma 8 proves that Q determines Q0.

The ”only if” direction is proved by contraposition. This part of the proof is a
direct adaptation of a proof of Lemma 8 from [A11]. It is essentially the same proof
but the argument needs to be repeated and checked in our setting as Q0 is a regular
language here (not necessarily a single word, as it was in [A11]).

Let w = a1a2 . . . an ∈ Q0 ∖LQ. We will construct two databases D′ and D′′ such
that Q(D′) = Q(D′′) and Q0(D′) ≠ Q0(D′′). We will first construct four databases
D0,D1,D2 and D3, each of which isomorphic to D0. Then we will set D′ as a union
of D0 and D1 and D′′ as a union of D2 and D3.

22 CHAPTER 3. POSITIVE RESULT

D0 is the canonical database of query w with constants c0, c1, . . . , cn. D1 is a
copy of D0 where each constant is replaced by fresh constant. For ease of reference
each constant c is replaced by c′.

We construct D2 as follows. Let G′ be a connected component of GQw that
contains vertex 0. Notice that by definition of w G′ doesn’t contain vertex n. Let
h be a natural bijection from GQw to variables of D0, which maps i to ci for each
vertex i of GQw . Now let D2 be a copy of D0 where each constant in an image h[G′]
is exchanged for its primed version. Let D3 be a copy of D2 where we changed the
primed constants for their non-primed version and the non-primed constants to their
primed version.

Now we need to convince ourselves that Q(D′) = Q(D′′). First notice that
Q(D0), Q(D1), Q(D2) and Q(D3) are pairwise isomorphic. Moreover Q(D0) and
Q(D1) are disjoint, so Q(D′) = Q(D0) ∪Q(D1). Also Q(D′′) = Q(D2) ∪Q(D3). To
finish the claim we need to show that neither D2 nor D3 contains any facts that use
one primed and one non-primed constant. Assume that ⟨ci, c′j⟩ ∈ Q(D3) (other cases
work similarly). Then G′ is not a connected component of vertex 0 as there is an
edge between vertices i and j in GQw and we can add vertex j to G′.

To finish the proof we need to show thatQ0(D′) ≠ Q0(D′′). It is because ⟨c0, cn⟩ ∈
Q0(D′) and ⟨c0, cn⟩ /∈ Q0(D′′). It is because vertex n /∈ G′ and because of that c0 ∈ D3

and cn ∈ D2.

3.3. Automata

In this section we will construct Our2NFA-ε MA that recognizes LA. We will
first give some intuitions on how this automaton works and then we will present a
formal construction.

3.3.1. Intuitions

First let us recall that LA = {w ∈ Σ∗ ∶ GAw is connected}. That means that
w = a1a2 . . . an ∈ LA if and only if there exists a path in GAw that connects vertices
0 and n. Our2NFA-ε MA working on a word w will look for such a path and will
accept w if and only if it finds such a path. Now imagine that MA needs to decide
whether w ∈ LA. That is it should decide whether there exist a path in GAw = ⟨V,E⟩
that connects vertices 0 and n. Let us further recall that (i, j) ∈ E⇔ w[i+1, j] ∈ A.
Now for the better understanding it is good to think of vertices V = {0,1, . . . , n} as
placed between letters of w like that: 0 − a1 − 1 − a2 − 2 − ⋅ ⋅ ⋅ − an − n. Then (i, j) ∈ E
if and only if a word written between i and j belongs to A.

Now we are ready to give some intuitions on how the automaton works. MA

starts working in the accepting state a with the head over a1. Then it works in

3.3. AUTOMATA 23

phases, where each phase corresponds to a traversal of one edge in GAw . In each
phase, which starts with the head over ai, it nondeterministically chooses a word
u = b1b2 . . . bk ∈ A and a direction dir (left or right). Then depending on which
direction was chosen it checks whether:

1. w[i,i+k-1] = u, if dir = right,

2. w[i-k,i-1] = u, if dir = left.

This check is done by comparing the input word letter by letter with u. If a mismatch
is found then MA transitions to the reject state and will never accept. However if
the condition (depending on dir either 1. or 2.) is satisfied then the automaton
transitions back to the accepting state a and the next phase starts. After such a
phase the head is over ai+k if dir = right and over ai−k if dir = left.

This description gives us an automaton that recognizes LA. It is because each
successful (that is ending in the accepting state) phase corresponds to a traversal of
an edge in GAw (think about 0 − a1 − 1 − a2 − 2 − ⋅ ⋅ ⋅ − an − n). So if w ∈ LA and the
nondeterministic choices are made correctly, then the automaton will follow a path
connecting 0 and n and after reading an will accept. On the other hand if w /∈ LA
then no matter what nondeterministic choices are made, MA will not accept as there
is no path in GAw connecting 0 and n.

3.3.2. Construction

The construction of MA will take place in stages. First we will create an au-
tomaton M∅ that recognizes empty language and serves as a template upon which
MA will be built. Then for each word w ∈ A we will add new states to the current
automaton to finally (after considering each word from A) build MA.

Definition 12. Let M∅ = (S,Σ, δ, a, r) be Our2NFA-ε where:

• S = {a, r} is a set of states,

• δ satisfies:

– For all c ∈ Σ: δ(a, c) = {(r, right)},

– For all c ∈ Σ: δ(r, c) = {(r, right)},

Definition 13. For an Our2NFA-ε M = (S,Σ, δ, a, r) and a word w = a1a2 . . . an we
define M +w as a new Our2NFA-ε M ′ = (S′,Σ, δ′, a, r) where:

• S′ = S ⊍ {A1,A2, . . . ,An} ⊍ {Ar
1,A

r
2, . . . ,A

r
n},

• δ′∣
S∖{a} = δ,

24 CHAPTER 3. POSITIVE RESULT

• For all i ∈ [1, n]:

δ′(Ai, ai) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{(Ai+1, right)}, if i < n
{(a, right)}, otherwise.

δ′(Ar
i , ai) ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

{(Ar
i−1, left)}, if i > 1

{(a, stay)}, otherwise.

• δ′(a, ε) = δ(a, ε) ∪ {(A1, stay), (Ar
n, left)},

• All non specified transitions lead to {(r, right)}.

Definition 14. For a set of words A we define Our2NFA-ε MA as M∅ +∑w∈Aw.

It might be hard to follow the construction ofMA from the definitions only. That
is why we present here pictures of two sample automata over Σ = {x, y, z}: M{xyz} =
M∅ + xyz) and M{xyz,yz} = M∅ + xyz + yz, see Figures 3.1 and 3.2. Automaton
M{xyz} for instance recognizes exactly language Lxyz = (xyz)∗. You can see that by
considering what happens after visiting state a. Let M{xyz} be in state a and the
”head” be over letter wi of a word w = w1w2 . . .wn. Now M{xyz} nondeterministically
chooses either to transition to the state Zr and move the ”head” to the left or
transition to the state X and do not move the ”head”. If the automaton chose to
transition to state:

• X then to not to transition to the reject state r the following must be true:
wi = x,wi+1 = y,wi+2 = z and after reading these 3 letters automaton is in state
a once again and the ”head” is over wi+3.

• Zr then to not to transition to the reject state r the following must be true:
wi−1 = z,wi−2 = y,wi−3 = x and after reading these 3 letters automaton is in
state a once again and the ”head” is over wi−3.

On the Figure 3.2 you can see M{xyz,yz}. When you compare 3.2 to 3.1 you will see
how M{xyz,yz} is constructed from M{xyz} (remember that M{xyz,yz} =M{xyz}+yz).
The analysis of this automaton is similar to the analysis of M{xyz} and gives that
the language recognized by M{xyz,yz} is exactly L{xyz,yz}.

Lemma 15. For every set of words A, MA recognizes LA, so LA is a regular
language.

Proof. Automaton MA starts in state a. Then it proceeds to work in phases, where
a phase starts when MA is in state a and finishes when MA is in state a or r.

Whenever MA reaches state r it stays in this state forever and never accepts,
so we focus on situations when r is not reached. Each phase begins in state a and
then MA nondeterministically chooses one of the ε-moves and by that we think

3.3. AUTOMATA 25

Figure 3.1: Automaton M{xyz} =M∅ + xyz. All nonspecified transitions lead to the state
r.

Figure 3.2: Automaton M{xyz,yz} =M∅ +xyz +yz. All nonspecified transitions lead to the
state r.

26 CHAPTER 3. POSITIVE RESULT

that it chooses a word w ∈ A and a direction dir (left or right). Then it proceeds
with reading the input in chosen direction dir and comparing it with w (read either
from left to right or from right to left depending on dir). If there is a mismatch it
transitions to r and stays there forever. Otherwise MA goes back to state a and
another phase begins. MA accepts a word if after reading its last letter it is in state
a.

This means that MA accepts exactly LQ as this language consists of exactly
these words w for which GQw is connected.

3.4. Putting it all together

Now we are ready to prove the main theorem (restated here for convenience):

Theorem 4. Query Determinacy Problem for Regular Path Queries is decidable
when each Qi ∈ Q is a one word language and Q0 is a regular language.

Proof. By Lemma 11 it is enough to be able to decide whether, for given Q0 and Q,
it holds that Q0 ⊂ LQ. By Lemma 15 we know that LQ is a regular language. As we
know that inclusion of regular languages is decidable it ends the proof.

Bibliografia

[A11] F. N. Afrati, Determinacy and query rewriting for conjunctive queries and
views; Th.Comp.Sci. 412(11):1005–1021, March 2011;

[CGLV02] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y. Vardi. Los-
sless regular views; Proc. of the 21st PODS, pages 247–258, 2002;

[F15] Nadime Francis, PhD thesis, ENS de Cachan, 2015;

[GM15] T. Gogacz, J. Marcinkowski,The Hunt for a Red Spider: Con-
junctive Query Determinacy Is Undecidable; LICS 2015: 281-292;

[GM16] T. Gogacz, J. Marcinkowski, Red Spider Meets a Rainworm: Conjunctive
Query Finite Determinacy is Undecidable; PODS 2016: 121-134;

[GM018] G. Głuch, J. Marcinkowski, P. Ostropolski-Nalewaja Can One
Escape Red Chains? Regular Path Queries is Undecidable.; LICS 2018: 492-501;

[GM018a] G. Głuch, J. Marcinkowski, P. Ostropolski-Nalewaja The First
Order Truth behind Undecidability of Regular Path Queries Determinacy.;

[V16] M.Y. Vardi, A Theory of Regular Queries; PODS/SIGMOD keynote talk;
Proc. of the 35th ACM PODS 2016, pp 1-9;

27

Dodatek A

Załącznik 1

29

Can One Escape Red Chains?
Regular Path Queries Determinacy is Undecidable∗

Grzegorz Głuch, Jerzy Marcinkowski, Piotr Ostropolski-Nalewaja
Institute of Computer Science, University of Wrocław

ACM Reference Format:
Grzegorz Głuch, Jerzy Marcinkowski, Piotr Ostropolski-Nalewaja
Institute of Computer Science, University of Wrocław. 2018. Can
One Escape Red Chains? Regular Path Queries Determinacy is Un-
decidable. In LICS ’18: LICS ’18: 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, July 9–12, 2018, Oxford, United King-
dom. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3209108.3209120

Abstract. For a given set of queries (which are expressions
in some query language) Q = {Q1, Q2, . . .Qk } and for an-
other query Q0 we say that Q determines Q0 if – informally
speaking – for every database D, the information contained
in the views Q(D) is sufficient to compute Q0(D).
Query Determinacy Problem is the problem of deciding,

for givenQ andQ0, whetherQ determinesQ0. Many versions
of this problem, for different query languages, were studied
in database theory. In this paper we solve a problem stated
in [CGLV02] and show that Query Determinacy Problem is
undecidable for the Regular Path Queries – the paradigmatic
query language of graph databases.

1 Introduction
Query determinacy problem (QDP). Imagine there is a
databaseDwe have no direct access to, and there are views of
thisD available to us, defined by some set of queriesQ = {Q1,
Q2, . . .Qk } (where the language of queries from Q is a pa-
rameter of the problem). And we are given another queryQ0.
Will we be able, regardless of D, to compute Q0(D) only us-
ing the views Q1(D),Q2(D), . . .Qk (D)? The answer depends

∗Supported by the Polish National Science Centre (NCN) grant
2016/23/B/ST6/01438

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
LICS ’18, July 9–12, 2018, Oxford, United Kingdom
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00
https://doi.org/10.1145/3209108.3209120

on whether the queries in Q determine1 query Q0. Stating it
more precisely, the Query Determinacy Problem is2:

The instance of the problem is a set of queries Q =

{Q1, . . .Qk }, and another query Q0.
The question is whether Q determinesQ0, which means that
for (♣) each two structures (database instances) D1 and D2
such that Q(D1) = Q(D2) for each Q ∈ Q, it also holds that
Q0(D1) = Q0(D2).

QDP is seen as a very natural problem in the area of database
theory, with a 30 years long history as a research subject –
see for example [H01], or Nadime Francis thesis [F15] for a
survey. In [DPT99] QDP naturally appears in the context of
query evaluation plans optimization. More recent examples
are [FG12], where the context for QDP is the view update
problem or [FKN13], where the context is description logics.
In the above examples the goal is optimization/efficiency
so we “prefer” Q0 to be determined by Q. Another context,
where it is “preferred” that Q0 is not determined, is privacy:
we would like to release some views of the database, but in
a way that does not allow certain query to be computed.
The oldest paper we were able to trace, where QDP is

studied, is [LY85]. Over the next 30 years many decidable
and undecidable cases have been identified. Let us just cite
some more recent results: [NSV10] shows that the problem
is decidable for conjunctive queries if each query from Q has
only one free variable; in [A11] decidability is shown for Q
and Q0 being ”conjunctive path queries”. This is generalized
in [P11] to the the scenario where Q are conjunctive path
queries but Q0 is any conjunctive query.
The paper [NSV06] was the first to present a negative

result. QDP was shown there to be undecidable if unions
of conjunctive queries are allowed in Q and Q0. In [NSV10]
it was proved that determinacy is also undecidable if the
elements of Q are conjunctive queries and Q0 is a first or-
der sentence (or the other way round). Another negative
result is presented in [FGZ12]: determinacy is shown there
to be undecidable if Q is a DATALOG program and Q0 is a
conjunctive query. Finally, closing the classification for the
traditional relational model, it was shown in [GM15] and
[GM16] that QDP is undecidable forQ0 and the queries in Q
1 Or, using the language of [CGLV00], [CGLV00a] [CGLV02] and [CGLV02a],
whether Q are lossless with respect to Q0.
2More precisely, the problem comes in two different flavors, “finite” and
“unrestricted”, depending on whether the (♣) “each” ranges over finite struc-
tures only, or all structures, including infinite.

30 DODATEK A. ZAŁĄCZNIK 1

LICS ’18, July 9–12, 2018, Oxford, United Kingdom
Grzegorz Głuch, Jerzy Marcinkowski, Piotr Ostropolski-Nalewaja

Institute of Computer Science, University of Wrocław

being conjunctive queries.
QDP for Regular Path Queries. While the determinacy
problem is nowwell understood for the pure relationalmodel3,
it has been, for a long time, open for the graph databases
scenario. In this scenario, the underlying data is modeled as
graphs, in which nodes are objects, and edge labels define
relationships between those objects. Querying such graph-
structured data has received much attention recently, due to
numerous applications, especially for the social networks.

There are many more or less expressive query languages
for such databases (see [B13]). The core of all of them (the
SQL of graph databases) is RPQ – the language of Regular
Path Queries. RPQ queries ask for all pairs of objects in the
database that are connected by a specified path, where the
natural choice of the path specification language, as [V16]
elegantly explains, is the language of regular expressions.
This idea is at least 30 years old (see for example [CMW87,
CM90]) and considerable effort was put to create tools for
reasoning about regular path queries, analogous to the ones
we have in the traditional relational databases context. For
example [AV97] and [BFW98] investigate decidability of the
implication problem for path constraints, which are integrity
constraints used for RPQ optimization. Also, containment
of conjunctions of regular path queries has been addressed
and proved decidable in [CDGL98] and [FLS98], and then, in
more general setting, in [JV09] and [RRV15].

It is natural that also query determinacy problem has been
stated, and studied, for Regular Path Queries model. This
line of research was initiated in [CGLV00], [CGLV00a]
[CGLV02] and [CGLV02a], and it was [CGLV02] where the
central problem of this area – decidability of QDP for RPQ
was first stated (called there “losslessness for exact seman-
tics”).
A method for computing a rewriting of a regular path

query in terms of other regular expressions (if such rewrit-
ing exists) 4 is shown in [CGLV02]. And it is proven that
it is 2ExpSpace-complete to decide whether there exists a
rewriting of the query that can be expressed as a regular
path query. Then a notion of monotone determinacy is de-
fined, meaning that not only Q0(D) is a function5 of Q(D)
but this function is also monotone – the greater Q(D) (in
the inclusion ordering) the greater Q0(D), and it is shown
that monotone determinacy is decidable in ExpSpace. This
proves that monotone determinacy, which is – like rewritabil-
ity – also a notion related to determinacy but stronger, does
not coincide with the existence of a regular path rewriting,
which is 2ExpSpace-complete (while of course the existence
of rewriting implies monotonicity). This proof is indirect
3Apparently, when talking about the relational model, there may still be
some work to do concerning QDP in the context of bag semantics, see
[GB14].
4Existence of rewriting is a related property to determinacy, but stronger.
5D is an argument here. Saying that “Q0(D) is a function of Q(D)” is equiv-
alent to saying that Q determines Q0.

and it is interesting that a specific example separating mono-
tone determinacy and rewritability has only been shown
in [FSS14]. However, [CGLV02a] also provides an example
where a regular path view determines a regular path query
in a non-monotone way showing that, in this setting, deter-
minacy does not coincide with monotone determinacy.
In [CGLV02], apart from the standard QDP, the authors

consider the so called “losslessness under sound semantics”.
They show that computing “certain answers” (under this
semantics) of a regular path query with respect to a regular
path view reduces to the satisfiability of (the negation of)
uniform CSP (constraint satisfaction problem). Building on
this connection and on the known links between CSP and
Datalog [FV98], they show how to compute approximations
of this CSP in Datalog. This is studied in more detail in
[FSS14] and a surprising result is proved, that when a regular
path view determines a regular path query in a monotone
way, then one of the approximations is exact.

But, despite the considerable body of work in the area
around the main problem, little was so far known about the
problem of decidability of QDP for RPQ itself. On the positive
side, the previously mentioned result of Afrati [A11] can be
seen as a special case, where each of the regular languages
(defining the queries) only consists of one word (path queries,
considered in [A11] constitute in fact the intersection of
CQ and RPQ). Another positive result is presented in [F17],
where “approximate determinacy” is shown to be decidable if
the query Q0 is (defined by) a single-word regular language,
and the languages defining the queries in Q0 and Q are over
a single-letter alphabet. The failure to solve the problem
completely even for this very simple variant shows how
complicated things very quickly become. But it is the analysis
which is so obviously hard (not QDP itself as a computational
problem) and it is not immediately clear how QDP for RPQ
could be used to encode anything within. In consequence,
no lower bounds have been known so far, except of a simple
one from [F15], where undecidability is shown if Q0 can be
context-free rather than just regular.

Our contribution. The main result of this paper is:

Theorem 1.1. QDP-RPQ, the Query Determinacy Problem
for Regular Path Queries, is undecidable.

To be more precise, we show that the problem, both in
the “finite” and the “unrestricted” version, is co-r.e.-hard,
which means that if we take, as an input to our encoding,
a Turing machine which accepts (the empty input) then, as
the result of the encoding we get a negative instance of QDP
(“no determinacy”), and if we begin from a non-accepting
machine then the resulting instance is positive. Notice that
this gives the precise bound on the complexity of the “finite”
version of QDP for RPQ – it is easy to see that finite non-
determinacy is recursively enumerable. But there is no such
upper bound for the “unrestricted” case, and we are not sure

31

Can One Escape Red Chains?
Regular PathQueries Determinacy is Undecidable LICS ’18, July 9–12, 2018, Oxford, United Kingdom

what the precise complexity can be. We believe that the
problem may be harder than co-r.e.-complete.

Regarding the technique we use: clearly we were tempted
to save as much as possible from the techniques of [GM15]
and [GM16]. But hardly anything survived in the new situa-
tion (one exception is that the idea of the green-red Chase
from [G15] evolved into the notion of Escape here). The two
important constructions in [GM15] and [GM16] used queries
with high number of free variables (this is where states of
the Turing machine are encoded, in the form of spiders with
fancy colorings) and queries which can be homomorphically,
non-trivially, mapped into themselves – this is how the orig-
inal small structure (“green spider” in [GM15] and [GM16]
or (green) D0 in this paper) could grow. None of the mecha-
nisms is available in the current context, so in principle the
whole proof was built from scratch.

Remark. [B13] makes a distinction between “simple paths
semantics” for Recursive Path Queries and “all paths seman-
tics”. As all the graphs we produce in this paper are acyclic
(DAGs), all our results hold for both semantics.

Organization of the paper The rest of this paper is devoted
to the proof of Theorem 1.1. In short Section 2 we introduce
the (very few) notions and some notations we need to use.

In Section 3 we first follow the ideas from [GM15] defining
red-green signature. Then we define the game of Escape and
state a crucial lemma (Lemma 3.3), asserting that this game
really fully characterizes determinacy for Recursive Path
Queries. In Section 3.3 we prove this Lemma.
At this point we will have all the tools ready for proving

Theorem 1.1. In Section 4 we explain what is the undecidable
problem we use for our reduction, and present the reduction.
In Sections 5 – 10 we use the characterization provided by
Lemma 3.3 to prove correctness of this reduction.

2 Preliminaries
Structures. When we say “structure" we always mean a
directed graph with edges labeled with letters from some
signature/alphabet Σ. In other words every structure we
consider is relational structure D over some signature Σ
consisting of binary predicate names. Letters D,M, G and H
are used to denote structures. Ω is used for a set of structures.
For two structures G and G′ over Σ, with sets of vertices

V and V ′, a function h : V → V ′ is (as always) called a
homomorphism if for each two vertices ⟨x ,y⟩ connected by
an edge with label E ∈ Σ in G there is an edge connecting
⟨h(x),h(y)⟩, with the same label E, in G′.

Chains and chain queries. Given a set of binary predicate
names Σ and a word w = a1a2 . . . an over Σ∗ we define a
chain queryw(x0,xn) as a conjunctive query:

∃x1, ...,xn−1a1(x0,x1) ∧ a2(x1,x2) ∧ . . . an(xn−1,xn).
We use the notation w[x0,xn] to denote the canonical

structure (“frozen body”) of queryw(x0,xn) – the structure

consisting of elements x0,x1, . . . xn and atoms a1(x0,x1),
a2(x1,x2), . . . an(xn−1,xn).
Regular path queries. For a regular languageQ over Σ we
define a query, which is also denoted by Q , as:

Q(x ,y) = ∃w ∈Qw(x ,y)
In other words such a query Q looks for a path in the

given graph labeled with any word from Q and returns the
endpoints of that path.

We use lettersQ and L to denote regular languages and Q
andL to denote sets of regular languages. The notationQ(D)
has the natural meaning of: Q(D) = {⟨x ,y⟩ |D |= Q(x ,y)}.

3 Red-Green Structures and Escape
3.1 Red-green signature and Regular Constraints
For a given alphabet (signature) Σ let ΣG and ΣR be two
copies of Σ one written with "green ink" and another with
"red ink". Let Σ̄ = ΣG ∪ ΣR .
For any word w from Σ∗ let G(w) and R(w) be copies of

this word written in green and red respectively. For a regular
language L over Σ let G(L) and R(L) be copies of this same
regular language but over ΣG and ΣR respectively. Also for
any structure D over Σ let G(D) and R(D) be copies of this
same structure D but with labels of edges recolored to green
and red respectively.

For a pair of regular languages L over Σ and L′ over Σ′ we
define Regular Constraint L→ L′ as a formula

∀x,yL(x ,y) ⇒ L′(x ,y).
We use the notation D |= r to say that an RC r is satisfied

in D. Also, we write D |= T for a set T of RCs when for each
t ∈ T it is true that D |= t .

For a graph D and an RC t = L → L′ let rq(t ,D) (as
“requests”) be the set of all triples ⟨x ,y,L → L′⟩ such that
D |= L(x ,y) and D ̸ |= L′(x ,y). For a set T of RCs by rq(T ,D)
we mean the union of all sets rq(t ,D) such that t ∈ T . Re-
quests are there in order to be satisfied:

function Add
arguments:
• Structure D
• RC L→ L′

• pair ⟨x ,y⟩ such that ⟨x ,y,L→ L′⟩ ∈ rq(L→ L′,D)
body:

1: Take a word w = a0a1 . . . an from L′ and create a
new path w[x ,y] = a0(x ,x1),a1(x1,x2), . . . ,an(xn−1,y)
where x1,x2, . . . ,xn−1 are new vertices

2: return D ∪w[x ,y].

Notice that the result Add(D,L→ L′, ⟨x ,y⟩) depends on
the choice ofw ∈ L′. So the procedure is non-deterministic.
For a regular language L we define L→ = G(L) → R(L)

and L← = R(L) → G(L). All regular constraints we are going

32 DODATEK A. ZAŁĄCZNIK 1

LICS ’18, July 9–12, 2018, Oxford, United Kingdom
Grzegorz Głuch, Jerzy Marcinkowski, Piotr Ostropolski-Nalewaja

Institute of Computer Science, University of Wrocław

to consider are either L→ or L← for some regular language
L.
For a regular language L we define L↔ = {L→,L←} and

for a set L of regular languages we define:

L↔ =
⋃
L∈L

L↔.

Requests of the form ⟨x ,y, t⟩ for some RC t ∈ L→ (t ∈ L←)
are generated byG(L) (resp. by R(L)). Requests generated by
G(L) or by R(L)) are said to be generated by L.

The following lemma is straightforward to prove and char-
acterizes both determinacy and finite dterminacy in terms
of regular constraints:

Lemma 3.1. A set Q of regular path queries over Σ does not
determine (does not finitely determine) regular path query Q0,
over the same alphabet, if and only if there exists a structure
(resp. a finite structure)M and a pair of vertices a,b ∈ M such
thatM |= Q↔ andM |= (G(Q0))(a,b) butM ̸ |= (R(Q0))(a,b).

Any structureM, as above, will be called counterexample.

3.2 The game of Escape
An instance Escape(Q0, Q) of a solitary game called Escape,
played by a player called Fugitive, is:
• a regular language Q0 of forbidden chains over Σ.
• a set of regular languages Q over Σ,

The rules of the game are:
• First Fugitive picks the initial position of the game as
D0 = (G(w))[a,b] for somew ∈ Q0.
• Suppose Di is the position of the game after Fugitive
move i and Si = rq(Q↔,Di). Then, in move i + 1,
Fugitive can move to any position of the form:

Di+1 =
⋃

⟨x,y,t ⟩∈Si
Add(Di , t , ⟨x ,y⟩)

• Fugitive loses when for a final position H =
∞⋃
i=0
Di it is

true that H |= (R(Q0))(a,b).
In other words, in order to get Di+1, Fugitive needs to

create, simultanously for each request in Di , a new path
that satisfies this request, and add all these paths, in a free
way, to Di . This is of course very much non-deterministic,
so position Di+1 depends on the Fugitive’s choice6.

Let us note that Di+1 = Di when rq(Q↔,Di) is empty.
It also would not hurt if, before proceeding with the read-

ing, the Reader wanted to solve:

Exercise 3.2. Notice that if i is even (odd) then all the requests
from Si are generated by G(L) (resp. R(L)), for some L ∈ Q
which means that all the edges added by Fugitive in his move
i + 1 are red (resp. green).
6Like in any reasonable game, the position after each move depends here on
the position before this move, on the rules of the game, and on the decisions
of the player who makes this move.

Let step be ternary relation such that ⟨D,D′,L⟩ ∈ step
whenD′ can be the result of one move of Fugitive, in position
D, in the game of Escape with set of regular languages L.

Obviously, different strategies of Fugitive may lead to dif-
ferent final positions. We will denote set of all final positions
reachable from a starting structure D0, for a set of regular
languages L, as Ω(L↔,D0).
Now we can state the crucial Lemma, that connects the

game of Escape and (the unrestricted version of) QDP-RPQ:

Lemma3.3. For an instance of QDP-RPQ consisting of regular
language Q0 over Σ and a set of regular languages Q over Σ
the two conditions are equivalent:
(i) Q does not determine Q0
(ii) Fugitive has a winning strategy in Escape(Q0, Q).

3.3 Universality of Escape. Proof of Lemma 3.3
First let us leave it as an easy exercise for the Reader to prove:

Lemma 3.4. For each set of RCs T , for each initial position
D0 and for each H ∈ Ω(T ,D0) it holds that H |= T .

With the above Lemma, the proof of Lemma 3.3 (ii)⇒(i) is
straightforward: the winning final position of Fugitive can
serve as the counterexampleM from Lemma 3.1.

The opposite direction, (i)⇒(ii) is not completely obvious.
Notice that it could a priori happen that, while some coun-
terexample exists, it is some terribly complicated structure
which cannot be constructed as a final position in a play of
the game of Escape. We should mention here that all the no-
tions of Section 3 have their counterparts in [G15]. Instead of
Regular Constrains however, in [G15] one finds conventional
Tuple Generating Dependencies7, and instead of the game
of Escape one finds the conventional notion of Chase. But,
while in [G15] the counterpart of Lemma 3.3 follows from
the well-known fact that Chase is a universal structure, here
we do not have such convenient tool available off-the-shelf,
and we need to built our own.

Lemma 3.5. Suppose structures D0 and M over Σ̄ are such
that there exists a homomorphism h0 : D0 → M. Let T be a
set of RCs and supposeM |= T . Then from some final position
H ∈ Ω(T ,D0) there exists a homomorphism h : H→ M such
that h0 ⊂ h.

Proof. First we need to prove:

Lemma 3.6. For structures Di ,M over Σ̄, a homomorphism
hi : Di → M and set of RCs T if M |= T then there exists
some structureDi+1 such that step(Di ,Di+1,T) and there exists
homomorphism hi+1 : Di+1 → M such that hi ⊆ hi+1.

Proof. For r = ⟨x ,y,X → Y ⟩ in Ri = rq(T ,Di) let x ′ = hi (x)
and y ′ = hi (y). We know thatM |= T soM |= Y (x ′,y ′) and
thus for some a1a2 . . . an ∈ Y there is path p ′ = a1(x ′,x ′1),
7Notice that if all each of the languages in Q consists of a single word, then
RCs degenerate into TGDs and Escape degenerates into Chase.

33

Can One Escape Red Chains?
Regular PathQueries Determinacy is Undecidable LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Figure 1. Our Grid.

a2(x ′1,x ′2) . . . an(x ′n−1,y
′) inM. Let Dri be a structure created

by adding to Di new path p = a1(x ,x1),
a2(x1,x2), . . . an(xn−1,y) (with xi being new vertices). Let
hri = hi ∪ {⟨xi ,x ′i ⟩|i ∈ [n − 1]}. Now let D′ =

⋃
r ∈Ri D

r
i and

h′i =
⋃

r ∈Ri h
r
i . It is easy to see that D′i and h′i are requested

Di+1 and hi+1. □

To end the proof of Lemma 3.5 notice that ifD0,D1, . . . are
as constructed by Lemma 3.6 then

⋃∞
i=0 Di is equal to some

final position from Ω(T ,D0) and that
⋃∞

i=0 hi is required
homomorphism h. □

Now we will prove the (i)⇒(ii) part of Lemma 3.3.
Let M be a counterexample from Lemma 3.1, a,b and

w ∈ Q0 such that M |= (G(w))(a,b) and M ̸ |= (R(Q0))(a,b).
Applying Lemma 3.5 to D0 = G(w[a,b]) and toM we know
that there exists a final position H such that there is homo-
morphism from H to M. It is clear that H ̸ |= (R(Q0))(a,b)
as we know that M ̸ |= (R(Q0))(a,b). This shows that H is
indeed a winning final position.

This concludes the proof of the Lemma 3.3.

4 The Reduction
Definition 4.1 (OurGridTilingProblem (OGTP)). Given
a set of shades S (black ∈ S) and a list F ⊆ {V ,H } × S ×
{V ,H } ×S of forbidden pairs ⟨a,b⟩ where a,b ∈ {V ,H } ×S
determine whether there exists a square grid G (a directed
graph, as in Figure 1. but of any size) such that:
(a1) each horizontal edge of G has a label from {H } × S;
(a2) each vertical edge of G has a label from {V } × S;
(b1) bottom-left vertical edge has the label (V , black);
(b2) upper-right horizontal edge has the label (H , black);
(b3) G contains no forbidden paths of length 2 labeled by
(a,b) ∈ F.

By standard argument one can show that:

Lemma 4.2. Our Grid Tiling Problem is undecidable.

Now we present a reduction from OGTP to the QDP-RPQ.
Suppose an instance ⟨S,F⟩ of OGTP is given, we will con-
struct an instance ⟨Q,Q0⟩ of QDP for RPQ.
The edge alphabet (signature) will be Σ = {α , β ,ω} ∪ Σ0,
where Σ0 = {A,B} × {H ,V } × {W ,C} × S. We think of H
andV as directions –Horizontal and Vertical.W andC stand
forWarm and Cold. It is worth reminding at this point that
relations from Σ̄ will – apart from a value from {A,B}, shade,
direction and temperature – have also color, red or green.

Notation 4.3. We use the following notation for elements of
Σ0: (prs q) := (p,q, r , s) ∈ Σ0

Symbol • and empty space are to be understood as wildcards.
This means, for example, that notation (Aa H) denotes the set
{(AW

a H), (AC
a H)} and (•Wa H) denotes {(AW

a H), (BWa H)}.
Now we define Q and Q0. Let Qдood be a set of 8 languages:

1. ω
2. α + β
3. (BWH)(AW

V) + (BCV)(AC
H)

4. (AC
H)(BCV) + (AW

V)(BWH)
5. (BCV) + (BWV)
6. (BWH) + (BCH)
7. (AW

V) + (AC
V)

8. (AC
H) + (AW

H)
Let Qbad be a set of languages:

1. β
(⊕

s ∈S\{black }(AW
s V)

)
Σ⋆0 ω

2. βΣ⋆0
(⊕

s ∈S\{black }(BWs H)
)
ω

3. βΣ⋆0 (•Wa d)(•Wb d ′)Σ⋆0 ω for each forbidden ⟨(d,a), (d ′,b)⟩ ∈
F.

Finally, let Quдly be a set of languages:
1. αΣ⋆0 (•W)Σ⋆0 ω
2. βΣ⋆0 (•C)Σ⋆0 ω
We write Q i

дood ,Q
i
bad ,Q

i
uдly to denote the i-th language

of the corresponding group. Now we can define

Q := Qдood ∪ Qbad ∪ Quдly
The sense of the construction will (hopefully) become

clear later. But already at this point the reader can notice
that there is a fundamental difference between languages
from Qдood and languages from Qbad ∪ Quдly . Languages
from Qдood are all finite. The regular constraints (Q3

дood)↔
and (Q4

дood)↔ are of the form “for vertices x ,y, z and edges
e1(x ,y) and e2(y, z) of some color in the current structure,
create a newy ′ and add edges e ′1(x ,y ′) and e ′2(y ′, z) of the op-
posite color” where the pair ⟨e1, e2⟩ comes from some small
finite set of possible choices. Satisfying requests generated by
the remaining languages in Qдood do not even allow/require
adding a new vertex y ′ – just one new edge is added.

34 DODATEK A. ZAŁĄCZNIK 1

LICS ’18, July 9–12, 2018, Oxford, United Kingdom
Grzegorz Głuch, Jerzy Marcinkowski, Piotr Ostropolski-Nalewaja

Institute of Computer Science, University of Wrocław

On the other hand, each language inQbad∪Quдly contains
infinitely many words – all words with some bad or ugly
pattern. For L ∈ Qbad ∪ Quдly requests generated by L are
of the form “if you have any path in the current structure,
green or red, between some verticies x and y, containing
such pattern, then add any new path from x to y, of the
opposite color, also containing the same pattern”.
A small difference between languages in Qbad and in
Quдly is that languages in Quдly do not depend on the con-
straints from the instance of Our Grid Tiling Problem while
ones in Qbad encode this instance. One important difference
between languages in Qдood ∪ Quдly and Qbad is that only
the last do mention shades.

Finally, define Qstar t := α[(AC
H)(BCV)]+ω, and let:

Q0 := Qstar t +
⊕

L∈Quдly
L +

⊕
L∈Qbad

L

5 The structure of the proof of correctness
To end the proof of Theorem 1.1 we need to prove:

Lemma 5.1. The following three conditions are equivalent:
(i) An instance ⟨S,F⟩ of OGTP has no solution.
(ii) Q determines Q0.
(iii) Q finitely determines Q0.

The (ii)⇒ (iii) implication is obvious8.
Next 4 pages will be devoted to the proof of the (i)⇒ (ii)

implication. We will employ Lemma 3.3, showing that if the
instance ⟨S,F⟩ has no solution then Fugitive does not have
a winning strategy in the Escape(Q, Q0). As we remember
from Section 3.2, in such a game Fugitive will first choose,
as the initial position of the game, a structure w[a,b] for
somew ∈ G(Q0). Then, in each step, he will identify all the
requests present in the current structure and satisfy them. He
will win if he will be able to play forever without satisfying
the query (R(Q0))(a,b).
While analyzing the strategy of Fugitive we will use the

words “must not” and “must” as shorthands for “or otherwise
he will quickly lose the game”.

Now our plan is first to notice that in his strategy Fugitive
must obey the following principles:
(I) The structure resulting from his initial move must be
(G(w))[a,b] for somew ∈ Qstar t .
(II) He must never allow any request generated by Qbad ∪
Quдly to form in the current structure. Notice that if no such
words ever occur in the structure then all the requests are
generated by languages from Qдood .
Then we will assume that Fugitive’s play indeed follows

the two principles and we will imagine us watching him
playing, but watching in special glasses that make us in-
sensitive to the shades from S. Notice that, since the only
8Notice that we are of course not going to prove that determinacy coincides
with finite determinacy. It does not! But for the instances resulting from
our reduction they indeed coincide.

requests Fugitive will satisfy, are from Qдood , we will not
miss anything – as the definitions of languages in Qдood are
themselves shade-insensitive. In Section 9 we will prove that
Fugitive must construct some particular structure, defined
earlier in Section 7 and called Gm , for somem ∈ N. Then,
in a short Section 10 we will take off our glasses and recall
that the edges of Gm actually have shades. Assuming that
the original instance of OGTP has no solution, we will get
that R(Qbad)(a,b) holds in the constructed structure. This
will end the proof of the (i)⇒(ii) direction. For the implica-
tion (¬i)⇒(¬ii) we will notice, again in Section 10 that if
⟨S,F⟩ has a solution, then one of the structures Gm , with
shades duly assigned to edges, forms a counterexampleM
as required by Lemma 3.1. Since this M will be finite, we
will show that if the instance ⟨S,F⟩ of OGTP has a solution,
then Q does not finitely determine Q0 (which is a stronger
statement than just saying that Q does not determine Q0).

6 Principle I : D0
The rules of the game of Escape are such that Fugitive loses
when he builds a path (from a to b) labeled withw ∈ R(Q0).
So – when trying to encode something – one can think of
words in Q0 as of some sort of forbidden patterns. And thus
one can think of Q0 as of a tool detecting that the player is
cheating and not really building a valid computation of the
computing device we encode. Having this in mind the Reader
can imagine why the words from languages from the groups
Qbad and Quдly , which clearly are all about suspiciously
looking patterns, are all in Q0.
But another rule of the game is that at the beginning

Fugitive picks his initial position D0 as a path (from a to b)
labeled with some w ∈ G(Q0), so it would be nice to think
of Q0 as of initial configurations of this computing device.
The fact that the same object is playing the set of forbidden
patterns and, at the same time, the set of initial configurations
is a problem. But this problem is solvable, as we are going to
show in this Section. And having the languages Qbad∪Quдly
also in Q0 is part of the solution.
Assume that H is a final position of a play of the Escape

game that started with D0 = G(w)[a,b] for some w ∈ Q0.
This means, by Lemma 3.4, that H |= Q↔. Recall that H is a
structure over Σ̄, which means that each edge of H is either
red or green.

Observation 6.1. For all x ,y ∈ H ifH |= G(L)(x ,y) for some
L ∈ Quдly ∪ Qbad then H |= R(Q0)(x ,y).
Proof. Notice thatG(L) → R(L) ∈ Q→ soH |= R(L)(x ,y) and
as L ⊆ Q0 it follows that H |= R(Q0)(x ,y). □

Lemma 6.2 (Principle I). Fugitive must choose to start the
Escape game from D0 = G(q)[a,b] for q ∈ Qstar t .

Proof. If q ∈ Q0 \ Qstar t then D0 |= G(L)(a,b) for some
L ∈ Quдly ∪ Qbad and it follows from Observation 6.1. that
Fugitive loses. □

35

Can One Escape Red Chains?
Regular PathQueries Determinacy is Undecidable LICS ’18, July 9–12, 2018, Oxford, United Kingdom

7 The grid Gm
Definition 7.1. Gm , for m ∈ N, is (see Fig. 2) a directed
graph (V ,E) where
V = {a,b} ∪ {vi, j : i, j ∈ [0,m]} and where the edges

from E are labeled with symbols α or β or ω or one of the
symbols of the form (prq), where – like before – p ∈ {A,B},
q ∈ {H ,V } and r ∈ {W ,C}. Each label has to also be either
red or green (this gives us (3 + 23)2 possible labels, but only
12 of them will be used). Notice that there is no s ∈ S here:
the labels we now use are sets of symbols from Σ̄ like in
Notation 4.3. One should imagine that we watch Fugitive’s
play in shade filtering glasses.

The edges of Gm are as follows:
• Vertex v0,0 is a successor of a. Vertex b is a successor
of vm,m . The successors of vi, j are vi+1, j and vi, j+1
(if they exist). Each node is connected to each of its
successors with two edges, one green and one red.
• Each “Cold” edge, labeled with a symbol in (•C), is
green.
• Each “Warm” edge, labeled with a symbol in (•W), is
red.
• Each edge ⟨vi, j ,vi+1, j ⟩ is horizontal – its label is from
(•H).
• Each edge ⟨vi, j ,vi, j+1⟩ is vertical– its label is from
(•V).
• The label of each edge leaving vi, j , vm,m , with i + j
even, is from (A), the label of each edge leaving vi, j ,
vm,m , with i + j odd, is from (B).
• Edges (a,v0,0) with labelG(α) and (a,v0,0) with label
R(β) are in E.
• Edges (vm,m ,b) with label G(ω) and (vm,m ,b) with
label R(ω) are in E.

8 Principle II
In this section we assume that the Fugitive obeys Principle I
and he selects the initial structureD0 = G(α[(AC

H)(BCV)]mω)[a,b]
for somem.

Lemma 8.1. Suppose H is the final position of a play of the
Escape game which started from D0.

1. Every edge e ∈ H labeled withG(α),R(α),G(β) or R(β)
begins in a.

2. Every edge e ∈ H labeled with G(ω) or R(ω) ends in b.
Proof. (1) By induction we show that the claim is true in
every Di . It is clearly true in D0. For the induction step use
the fact that for every language L ∈ Q and for each word
w ∈ L ifw contains α or β then:
– this α or β is the first letter ofw and
– all words in L begin from α or β .
(2) Analogous. □

9Please use a color printer if you can.

Lemma 8.2 (Principle II). Fugitive must never allow any
request generated by Qbad and Quдly to form in the current
structure.

Proof. Let D be the current structure and L ∈ Qbad ∪ Quдly .
First assume thatD |= R(L)(x ,y) for some x ,y. Notice that

from Lemma 8.1 x = a and y = b. Because of that D |=
R(L)(a,b) which means that D |= R(Q0)(a,b) and Fugitive
loses.
Now assume that D |= G(L)(x ,y) for some x ,y. Simi-

larly, from Lemma 8.1, x = a and y = b. We have that
⟨a,b,L→⟩ ∈ rq(Q↔,D) so Fugitive must satisfy this request
with R(w)[a,b] for somew ∈ L which loses, as L ⊆ Q0. □

9 Now we do not see the shades
As we already said, now we are going to watch, and analyze,
Fugitive’s play in shade filtering glasses. We assume he obeys
Principle I, otherwise he would lose. We also assume he
obeys Principle II, but wearing our glasses we are not able
to tell whether any word fromG(Qbad) ∪ R(Qbad) occurs in
the current structure. For this reason we cannot use, in our
analysis, arguments referring to languages in Qbad . We are
however free to use arguments from Principle II, referring
to languages in Quдly .
Lemma 9.1. Suppose in his initial move Fugitive selectsD0 =
G(α[(AC

H)(BCV)]mω)[a,b]. Then the final position H must be
equal (from the point of view of a shades-insensitive spectator)
to Gm .

To prove Lemma 9.1 it is enough to show that:

Lemma 9.2. Let Li be like on Figure 3 and LGi and LRi be
parts of Li consisting of (resp.) green and red edges. Then:
(i) D0 = L

G
0 ,

(ii) D2i = L
G
2i ∪ L2i−1,

(iii) D2i+1 = L
R
2i+1 ∪ L2i .

Lemma 9.2 (i) is Principle I restated. Next subsections of this
Section are devoted to the proof of Lemma 9.2 (ii) and (iii).
This will be done by induction on i .

9.1 General rules for the Fugitive
Now assume D0 as demanded by Lemma 9.1 was really se-
lected and denote vertices of this D0 by a,x1, . . . ,xn ,b, with
n = 2m + 1 (see Figure 3).

Lemma 9.3. For every final positionH that was built obeying
Principles I and II:

1. Every edge e ∈ H labeled withG(α),R(α),G(β) or R(β)
connects a and x1.

2. Every edge e ∈ H labeled with G(ω) or R(ω) connects
xn and b.

Proof. Notice that by Principle II there were no requests
formed by either Qbad or Quдly during the game that led to

36 DODATEK A. ZAŁĄCZNIK 1

LICS ’18, July 9–12, 2018, Oxford, United Kingdom
Grzegorz Głuch, Jerzy Marcinkowski, Piotr Ostropolski-Nalewaja

Institute of Computer Science, University of Wrocław

Figure 2. Gm withm = 4 (left). Smaller picture in the top-right corner explains how the different line styles on the main
picture map to Σ0.9

Figure 3. Five first Layers of Gm withm = 6.

H. It means that all requests were generated by Qдood . But
for every language L ∈ Qдood for each w ∈ L if w contains
α , β orω thenw is a one letter word, and also all other words
of this language contain one letter. So satisfying a request
involving α , β or ω never requires creating new vertices. □

Lemma 9.4. For each y ∈ H,y , a there exist, in H:

• a red path from x1 to y,

• a green path from x1 to y,

For each y ∈ H,y , b there exist, in H:

• a red path from y to xn ,
• a green path from y to xn .

Proof. Notice that for each c ∈ Σ0 there exists a language
L ∈ Qдood such that c ∈ L. This means that for all u,w ∈ H
such that these vertices are endpoints of a green edge e =

37

Can One Escape Red Chains?
Regular PathQueries Determinacy is Undecidable LICS ’18, July 9–12, 2018, Oxford, United Kingdom

(u,w,G(c)), c ∈ Σ0 there is also a red path connecting u and
w ∈ H (this is since H |= Q ↔дood).

Reasoning for red edges is analogous. □

In his first move Fugitive must satisfy all the requests in
S0 = rq(Q↔,D0). Notice that (since all the edges of D0 are
green and there are no bad or ugly patterns inD0) all requests
in S0 are actually generated by RCs in Q →дood . And one of
them is generated by (Q2

дood) →. Next lemma does not look
spectacular, but this is how we get our foot in the door:

Lemma 9.5. Request req = ⟨a,x1, (α + β)→⟩ in S0 must be
satisfied with R(β)[a,x1].
Proof. First notice that there are numerous requests in S0
generated by Q4

дood , all of them of the form ⟨xi ,xi+2,Q
4 →
дood ⟩.

Each of them can potentially be satisfied in one of two
ways: either by adding a new path labeled with a word
R((AW

V)(BWH)) from xi ,xi+2 or by adding a new path labeled
with R((AC

H)(BCV)).
Consider what would happen if Fugitive tried to satisfy req

with R(α) instead of R(β). First assume that there exists req ∈
S0 generated by Q4

дood that is satisfied with R((AW
V)(BWH)).

Then D1 |= R(Q1
uдly)(a,b) and this is forbidden by Principle

II. So all requests in S0 generated by Q4
дood must be satis-

fied with R((AC
H)(BCV)). But then D1 |= R(Qstar t)(a,b) and

Fugitive loses. □

Now we know that, alongside the green α , there must
exist the red β leading to x1 (see Figure 2). From this we get
that:

Lemma 9.6. If H is a final position that was built obeying
Principles I and II (which started with D0) then: for each edge
e ∈ H,

1. e is labeled with c ∈ R(Σ0) ⇔ c ∈ R(•W)
2. e is labeled with c ∈ G(Σ0) ⇔ c ∈ G(•C)

Proof. (1) Assume by contradiction that there exists a red
edge e ∈ H, from some x to some x ′, labeled with c ∈ R(•C).
By Lemma 9.4 there is a path, consisting of edges from R(Σ0),
from x1 to x and another such path from x ′ to xn . This implies
that H |= Q2

uдly (a,b) which is forbidden by Principle II. (2)
Like (1) but then H |= Q1

uдly (a,b). □

Notice that eachQ i
дood for i = 3 . . . 8 consists of twowords

(from the point of view of a shades-insensitive spectator).
This sounds like good news for Fugitive: when satisfying
requests generated by these languages he has some choice.
But actually he does not, as the next lemma tells us:

Lemma 9.7. Let i ∈ {3 . . . 8} and let Q i
дood = {wi ,w

′
i }.

1. IfDj |= G(wi)(x ,y), for some j , andDj ̸ |= R(Q i
дood)(x ,y)

then ⟨x ,y,Q i →
дood ⟩ ∈ rq(Q i →

дood ,Dj) and the Fugitive
must satisfy this request with R(w ′i)[x ,y].

2. IfDj |= R(wi)(x ,y), for some j , andDj ̸ |= G(Q i
дood)(x ,y)

then ⟨x ,y,Q i ←
дood ⟩ ∈ rq(Q i ←

дood ,Dj) and the Fugitive
must satisfy this request with G(w ′i)[x ,y].

Proof. (1) Let i ∈ {3, . . . , 8} and let j be such that Dj |=
G(wi)(x ,y) and Dj ̸ |= R(Q i

дood)(x ,y). Assume by contra-
diction that Fugitive satisfies ⟨x ,y,Q i →

дood ⟩ with R(wi)[x ,y].
Then Dj+1 |= G(wi)(x ,y) and Dj+1 |= R(wi)(x ,y). Let c be
any letter of wi (notice that c ∈ Σ0). We have that there
exist vertices u,w,p,q ∈ Dj+1 such that Dj+1 |= G(c)(u,w)
and Dj+1 |= R(c)(p,q) and this contradicts Lemma 9.6. (2)
Analogous to the proof of (1). □

Now, in Section 9.2 we assume that D2i = L
G
2i ∪ L2i−1 and

show thatD2i+1 is as claimed in Lemma 9.2 (ii) and in Section
9.3 we assume that D2i+1 = L

R
2i+1 ∪ L2i and show that D2i+2

is as claimed in Lemma 9.2 (iii).

9.2 Fugitive’s move 2i: from D2i to D2i+1

Observation 9.8. For D2i it is true that:

(1) All requests in D2i generated by Q4
дood must be satisfied

with R((AW
V)(BWH)).

(2) All requests in D2i generated by Q3
дood must be satisfied

with R((BWH)(AW
V)).

(3) All requests in D2i generated by Q5
дood must be satisfied

with R(BWV).
(4) All requests in D2i generated by Q8

дood must be satisfied
with R(AW

H).
Proof. For (1). By hypothesis all requests that are gener-
ated by Q4

дood in D2i are of the form ⟨x ,y,G((AC
H)(BCV)) →

R(Q4
дood)⟩ (Note that (AC

H)(BCV) ∈ Q4
дood). By Lemma 9.7

Fugitive must satisfy all such requests with R((AW
V)(BWH)).

Rest of the proofs for (2)-(4) are analogous. □

9.3 Fugitive’s move 2i + 1: from D2i+1 to D2i+2

Proof of the following Observation is analogous to the one
of Observation 9.8.

Observation 9.9. For D2i+1 it is true that:

1. All requests in D2i+1 generated by Q4
дood must be satis-

fied with G((AC
H)(BCV)).

2. All requests in D2i+1 generated by Q3
дood must be satis-

fied with G((BCV)(AC
H)).

3. All requests in D2i+1 generated by Q7
дood must be satis-

fied with G(AC
V).

4. All requests in D2i+1 generated by Q6
дood must be satis-

fied with G(BCH).

9.4 The end. No more requests!
Now it is straightforward to verify that:

38 DODATEK A. ZAŁĄCZNIK 1

LICS ’18, July 9–12, 2018, Oxford, United Kingdom
Grzegorz Głuch, Jerzy Marcinkowski, Piotr Ostropolski-Nalewaja

Institute of Computer Science, University of Wrocław

Observation 9.10. All requests generated by Qдood are al-
ready satisfied in Dm+1 = Gm .

10 And now we see the shades again
Now we can finish the proof of Lemma 5.1 (i)⇒ (ii).

Suppose the Fugitive’s play ended, in some final position
H = Gm . We take off our glasses, and not only we still see
this H, but now we see it in full colors, with each edge (apart
from edges labeled with α , β andω) having one of the shades
from S. Assume that the original instance S, F of Our Grid
Tiling Problem has no solution, and concentrate on the red
edges of H. They form a square grid, with each vertical edge
labeled with V , each horizontal edge labeled with H , and
with each edge labeled with a shade from S. So clearly, one
of the conditions (b1)-(b3) of Definition 4.1 is unsatisfied.
But this implies that a path labeled with a word from one of
the languages Q1

bad– Q3
bad occurs in H, which is in breach

of Principle II. This ends the proof of Lemma 5.1 (i)→ (ii).
For the proof Lemma 5.1 (¬i)→ (¬iii) assume the original

instance ⟨S,F⟩ of Our Grid Tiling Problem has a solution –
a labeled gridm ×m for somem. Call this grid G.
Recall that Gm is finite and it satisfies all regular con-

straints from Q↔дood (Observation 9.10) and from Q↔uдly (for
trivial reasons, as no paths from any G(L) ∪ R(L) with L ∈
Quдly occur in Gm). Now copy the shades of the edges of G
to the respective edges of Gm . Call this new structure (Gm
with shades added)M. It is easy to see thatM constitutes a
finite counterexample, as in Lemma 3.1.

References

[AV97] S. Abiteboul and V. Vianu, Regular path queries with
constraints; Proc. of the 16th PODS, pp. 122–133, 1997;
[A11] F. N. Afrati, Determinacy and query rewriting for con-
junctive queries and views; Th.Comp.Sci. 412(11):1005–1021,
March 2011;
[AG08] R. Angles, C. Gutierrez, Survey of Graph Database
Models; ACM Comp. Surveys Vol. 40 Issue 1, February 2008;
[B13]P.Barceló,Querying graph databases. Simple Paths Se-
mantics vs. Arbitrary Path Semantics; PODS 2013, pp. 175-188;
[CMW87] I. F. Cruz, A. O. Mendelzon, and P. T. Wood, A
graphical query language supporting recursion; Proc. of ACM
SIGMOD Conf. on Management of Data, 1987;
[CGL98] D. Calvanese, G. De Giacomo, and M. Lenzerini, On
the decidability of query containment under constraints; in
Proc. of the 17th PODS,” pp. 149–158, 1998;
[CGLV00] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y.
Vardi. Answering regular path queries using views; Proc.. 16th
Int. Conf. on Data Engineering, pages 389–398, IEEE, 2000;
[CGLV00a] D. Calvanese, G. De Giacomo, M. Lenzerini, M. Y.
Vardi. View-based query processing and constraint satisfaction;
Proc. of 15th IEEE LICS, 2000;

[CGLV02] D. Calvanese, G. De Giacomo, M. Lenzerini, M.Y.
Vardi. Lossless regular views; Proc. of the 21st PODS, pages
247–258, 2002;
[CGLV02a] D. Calvanese, G. De Giacomo, M. Lenzerini, and
M.Y. Vardi. Rewriting of regular expressions and regular path
queries; Journal of Comp. and System Sc., 64:443–465, 2002;
[DPT99] A. Deutsch, L. Popa, and Val Tannen, Physical data
independence, constraints, and optimization with universal
plans; Proc. of 25th VLDB, pages 459– 470, 1999;
[F15] Nadime Francis, PhD thesis, ENS de Cachan, 2015;
[F17]N.Francis; Asymptotic Determinacy of Path Queries Us-
ing Union-of-Paths Views; Th.Comp.Syst. 61(1):156-190 (2017);
[FG12] E. Franconi and P. Guagliardo The view update prob-
lem revisited CoRR, abs/1211.3016, 2012;
[FGZ12] Wenfei Fan, F. Geerts, and Lixiao Zheng, View de-
terminacy for preserving selected information in data trans-
formations; Inf. Syst., 37(1):1–12, March 2012;
[FLS98] D. Florescu, A. Levy, andD. Suciu,Query containment
for conjunctive queries with regular expressions; Proc. of the
17th PODS,” pp. 139–148, 1998;
[FV98] T. Feder and M. Y. Vardi, The computational struc-
ture of monotone monadic SNP and constraint satisfaction: A
study through datalog and group theory; SIAM Journal on
Computing, 28(1):57–104, 1998;
[FSS14] N. Francis, L. Segoufin, C. Sirangelo Datalog rewrit-
ings of regular path queries using views; Proc. of ICDT, pp
107–118, 2014;
[GB14] M. Guarnieri, D. Basin,Optimal Security-Aware Query
Processing; Proc. of the VLDB Endowment, 2014;
[GM15] T. Gogacz, J. Marcinkowski,The Hunt for a Red Spider:
Conjunctive Query Determinacy Is Undecidable; LICS 2015:
281-292;
[GM16] T. Gogacz, J. Marcinkowski, Red Spider Meets a Rain-
worm: Conjunctive Query Finite Determinacy is Undecidable;
PODS 2016: 121-134;
[JV09] V. Juge and M. Vardi, On the containment of Datalog
in Regular Datalog; Technical report, Rice University, 2009;
[LY85] Per-Ake Larson and H. Z. Yang, Computing queries
from derived relations; Proc. of the 11th International Confer-
ence on Very Large Data Bases - Volume 11, VLDB’85, pages
259–269. VLDB Endowment, 1985;
[NSV06] A. Nash, L. Segoufin, and V. Vianu, Determinacy
and rewriting of conjunctive queries using views: A progress
report; Proc. of ICDT 2007, LNCS vol. 4353; pp 59–73;
[NSV10] A. Nash, L. Segoufin, andV. Vianu.Views and queries:
Determinacy and rewriting; ACMTrans. Database Syst., 35:21:1–
21:41, July 2010;
[P11] D. Pasaila, Conjunctive queries determinacy and rewrit-
ing; Proc. of the 14th ICDT, pp. 220–231, 2011;
[RRV15] J. Reutter, M. Romero, M. Vardi, Regular queries on
graph databases; Proc. of the 18th ICDT; pp 177–194; 2015;
[V16]M.Y. Vardi,ATheory of Regular Queries; PODS/SIGMOD
keynote talk; Proc. of the 35th ACM PODS 2016, pp 1-9;

39

Dodatek B

Załącznik 2

41

The First Order Truth behind
Undecidability of Regular Path Queries

Determinacy.
Grzegorz Głuch, Jerzy Marcinkowski, Piotr Ostropolski-Nalewaja

Institute of Computer Science, University of Wrocław

Abstract. In our paper [GMO18] we have solved
an old problem stated in [] showing that determi-
nacy is undecidable for Regular Path Queries. Here
a strong generalisation of this result is shown, and
– we think – a very unexpected one. We prove
that no Regularity is needed: the problem remains
undecidable even for finite unions of Path Queries.

——————

I. INTRODUCTION

Query determinacy problem (QDP). Imagine
there is a database D we have no direct access
to, and there are views of this D available to
us, defined by some set of queries Q = {Q1,
Q2, . . . Qk} (where the language of queries from
Q is a parameter of the problem). And we are
given another query Q0. Will we be able, regardless
of D, to compute Q0(D) only using the views
Q1(D), Q2(D), . . . Qk(D)? The answer depends on
whether the queries in Q determine1 query Q0.
Stating it more precisely, the Query Determinacy
Problem is2:

The instance of the problem is a set of queries Q =
{Q1, . . . Qk}, and another query Q0.
The question is whether Q determines Q0, which
means that for (♣) each two structures (database
instances) D1 and D2 such that Q(D1) = Q(D2) for
each Q ∈ Q, it also holds that Q0(D1) = Q0(D2).

1 Or, using the language of [CGLV00], [CGLV00a]
[CGLV02] and [CGLV02a], whether Q are lossless with respect
to Q0.

2More precisely, the problem comes in two different flavors,
“finite” and “unrestricted”, depending on whether the (♣) “each”
ranges over finite structures only, or all structures, including
infinite.

QDP is seen as a very natural static analysis prob-
lem in the area of database theory. It is important
for privacy (when we don’t want the adversary
to be able to compute the query) and for (query
evaluation plans) optimisation (we don’t need to
access again the database as the given views already
provide enough information).

And, as a very natural static analysis problem, it
has a 30 years long history as a research subject –
the oldest paper we were able to trace, where QDP
is studied, is [LY85], where decidability of QDP
is shown for the case where Q0 is a conjunctive
query (CQ) and also the set Q consists of a single
CQ.

But this is not a survey paper, so let us just point
a reader interested in the history of QDP to Nadime
Francis thesis [F15], which is a very good read
indeed.

A. The context

As we said, this is a technical paper not a survey
paper. But still, we need to introduce the reader to
the the technical context of our results. And, from
the point of view of this introduction, there are two
lines of research which are interesting: decidability
problems of QDP for positive fragments of SQL
(conjunctive queries and their unions) and for
fragments of the language of Regular Paths
Queries (RPQs) – the core of most navigational
graph query languages.

QDP for fragments of SQL. A lot of progress was
done in this area in last 10+ years.

The paper [NSV06] was the first to present
a negative result. QDP was shown there to be

42 DODATEK B. ZAŁĄCZNIK 2

undecidable if unions of conjunctive queries are
allowed in Q and Q0. The proof is moderately
hard, but the queries themselves are high arity3

and hardly can be seen as living anywhere close
to database practice.

In [NSV10] it was proved that determinacy is
also undecidable if the elements of Q are conjunc-
tive queries and Q0 is a first order sentence (or
the other way round). Another somehow related
(although no longer contained in the first order/SQL
paradigm) negative result is presented in [FGZ12]:
determinacy is shown there to be undecidable if
Q is a DATALOG program and Q0 is a con-
junctive query. Finally, closing the classification
for the traditional relational model, it was shown
in [GM15] and [GM16] that QDP is undecidable
for Q0 and the queries in Q being conjunctive
queries. The queries in [GM15] and [GM16] are
quite complicated (the Turing machine there is
encoded in the arities of te queries), and again
hardly resemble anything practical.

On the positive side, [NSV10] shows that the
problem is decidable for conjunctive queries if each
query from Q has only one free variable.

Then, in [A11] decidability was shown for Q and
Q0 being “conjunctive path queries” (see Section
III-A for the definition). This is an important result
from the point of view of the current paper, and the
proof in [A11], while not too difficult, is very nice
– it gives the impression of deep insight into the
real reasons why a set of conjunctive path queries
determines another conjunctive path query.

The result from [A11] begs for generalisations,
and indeed it was generalised in [P11] to the the
scenario where Q are conjunctive path queries but
Q0 is any conjunctive query.

QDP for Regular Path Queries. A natural ex-
tension of QDP to graph database scenario is con-
sidered here. In this scenario, the underlying data
is modelled as graphs, in which nodes are objects,
and edge labels define relationships between those
objects. Querying such graph-structured data has
received much attention recently, due to numerous
applications, especially for the social networks.

There are many more or less expressive query

3By arity of a query we mean here the number of free
variables.

languages for such databases (see [B13]). The core
of all of them (the SQL of graph databases) is
RPQ – the language of Regular Path Queries. RPQ
queries ask for all pairs of objects in the database
that are connected by a specified path, where the
natural choice of the path specification language, as
[V16] elegantly explains, is the language of regular
expressions. This idea is at least 30 years old (see
for example [CMW87, CM90]) and considerable
effort was put to create tools for reasoning about
regular path queries, analogous to the ones we
have in the traditional relational databases con-
text. For example [AV97] and [BFW98] investigate
decidability of the implication problem for path
constraints, which are integrity constraints used for
RPQ optimisation. Also, containment of conjunc-
tions of regular path queries has been addressed
and proved decidable in [CDGL98] and [FLS98],
and then, in more general setting, in [JV09] and
[RRV15].

Naturally, also query determinacy problem
has been stated, and studied, for Regular Path
Queries model. This line of research was initi-
ated in [CGLV00], [CGLV00a], [CGLV02] and
[CGLV02a], and it was [CGLV02] where the cen-
tral problem of this area – decidability of QDP for
RPQ was first stated (called there “losslessness for
exact semantics”)

On the positive side, the previously mentioned
result of Afrati [A11] can be seen as a special case,
where each of the regular languages (defining the
queries) only consists of one word (path queries,
considered in [A11] constitute in fact the intersec-
tion of CQ and RPQ). Another positive result is
presented in [F17], where “approximate determi-
nacy” is shown to be decidable if the query Q0

is (defined by) a single-word regular language (a
path query), and the languages defining the queries
in Q0 and Q are over a single-letter alphabet. See
how difficult the analysis is here – despite a lot
of effort (the proof of the result in [F17] invokes
ideas from [A11] but is incomparably harder) even
a subcase (for a single-word regular language) of
a sub-case (unary alphabet) was only understood
“approximately”.

On the negative side, in [GMO18], we showed
(solving the problem from [CGLV02]), that QDP
is undecidable for full RPQ.

Page 2 of 19

43

B. Our contribution

The main result of this paper, and – we think –
quite an unexpected one, is the following general-
isation of the main result from [GMO18]:

Theorem I.1. QDP-FRPQ, the Query Determinacy
Problem for Finite Regular Path Queries, is unde-
cidable.

To be more precise, we show that the problem,
both in the “finite” and the “unrestricted” version,
is undecidable.

It is, we believe, interesting to see that this
negative result falls into both lines of research
outlined above. Finite Regular Path Queries are of
course a subset of RPQ, where star is not allowed
in the regular expressions (only concatenation and
plus are). But other name of Finite Regular Path
Queries is Unions of Conjunctive Path Queries, so
they also fall into the SQL category.

Our result shows that the room for generalising
the positive result from [A11] is quite limited. And,
since the queries we consider are finite unions
of completely practical conjunctive queries (the
lengths of the paths in our proof are all bounded by
a small constant) they constitute the simplest known
undecidable case in each of the two categories
(positive SQL queries and RPQ queries). What we
however find most surprising is the discovery that
it was possible to give a negative answer to the
question from [CGLV02], which had been open
for 15 years, without talking about RPQs at all
– undecidability is already in the intersection of
RPQs and (positive) SQL.

As a positive side-result we generalise the result
from [A11] showing that:

Theorem I.2. QDP is decidable when Q0 is (de-
fined by) an arbitrary regular language and each
of Q consists of a single word.

Theorem I.2 is just a slight generalization of
the result (and the technique) from [A11]. But, as
far as we understand, it is the first known natural
decidable case of QDP for queries in RPQ not
definable as (first order) conjunctive queries.

Remark. [B13] makes a distinction between “sim-
ple paths semantics” for Recursive Path Queries
and “all paths semantics”. As all the graphs we

produce in this paper are acyclic (DAGs), all our
results hold for both semantics.

Organization of the paper Sections III–XV of this
paper are devoted to the proof of Theorem I.1. In
short Section III we introduce (very few) notions
and some notations we need to use.

In Section IV we first follow the ideas from
[GMO18] defining the red-green signature. Then
we define the game of Escape and state a crucial
lemma (Lemma 2), asserting that this game really
fully characterises determinacy for Regular Path
Queries. In Section IV-C we prove this Lemma.
This part follows in the footsteps of [GMO18],
but with some changes: in [GMO18] Escape is a
solitary game, and here we prefer to see it as a
two-players one.

At this point we will have the tools ready for
proving Theorem I.1. In Section VI we explain
what is the undecidable problem we use for our
reduction, and present the reduction. In Sections
VII – XV we use the characterisation provided by
Lemma 2 to prove correctness of this reduction.
Proof of Theorem I.2 can be found in Appendix 1.

II. HOW THIS PAPER RELATES TO [GMO18]

This paper builds on the top of the technique
developed in [GMO18] to prove undecidability of
QDP-RPQ for any languages, including infinite.

From the point of view of the high-level ar-
chitecture the two papers do not differ much. In
both cases, in order to prove that if some compu-
tational device rejects its input then the respective
instance of QDP-RPQ (or QDP-FRPQ) is positive
(there is determinacy) we use a game argument. In
[GMO18] this game is solitary. The player, called
Fugitive constructs a structure/ graph database (a
DAG, with source a and sink b). He begins the
game by choosing a path D0 from a to b, which rep-
resents a word from some regular language G(Q0).
Then, in each step he must “satisfy requests”– if
there is a path from some v to w in the current
structure, representing a word from some (*) regu-
lar language Q then he must add a path representing
a word from another language Q′ connecting these
v and w. He loses when, in this process, a path
from a to b from yet another language R(Q0) is
created.

Page 3 of 19

44 DODATEK B. ZAŁĄCZNIK 2

In this paper this game is replaced by a two-
players game. But this is a minor difference. There
are however two reasons why the possibility of
using infinite languages is crucial in [GMO18].
Due to these reasons while, as we said, the general
architecture of the proof of the negative result in
this paper is the same as in [GMO18] the imple-
mentation of this architecture is almost completely
different here.

The first reason is as follows.
Because of the symmetric nature of the con-

straints, the language Q (in (*) above) is always
almost the same as language Q′ (they only have
different “colors”, but otherwise are equal). For this
reason it is not at all clear how to force Fugitive to
built longer and longer paths. This is a problem for
us, as to be able to encode something undecidable
we need to produce structures of unbounded size.
One can think that paths of unbounded length
translate to potentially unbounded length of Turing
machine tape.

In order to solve this problem we use – in
[GMO18] – language G(Q0). It is an infinite lan-
guage and – in his initial move – Fugitive could
choose/commit to a path of any length he wished
but no longer paths could occur later in the game.
Since now we only have finite languages, so also
G(Q0) must be finite, we needed here to invent
something completely different, This long path is
now generated step by step (see Sections XI-XII)
using (mainly) the machinery of regular languages
Q12
good −Q15

good.
The second reason is in R(Q0). This – one can

think – is the language of “forbidden patterns” –
paths from a to b that Fugitive must not construct.
If he does, it means that he “cheats”. But now
again, R(Q0) is finite. So how can we use it to
detect Fugitive’s cheating on paths no longer than
the longest one in R(Q0)? This at first seemed
to us to be an impossible task. And the solution
is in a complicated machinery of languages pro-
ducing edges labelled with x and y (languages
Q12
good−Q15

good producing x and y and all languages
in Qugly checking constraints).

III. PRELIMINARIES AND NOTATIONS

Structures. When we say “structure" we always
mean a directed graph with edges labelled with

letters from some signature/alphabet Σ. In other
words every structure we consider is relational
structure D over some signature Σ consisting of
binary predicate names. Letters D, M, G and H
are used to denote structures. Ω is used for a set of
structures. Each structure we consider will contain
two distinguished constants a and b.

For two structures G and G′ over Σ, with sets
of vertices V and V ′, a function h : V → V ′ is
(as always) called a homomorphism if for each two
vertices 〈x, y〉 connected by an edge with label E ∈
Σ in G there is an edge connecting 〈h(x), h(y)〉,
with the same label E, in G′.

A. Path queries.

Given a set of binary predicate names Σ and a
word w = a1a2 . . . an over Σ∗ we define a path
query w(x0, xn) as a conjunctive query:

∃x1,...,xn−1
a1(x0, x1) ∧ a2(x1, x2) ∧
. . . an(xn−1, xn).

We use the notation w[x0, xn] to denote the
canonical structure (“frozen body”) of query
w(x0, xn) – the structure consisting of elements
x0, x1, . . . xn and atoms a1(x0, x1),
a2(x1, x2), . . . an(xn−1, xn).

Regular path queries. For a regular language Q
over Σ we define a query, which is also denoted by
Q, as:

Q(x, y) = ∃w∈Qw(x, y)

In other words such a query Q looks for a path
in the given graph labelled with any word from Q
and returns the endpoints of that path. Clearly, if Q
is a finite regular language, then Q(x, y) is a union
of conjunctive queries.

We use letters Q and L to denote regular lan-
guages and Q and L to denote sets of regu-
lar languages. The notation Q(D) has the natural
meaning: Q(D) = {〈x, y〉 |D |= Q(x, y)}.

IV. RED-GREEN STRUCTURES AND ESCAPE

A. Red-green signature and Regular Constraints

For a given alphabet (signature) Σ let ΣG and ΣR
be two copies of Σ one written with “green ink”
and another with “red ink”. Let Σ̄ = ΣG ∪ ΣR.

Page 4 of 19

45

For any word w from Σ∗ let G(w) and R(w)
be copies of this word written in green and red
respectively. For a regular language L over Σ let
G(L) and R(L) be copies of this same regular
language but over ΣG and ΣR respectively. Also
for any structure D over Σ let G(D) and R(D) be
copies of this same structure D but with labels of
edges recolored to green and red respectively.

For a pair of regular languages L over Σ and L′

over Σ′ we define Regular Constraint L → L′ as
a formula

∀x,yL(x, y)⇒ L′(x, y).

We use the notation D |= r to say that an RC r
is satisfied in D. Also, we write D |= T for a set T
of RCs when for each t ∈ T it is true that D |= t.

For a graph D and an RC t = L → L′ let
rq(t,D) (as “requests”) be the set of all triples
〈x, y, L → L′〉 such that D |= L(x, y) and
D 6|= L′(x, y). For a set T of RCs by rq(T,D)
we mean the union of all sets rq(t,D) such that
t ∈ T . Requests are there in order to be satisfied:

function ADD
arguments:
• Structure D
• RC L→ L′

• pair 〈x, y〉 such that 〈x, y, L → L′〉 ∈
rq(L→ L′,D)

body:
1: Take a word w = a0a1 . . . an from
L′ and create a new path w[x, y] =
a0(x, x1), a1(x1, x2), . . . , an(xn−1, y) where
x1, x2, . . . , xn−1 are new vertices

2: return D ∪ w[x, y].

Notice that the result Add(D,L → L′, 〈x, y〉)
depends on the choice of w ∈ L′. So the procedure
is non-deterministic.

For a regular language L we define L→ =
G(L) → R(L) and L← = R(L) → G(L). All
regular constraints we are going to consider are
either L→ or L← for some regular L.

For a regular language L we define L↔ =
{L→, L←} and for a set L of regular languages
we define:

L↔ =
⋃

L∈L
L↔.

Requests of the form 〈x, y, t〉 for some RC t ∈
L→ (t ∈ L←) are generated by G(L) (resp. by
R(L)). Requests G(L) and R(L) jointly are said
to be generated by L.

The following lemma is straightforward to prove
and characterises determinacy in terms of regular
constraints:

Lemma 1. A set Q of regular path queries over
Σ does not determine (does not finitely determine)
a regular path query Q0, over the same alphabet,
if and only if there exists a structure M (resp. a
finite structure) and a pair of vertices a, b ∈ M
such that M |= Q↔ and M |= (G(Q0))(a, b) but
M 6|= (R(Q0))(a, b).

Any structure M, as above, will be called coun-
terexample.

B. The game of Escape

An instance Escape(Q0, Q) of a game called
Escape, played by two players called Fugitive and
Crocodile, is:

• a finite regular language Q0 of forbidden paths
over Σ.

• a set Q of finite regular languages over Σ,

The rules of the game are:

• First Fugitive picks the initial position of the
game as D0 = (G(w))[a, b] for some w ∈ Q0.

• Suppose Dβ is the current position of
some play before move β + 1 and Sβ =
rq(Q↔,Dβ). Then, in move β + 1, Crocodile
picks one request 〈x, y, t〉 ∈ Sβ and then
Fugitive can move to any position of the form:

Dβ+1 ∈ Add(Dβ , t, 〈x, y〉)

• For a limit ordinal λ the position Dλ is defined
as
⋃
β<λ

Dβ .

• If rq(Q↔,Di) is empty then for each j > i
structures Dj and Di are equal.

• Fugitive loses when for a final position Dω2 =⋃
β<ω2

Dβ it is true that Dω2 |= (R(Q0))(a, b).

Otherwise he wins.

Page 5 of 19

46 DODATEK B. ZAŁĄCZNIK 2

Notice that we want the game to last ω2 steps.
This is not really crucial (if we were careful enough
ω steps would be enough) but costs nothing and
will simplify presentation in Section XI.

Obviously, different strategies of both players
may lead to different final positions. We will denote
the set of all final positions reachable (by any
sequence of moves of both players) from an initial
position D0, for a set of regular languages L, as
Ω(L↔,D0).

Now we can state the crucial Lemma, that con-
nects the game of Escape and QDP-RPQ:

Lemma 2. For an instance of QDP-RPQ consisting
of regular language Q0 over Σ and a set of
regular languages Q over Σ the two conditions are
equivalent:

(i) Q does not determine Q0,
(ii) Fugitive has a winning strategy in Escape(Q0,
Q).

C. Universality of Escape. Proof of Lemma 2

It is clear that (i) ⇐ (ii) is true. All we need
is to use the final position of a play won by
Fugitive as the counterexample for determinacy
as in Lemma 1. But the other direction is not at
all obvious. Notice that it could a priori happen
that, while some counterexample exists, is is some
terribly complicated structure which Fugitive can
not force Crocodile to reach as a final position in
a play of the game of Escape.

We should mention here that all the notions of
Section IV are similar to those of [GMO18] but
are not identical. Most notable difference is in the
definition of the game of Escape, as it is no longer
a solitary game, as it was in [GMO18].

This makes the analysis slightly harder here, but
pays off in Sections VII XV.

Lemma 3. Suppose structures D0 and M over
Σ̄ are such that there exists a homomorphism
h0 : D0 → M. Let T be a set of RCs and suppose
M |= T . Then (regardless of the Crocodile’s moves)
Fugitive can reach some final position Dω2 ∈
Ω(T,D0) such that there exists a homomorphism
h from Dω2 to M.

Proof. Next lemma provides the induction step for
the proof of Lemma 3.

Let us define step as arity four relation such that
〈D,D′, T, r〉 ∈ step when D′ can be the result of
one move of Fugitive, in position D, in the game of
Escape with set of RCs T and a particular request
r ∈ rq(T,D) picked by Crocodile.

Lemma 4. Let Dβ , M be structures over Σ̄ and
hβ : Dβ → M be a homomorphism. Suppose that
for a set T of RCs it is true that M |= T . Then
for every r ∈ T there exists some structure Dβ+1

such that step(Dβ ,Dβ+1, T, r) and that there exists
homomorphism hβ+1 : Dβ+1 →M such that hβ ⊆
hβ+1.

Proof. Let r = 〈x, y,X → Y 〉 for some x, y ∈ Dβ
and let x′ = hβ(x) and y′ = hβ(y). Since
D |= X(x, y) and since hβ is a homomorphism
we know that M |= X(x′, y′). But M |= T so
there is also M |= Y (x′, y′) and thus for some
a1a2 . . . an ∈ Y there is path p′ = a1(x′, x′1),
a2(x′1, x

′
2) . . . an(x′n−1, y

′) in M. Let D′β be a
structure created by adding to Dβ new path p =
a1(x, x1),
a2(x1, x2), . . . an(xn−1, y) (with xi being new ver-
tices). Let h′β = hβ ∪ {〈xi, xi+1〉|i ∈ [n − 1]}. It
is easy to see that D′β and h′β are requested Dβ+1

and hβ+1.

Now we consider the limit case. Let λ be a limit
ordinal such that λ ≤ ω2. By definition we know
that Dλ =

⋃
β<λ Dβ . Now we need to construct a

homomorphism hλ. Let hλ :=
⋃
β<λ hβ . Observe

that such hλ is a valid homomorphism from Dλ to
M.

This along with Lemma 4 proves that Dω2 and
hω2 are as required by Lemma 3.

Now we will prove the (i)⇒(ii) part of Lemma 2.
Assume (i). Let M be a counterexample as in

Lemma 1. Let a, b and w ∈ Q0 be such that M |=
(G(w))(a, b) and M 6|= (R(Q0))(a, b). Applying
Lemma 3 to D0 = G(w)[a, b] and to M we know
that Fugitive (regardless of the Crocodile’s moves)
can reach some winning final position Dω2 such
that there is homomorphism from Dω2 to M. It is
clear that Dω2 6|= (R(Q0))(a, b) as we know that
M 6|= (R(Q0))(a, b). This shows that Dω2 is indeed
a winning final position.

This concludes the proof of the Lemma 2.

Page 6 of 19

47

V. SOURCE OF UNDECIDABILITY

Definition 1 (Recursively inseparable sets). Sets
A and B are called recursively inseparable when
each set C, called a separator, such that A ⊆ C
and B ∩ C = ∅, is undecidable.

It is well known that:

Lemma 2. Let T be the set of all Turing Machines.
Then sets Ta = {φ ∈ T : φ(0) = 1} and Tr =
{φ ∈ T : φ(0) = 0} are recursively inseparable.
By φ(0) we mean the returned value of the Turing
Machine φ that was run on an empty tape.

Definition 3 (Square Grids). For a k ∈ N let [k]
be the set {i ∈ N : 0 ≤ i ≤ k}. A square grid is
a directed graph 〈V,E〉 where V = [k] × [k] for
some natural k > 0 or V = N × N. E is defined
as E(〈i, j〉, 〈i + 1, j〉) and E(〈i, j〉, 〈i, j + 1〉) for
each relevant i, j ∈ N.

Definition 4 (Our Grid Tilling Problem
(OGTP)). An instance of this problem is a set
of shades S (gray,black ∈ S) and a list F ⊆
{V,H}×S ×{V,H}×S of forbidden pairs 〈c, d〉
where c, d ∈ {V,H} × S . Let the set of all these
instances be called I.

Definition 5. A proper shading4 is an assignment
of shades to edges of some square grid G (see
Figure 1) such that:

(a1) each horizontal edge of G has a label from
{H} × S .

(a2) each vertical edge of G has a label from
{V } × S .

(b1) bottom-left horizontal edge is shaded gray5.
(b2) upper-right vertical edge (if exists) is shaded

black.
(b3) G contains no forbidden paths of length 2

labelled by (c, d) ∈ F .

We define two subsets of instances of OGTP:

A = {I ∈ I|there exists a proper shading of some
finite square grid }.

4We would prefer to use the term “coloring” instead, but
we already have colors, red and green, and they shouldn’t be
confused with shades.

5We think of (0, 0) as the bottom-left corner of a square
grid. By ’right’ we mean a direction of the increase of the first
coordinate and by ’up’ we mean a direction of increase of the
second coordinate.

(0, 0)

(4, 4)(0, 4)

(4, 0)

Figure 1. Finite square grid.

B = {I ∈ I|there is no proper shading of any
square grid }.

By standard argument, using Lemma 2, one can
show that:

Lemma 6. Sets A and B of instances of OGTP are
recursively inseparable.

In Section VI we will construct a function R
(R like Reduction) from I (instances of OGTP)
to instances of QPD-FRPQ that will satisfy the
following:

Lemma 7. For any instance I = 〈S,F〉 of OGTP
and for 〈Q, Q0〉 = R(I):

(i) If I ∈ A then Q does not finitely determine
Q0.

(ii) If I ∈ B then Q determines Q0.

That will be enough to prove Theorem I.1.
Imagine, for the sake of contradiction, that we
have an algorithm ALG deciding determinacy (in
either finite or unrestricted case). Then, in both
cases, algorithm ALG ◦ R would separate A and
B, which contradicts recursive inseparability of A
and B (Lemma 6).

VI. THE FUNCTION R

Now we define a function R, as specified in
Section V, from OGTP to the QDP-RPQ. Suppose
an instance 〈S,F〉 of OGTP is given. We will

Page 7 of 19

48 DODATEK B. ZAŁĄCZNIK 2

construct an instance 〈Q, Q0〉 = R(〈S,F〉) of
QDP-RPQ.
The edge alphabet (signature) will be

Σ = {αC , αW , xC , xW , yC , yW , $C , $W , ω} ∪ Σ0

where Σ0 = {A,B} × {H,V } × {W,C} × S. We
think of H and V as orientations – Horizontal and
Vertical. W and C stand for warm and cold. It is
worth reminding at this point that relations from Σ̄
will – apart from shade, orientation and temperature
– have also a color, red or green.

Notation VI.1. We use the following notation for
elements of Σ0:

(prs q) := (p, q, r, s) ∈ Σ0

Symbol • and empty space are to be understood as
wildcards. This means, for example, that (Aa H)
denotes the set {(AW

a H), (AC
a H)} and (•Wa H) de-

notes {(AW
a H), (BW

a H)}.
Symbols from (•W) and {αW , xW , yW , $W }

will be called warm and symbols from (•C) and
{αC , xC , yC , $C} will be called cold.

Now we define Q and Q0. Let Qgood be a set of
15 languages:

1) ω
2) αC + αW

3) xC + xW

4) yC + yW

5) $C + $W

6) (BC
V) + (BW

V)
7) (BW

H) + (BC
H)

8) (AW
V) + (AC

V)
9) (AC

H) + (AW
H)

10) (BW
H)(AW

V) + (BC
V)(AC

H)
11) (AC

H)(BC
V) + (AW

V)(BW
H)

12) xC
(
(AC

H) + (BC
H) + (AC

V) + (BC
V)
)

+xC +
xW

13)
(
(AC

H) + (BC
H) + (AC

V) + (BC
V)
)
yC +yC +

yW

14) xW + xC + xC(AC
H)(BC

V)
15) yW + $C + (AC

H)(BC
V)yC

Let Qbad be a set of languages:

1) αWxW (•Wc d)(•Wc′ d′)y
Wω for each forbidden

pair
〈(d, c), (d′, c′)〉 ∈ F .

2) αWxW (BW
shade V)$Wω for each shade ∈ S \

{black}.

Finally, let Qugly be a set of languages:

1) αCΣ≤4(•W)Σ≤4ω
2) αWΣ≤4(•C)Σ≤4ω

where Σ≤4 =
⋃4
i=1 Σi.

We write Qigood, Q
i
bad, Q

i
ugly to denote the i-th

language of the corresponding group. Now we can
define

Q := Qgood ∪Qbad ∪Qugly

The sense of the construction will (hopefully) be-
come clear later. The regular constraints (Q10

good)
↔

and (Q11
good)

↔ are of the form “for vertices x, y, z
and edges e1(x, y) and e2(y, z) of some color in
the current structure, create a new y′ and add edges
e′1(x, y′) and e′2(y′, z) of the opposite color” where
the pair 〈e1, e2〉 comes from some small finite set
of possible choices.

On the other hand, each language inQbad∪Qugly
contains words with some bad or ugly pattern. For
L ∈ Qbad ∪ Qugly requests generated by L are of
the form “if you have a short path in the current
structure, green or red, between some vertices x
and y, containing such pattern, then add a new path
from x to y, of the opposite color, also containing
the same pattern”.

A small difference between languages in Qbad
and in Qugly is that languages in Qugly do not
depend on the constraints from the instance of Our
Grid Tiling Problem while ones in Qbad encode
this instance. One important difference between
languages in Qgood ∪ Qugly and Qbad is that only
the last do mention shades.

Finally, define Qstart :=
αCxC(AC

gray H)(BC
V)yCω, and let:

Q0 := Qstart +
⊕

L∈Qugly

L+
⊕

L∈Qbad

L

Qstart may look like a single word language, but
it is not: do not forget that (BC

V) is a set of symbols
(which however all look almost the same, the only
difference is the shades).

VII. THE STRUCTURE OF THE PROOF OF
LEMMA 7

The rest of the paper will be devoted to the proof
of Lemma 7 (restated here for convenience):

Page 8 of 19

49

Lemma 7. For any instance I = 〈S,F〉 of OGTP
and for 〈Q, Q0〉 = R(I):

(i) If I ∈ A then Q does not finitely determine
Q0.

(ii) If I ∈ B then Q determines Q0.

Proof of claim (i) – which will be presented in
the end of Section XV – will be straightforward
once the Reader grasps the (slightly complicated)
constructions that will emerge in the proof of claim
(ii).

For the proof of claim (ii) we will employ
Lemma 2, showing that if the instance 〈S,F〉
has no proper shading then the Crocodile does
have a winning strategy in the Escape(Q, Q0)
(where 〈Q, Q0〉 = R(〈S,F〉)). As we remember
from Section IV-B, in such a game Fugitive will
first choose, as the initial position of the game, a
structure D0 = w[a, b] for some w ∈ G(Q0). Then,
in each step, Crocodile will pick a request in the
current structure (current position of the game) D
and Fugitive will satisfy this request, creating a new
(slightly bigger) current D. Fugitive will win if he
will be able to play forever (by which me mean ω2

steps), or until all requests are satisfied, without
satisfying (in the constructed structure) the query
(R(Q0))(a, b). While talking about the strategy of
Fugitive we will use the words “must not” and
“must” as shorthands for “or otherwise he will
quickly lose the game”. The expression “Fugitive
is forced to” will also have this meaning.

Analysing a two-player game (in order to prove
that certain player has a winning strategy) sounds
like a complicated task: there is this (infinite) alter-
nating tree of positions, whose structure somehow
needs to be translated into a system of lemmas. In
order to prune this game tree our plan is first to
notice that in his strategy Fugitive must obey the
following principles:

(I) The structure D0 resulting from his initial move
must be (G(w))[a, b] for some w ∈ Qstart.
(II) He must not allow any green edge with warm
label and any red edge with cold label to appear in
D.
(III) He must never allow any path labelled by
G(Qbad) ∪ R(Qugly) to occur between vertices a
and b.

Then we will assume that Fugitive’s play indeed

follows the three principles and we will present
a strategy for Crocodile which will be winning
against such Fugitive. From the point of view
of Crocodile’s operational objectives this strategy
comprises of three stages.

In each of these stages the Crocodile’s oper-
ational goal will be to force Fugitive to build
some specified structure (where, of course all the
specified structures will be superstructures of D0).
In the first stage Fugitive will be forced to build
a structure called P1 (defined in Section X). In
the second stage the specified structures will be
called Pm and P$ m (each defined in Section X)
and in the third stage Fugitive will be forced to
construct one of the structures Gm or Lkm (defined
in Section XIII)

During the three stages of his play Crocodile
will only pick requests from the languages in
Qgood. These languages, as we said before, are
shade-insensitive, so we can imagine Crocodile
playing in a sort of shade-filtering glasses. Of
course Fugitive, when responding to Crocodile’s
requests, will need to commit on the shades of the
symbols he will use, but Crocodile’s actions will
not depend on these shades.

They shades will however play their part after the
end of the third stage . Assuming that the original
instance of OGTP has no proper shading, we will
get that, at this moment, R(Qbad)(a, b) already
holds true in the structure Fugitive was forced to
construct. This will end the proof of (ii).

VIII. PRINCIPLE I : D0

The rules of the game of Escape are such that
Fugitive loses when he builds a path (from a to
b) labelled with w ∈ R(Q0). So – when trying
to encode something – one can think of words in
Q0 as of some sort of forbidden patterns. And thus
one can think of Q0 as of a tool detecting that
Fugitive is cheating and not really building a valid
computation of the computing device we encode.
Having this in mind the Reader can imagine why
the words from languages from the groups Qbad
and Qugly, which clearly are all about suspiciously
looking patterns, are all in Q0

But another rule of the game is that at the
beginning Fugitive picks his initial position D0 as a
path (from a to b) labelled with some w ∈ G(Q0),

Page 9 of 19

50 DODATEK B. ZAŁĄCZNIK 2

so it would be nice to think of Q0 as of initial
configurations of this computing device. The fact
that the same object is playing the set of forbidden
patterns and, at the same time, the set of initial
configurations is a problem, and this problem is
solved by having languages from Qugly∪Qbad both
in Q and in Q0:

Lemma 1 (Principle I). Fugitive must choose to
start the Escape game from D0 = G(q)[a, b] for
some q ∈ Qstart.

Notice that, from the point of view of the shades-
blind Crocodile the words in Qstart are indistin-
guishable and thus Fugitive only has one possible
choice of D0.

Proof. If D0 = G(q)[a, b] for q ∈ Q0 \Qstart then
D0 |= G(L)(a, b) for some L ∈ Qugly ∪ Qbad.
Then in the next step Crocodile can pick request
〈a, b,G(L) → R(L)〉. After Fugitive satisfies this
request, a structure D1 is created such that D1 |=
R(L)(a, b) and Crocodile wins.

From now on we assume that Fugitive obeys
Principle I. This implies that D0 as demanded by
Principle I will always be a substructure of any
current structure D.

IX. PRINCIPLES II AND III

In this section we will formalise the intuition
considering languages from Qugly as forbidden
patterns.

We start with an observation that will simplify
our reasoning in the proof of Principle II.

Observation IX.1. For vertices x, y in the current
structure D if there is a green (red) edge between
them then Crocodile can force Fugitive to draw a
red (green) edge between x and y.

Proof. It is possible due to languages 1 − 9 in
Qgood.

Definition 2. A P2-ready6 structure D is a structure
satisfying the following:

• D0 is a substructure of D,
• All edges incident to a are 〈a, a′〉 with label
G(αC) and 〈a, a′〉 with label R(αW)),

6Meaning “ready for Principle II”.

• All edges labeled with αC and αW are be-
tween a and a′,

• All edges incident to b are 〈b′, b〉 with label
G(ω) and 〈b′, b〉 with label R(ω)),

• All edges labeled with ω are between b′ and
b,

• For each v ∈ D \ {a, b} there is a directed
path in D, of length at most 4 from a′ to v
and there is a directed path in D, of length at
most 4 from v to b′.

Lemma 3 (Principle II). Suppose that, after Fugi-
tive’s move, the current structure D is a P2-ready
structure. Then neither a green edge with label from
(•W) nor a red edge with label from (•C) may
appear in D.

Proof. First suppose that there is such a green edge
e = 〈x, y〉 with label (•W) in structure D. Let us
denote by P a path from a′ to b′ through e. Observe
that if some of the edges of P are red then from
Observation IX.1 in at most 8 moves Crocodile can
force Fugitive to create path P ′ which goes through
the same vertices as P (and also through e) but
consists only of green edges. Because of this path
there is a request generated by Q1

ugly between a and
b so in the next step Crocodile can force Fugitive to
create a red path connecting a and b labelled with
a word from Q1

ugly, which results in Crocodile’s
victory.

In the second case assume there is a red edge
e = 〈x, y〉 with label (•C) in structure D. Let us
denote by P a path from a′ to b′ through e. Observe
that if some of the edges of P are green then from
Observation IX.1 in at most 8 moves Crocodile
can force Fugitive to create path P ′ which goes
through the same vertices as P but consists only
of red edges. Because of this path P ′ there is a red
path connecting a and b labelled with a word from
Q2
ugly.

Lemma 4 (Principle III). Fugitive must not allow
any path labelled with a word from R(Qbad) ∪
G(Qbad) to occur in the current structure D be-
tween vertices a and b.

Proof. First consider a case where D |=
R(Qbad)(a, b). Then Fugitive has already lost as
Qbad ⊂ Q0.

Page 10 of 19

51

The second case is when D |= G(Qbad)(a, b)
and D 6|= R(Qbad)(a, b). Then Crocodile can pick
request 〈a, b,Qi→bad〉 (for some i) for Fugitive to
satisfy. In both cases after at most one move
Fugitive loses.

X. THE PATHS Pm AND P$ m

Definition 1. (See7 Figure 2 and Figure 3) Pm,
for m ∈ N+, is a directed graph (V,E) where
V = {a, a′, b′, b} ∪ {vi : i ∈ [0, 2m]} and the
edges E are labelled with symbols from Σ \Σ0 or
with symbols of the form (prq), where – like before
– p ∈ {A,B}, q ∈ {H,V } and r ∈ {W,C}. Each
label has to also be either red or green. Notice
that there is no s ∈ S here: the labels we now use
are sets of symbols from Σ̄ like in Notation VI.1:
we watch the play in Crocodile’s shade filtering
glasses.

The edges of Pmare as follows:

• Vertex a′ is a successor of a and vertex b is
a successor of b′. For each i ∈ [0, 2m] the
successors of vi are vi+1 (if it exists) and b′

and the predecessors of vi are vi−1 (if it exists)
and a′. From each node there are two edges to
each of its successors, one red and one green,
and there are no other edges.

• Each Cold edge (labelled with a symbol in
(•C)) is green.

• Each Warm edge (labelled with a symbol in
(•W)) is red.

• Each edge 〈v2i, v2i+1〉 is from (AH).
• Each edge 〈v2i+1, v2i+2〉 is from (BV).
• Each edge 〈a′, vi〉 is labelled by either xC or
xW .

• Each edge 〈vi, b′〉 is labelled by either yC or
yW .

• Edges 〈a, a′〉 with label G(αC) and 〈a, a′〉
with label R(αW) are in E.

• Edges 〈b′, b〉 with albel G(ω) and 〈b′, b〉 R(ω)
are in E.

Definition 2. P$ m for m ∈ N+ is Pm with two
additional edges:

• 〈v2m, b′〉 ∈ E with label G($C),
• 〈v2m, b′〉 ∈ E with label R($W)).

One may notice that D0 is a substructure of both
Pm and P$ m, and that:

7Please use a color printer if you can.

Figure 2. P1.

Figure 3. P$ 3.

Exercise X.3. The only requests generated by
Qgood in P$ m are those generated by Q10

good and
Q11
good.

Exercise X.4. Each Pk and each P$ k is a P2-ready
structure.

XI. STAGE I

Recall that till the end of Section XIV we watch,
and analyse, Fugitive’s and Crocodile’s play in
shade filtering glasses. And we (of course) assume
that Fugitive obeys Principle I, II and III.

Definition 1 (Crocodile’s strategy). Sequence of
languages S = (l1, l2, . . . , ln), for some n ∈ N,
defines a strategy for Crocodile as follows:

• If S = (l) ++S′ then Crocodile demands
Fugitive to satisfy requests generated by l one
by one (in any order) until (it can take in-
finitely many steps) there are no more requests

Page 11 of 19

52 DODATEK B. ZAŁĄCZNIK 2

generated by l in the current structure. Then8

Crocodile proceeds with strategy S′.

Now we define a set of strategies for Crocodile.
All languages that will appear in these strategies are
from Qgood so instead of writing Qigood we will just
write i. Let:

• Scolor := (3, 4, 5, 6, 7, 8, 9),
• Scycle := (15, 14) ++Scolor ++ (12, 13) +

+Scolor,
• Sstart := (1, 2) ++Scycle.

Recall that D0 is the Fugitive’s initial structure
(consisting of green edges only), as demanded by
Principle I.

Lemma 2. Crocodile’s strategy (1, 2) applied to
the current structure D0 forces Fugitive to add
R(αW)[a, a′] and R(ω)[b′, b].

Proof. Consider these languages one by one:
1 = ω: This language generates only one request

〈b′, b, Q1→
good〉 (one because edge 〈b′, b〉 with label

G(ω) is the only one in D0 labelled with ω), which
has to be satisfied with R(ω)[b′, b] as language
Q1
good consists of only one word.

2 = αC + αW : There is a green edge labelled
with αC in D0 and thus this language generates
a request 〈a, a′, Q2→

good〉 (and no other requests).
This request can be satisfied by Fugitive either
by adding the edge R(αC)[a, a′] or by adding
the edge R(αW)[a, a′]. Suppose that Fugitive sat-
isfies this request with R(αC)[a, a′]. Notice that
Crocodile can now require Fugitive to satisfy re-
quests Reqs = { 〈a′, v0, Q3→

good〉, 〈v2, b′, Q4→
good〉,

〈v0, v1, Q9→
good〉, 〈v1, v2, Q6→

good〉} which will force
the Fugitive to build a red path from a′ to b′. Each
of these request has to be satisfied with a red edge
with some label em warm (with the upper index
W) or cold (with C).

Consider what happens if one of these requests is
satisfied with a warm letter. Then we have that D |=
R(Q1

ugly)(a, b) and Fugitive loses. It means that
each request from Reqs must be satisfied with a red
edge labelled with a cold letter. But then notice that
D |= R(Qstart)(a, b) and Fugitive also loses.

8In order for this "then" to make sense we need the total
number of moves of the game to be ω2 rather than ω.

A careful Reader could ask here: “Why did we
need to work so hard to prove that the newly added
red edge must be warm. Don’t we have Principle II
which says that red edges must always be warm and
green must be cold?”. But we cannot use Principle
II here – the structure is not P2-ready yet. Read the
proof of Principle II again to notice that this red
αW between a and a′ is crucial there. And this is
actually, what Stage I is all about: it is here where
Crocodile forces Fugitive to construct a structure
which is P2-ready. From now on all the current
structures will be P2-ready and Fugitive will indeed
be a slave of Principle II.

uuu!
The following Lemma explains the role of Scolor

and is a first cousin of Observation IX.1:

Lemma 3 (Scolor). Strategy Scolor applied to a
P2-ready D forces Fugitive to create a P2-ready
D′ such that:

• Sets of vertices of D and D′ are equal.
• There are no requests generated by Q1−9

good

in D′, which means that each edge has its
counterpart (incident to the same vertices) of
the opposite color and temperature.

Proof. The proof is an easy consequence of Princi-
ple II and the fact that all words from Q1−9

good have
length one (which means that when satisfying the
requests Fugitive only creates new edges, but no
new vertices are added) and that these languages
contain all symbols from Σ.

Lemma 4. Strategy Sstart applied to D0 forces
Fugitive to build P1.

Proof. Consider languages from Sstart one by one:

• 1 = ω: By Lemma 2 this language forces
Fugitive to add R(ω)[b′, b].

• 2 = αC + αW : By Lemma 2 this language
forces the Fugitive to add R(αW)[a, a′].

• 15 = yW+$C+(AC
H)(BC

V)yC : This language
generates only one request 〈v0, b′, Q15→

good〉
since neither yW nor $C occurs in the current
structure. This request has to be satisfied with
R(yW)[v0, b

′] by Principle II. We can use
Principle II since after strategy (1, 2) was
applied the structure is P2-ready.

• 14 = xW + xC + xC(AC
H)(BC

V): This
language generates only two requests

Page 12 of 19

53

〈a′, v2, Q14→
good〉 and 〈a′, v0, Q14→

good〉. The first
request has to be satisfied with R(xW)[a′, v0]
and the second with R(xW)[a′, v2], both due
to Principle II.

Now Crocodile uses strategy Scolor to add miss-
ing edges of opposite colors (and, by Principle II,
of opposite temperatures).

• 12 = xC
(
(AC

H) + (BC
H) + (AC

V) + (BC
V)
)
+

xC + xW : This language generates only
one request: 〈a′, v1, Q12→

good〉. It is because
there are no requests generated by nei-
ther xC nor xW in Q12

good by Lemma 3.
There are also no other requests generated
by xC

(
(AC

H) + (BC
H) + (AC

V) + (BC
V)
)

in
Q12
good as the only path labeled with a

word from this language is a′ → v0 →
v1. 〈a′, v1, Q12→

good〉 has to be satisfied with
R(xW)[a′, v1] by Principle II.

• 13 =
(
(AC

H) + (BC
H) + (AC

V) + (BC
V)
)
yC+

yC + yW : This language generates one re-
quest 〈v1, b′, Q13→

good〉. It has to be satisfied with
R(yW)[v1, b

′] by Principle II.

Finally Crocodile uses strategy Scolor to add
two missing edges 〈a′, v1〉 with label G(xC) and
〈v1, b′〉 with label G(yC) to build P1.

XII. STAGE II

Now we imagine that P1 has already been cre-
ated and we proceed with the analysis to the later
stage of the Escape game where either Pm+1 or
P$ k for some k ≤ m will be created.

Let us define {Sk} inductively for k ∈ N+ in
the following fashion:

• S1 := Sstart,
• Sk := Sk−1 ++Scycle for k > 1,

Lemma 1. For all m ∈ N+ strategy Sm applied
to D0 forces Fugitive to build, depending on his
choice, either Pm+1 or P$ k for some k ≤ m.

Proof. Notice that by, Lemma 4, this is already
proven for m = 1. Now assume that Crocodile,
using strategy Sm−1, forced Fugitive to build Pm
or P$ k, for some k ≤ m− 1. If Fugitive built P$ k

already as the result of Crocodile’s strategy Sm−1
then we are done, and notice that the last Scycle
will not change the current structure any more –

this is because, due to Exercise ??? there are no
requests from languages Q1−9

good and Q12−15
good in the

current structure at this point.
So we only need to consider the case where Pm

was built. Now Crocodile uses strategy Scycle to
force Fugitive to build Pm+1 or P$ m. Consider
languages from Scycle one by one:

• 15 = yW + $C + (AC
H)(BC

V)yC . The
only request generated by this language is
〈v2m, b′, Q15←

good〉, resulting from the red edge
labelled with yW connecting v2m and b′.
This is since there is no $C anywhere in the
current structure, and since for each k < m
there are already both a red edge labelled with
yW from v2k to b′ and a green paths labelled
with (AC

H)(BC
V)yC between these vertices.

This only request can be possibly satisfied in
two different ways (it follows from Principle
II): either by G((AC

H)(BC
V)yC)[v2m, b

′] or by
G($C)[v2m, b

′]. The case when this request is
satisfied with G($C)[v2m, b

′] will be consid-
ered in the last paragraph of the proof. So
now we assume that this request is satisfied
with G((AC

H)(BC
V)yC)[v2m, b

′]. Let us name
the two new vertices as v2m+1 and v2m+2.

• 14 = xW + xC + xC(AC
H)(BC

V): the
only request generated by this language is
〈a′, v2m+2, Q

14→
good〉 resulting from the (par-

tially) newly created green path from a′ to
v2m+2, via v2m and v2m+1, labelled with
xC(AC

H)(BC
V)yC .

This request has to be satisfied with
R(xW)[a′, v2m+2] due to Principle II.

Now Crocodile uses strategy Scolor to add miss-
ing edges of opposite colors.

• 12 = xC
(
(AC

H) + (BC
H) + (AC

V) + (BC
V)
)
+

xC+xW : This language generates one request:
〈a′, v2m+1, Q

12→
good〉. It has to be satisfied with

R(xW)[a′, 2m+ 1] by Principle II.
• 13 =

(
(AC

H) + (BC
H) + (AC

V) + (BC
V)
)
yC+

yC+yW : This language generates one request
〈v2m+1, b

′, Q13→
good〉. It has to be satisfied with

R(yW)[2m+ 1, b′] by Principle II.

Now Crocodile uses strategy Scolor (as Scycle =
(15, 14) ++Scolor ++ (12, 13) ++Scolor). We apply
Lemma 3 to conclude that Fugitive is forced to
build Pm+1, as what is left to create Pm+1 is
to only add some edges of opposite colors and

Page 13 of 19

54 DODATEK B. ZAŁĄCZNIK 2

temperatures.
Notice that during play, after application of each

language in Crocodile’s strategy, each of the con-
structed structures is P2-ready, as distances from
a′ and to b′ are smaller than 4.

Now we finally consider the case where Fugi-
tive satisfied the request generated by language
15 with G($C)[vm, b

′]. Notice that the only re-
quest generated by the remaining languages from
Scycle is: 〈v2m, b′, Q5→

good〉, which will be satisfied
by R($W)[v2m, b

′] and the resulting structure will
be isomorphic to P$ m. This ends the proof of
Lemma 1.

XIII. THE GRIDS Gm AND PARTIAL GRIDS Lkm

Definition 1. Gm for m ∈ N+ is a directed graph
(V,E) where:
V = {a, a′, b′, b} ∪ {vi,j : i, j ∈ [0,m]} and the

edges E are labelled (as in Pm) with Σ \ Σ0 or
one of the symbols of the form (prq), which means
that the shade-filtering glasses are still on.

The edges of Gm are as follows:

• Vertex a′ is a successor of a, b is a successor of
b′. All vi,j are successors of a′ and the suc-
cessors of each vi,j are vi+1,j , vi,j+1 (when
they exist) and b′. From each node there are
two edges to each of its successors, one red
and one green, and there are no other edges.

• Each cold edge, labelled with a symbol in
(•C), is green.

• Each warm edge, labelled with a symbol in
(•W), is red.

• Each edge 〈vi,j , vi+1,j〉 is horizontal – its
label is from (•H).

• Each edge 〈vi,j , vi,j+1〉 is vertical – its label
is from (•V).

• The label of each edge leaving vi,j , with i +
j even, is from (A), the label of each edge
leaving vi,j , with i+ j odd, is from (B),

• Each edge 〈a′, vi〉 is labeled by either xC or
xW ,

• Each edge 〈vi, b′〉 is labeled by either yC or
yW ,

• Edges 〈a, a′〉 with label G(αC) and 〈a, a′〉
with label R(αW) are in E,

• Edges 〈b′, b〉 with label G(ω) and 〈b′, b〉 with
label R(ω) are in E.

Definition 2. Lkm = (V ′, E′) for m ∈ N+, k ∈
N+, k ≤ m is a subgraph of Gm = (V,E) induced
by the set of vertices V ′ ⊂ V, V ′ = {a, a′, b′, b} ∪
{vi,j : i, j ∈ [0,m]; i− j ≤ k; j − i ≤ k}.
Definition 3. G$ m for m ∈ N+ is Gm with two
edges added:

• 〈vm,m, b′〉 with label G($C)
• 〈vm,m, b′〉 with label R($W)

Definition 4. L$ k
m for m ∈ N+, k ∈ N+∪{0}, k ≤

m is Lkm with two edges added:

• 〈vm,m, b′〉 with label G($C)
• 〈vm,m, b′〉 with label R($W)

Exercise XIII.5. For all m:

• Lmm is equal to Gm,
• L$ m

m is equal to G$ m.

Exercise XIII.6. For all m there are no requests
generated by languages from Qgood or Qugly in
G$ m.

XIV. STAGE III

Now we imagine that either Pm+1 or P$ k for
some k ≤ m was created as the current position in
a play of the game of Escape and we proceed with
the analysis to the later stage of the play, where
either Gm+1 or G$ k will be created.

Lemma 1. For any m ∈ N+ Crocodile can force
Fugitive to build a structure isomorphic, depending
on Fugitive’s choice, to either Gm+1 or to G$ k for
some k ≤ m.

Notice that by Exercise XIII.5, in order to prove
Lemma 1 it is enough to prove that for any m ∈ N+

Crocodile can force the Fugitive to build a structure
isomorphic to either Lm+1

m+1 or to L$ k
k for some k ≤

m.
As we said, we assume that Crocodile already

forced Fugitive to build a structure isomorphic to
either Pm+1 or to P$ k for some k ≤ m. Rename
each vi in this Pm+1 (or P$ k) as vi,i. If the structure
which was built is Pm+1 we will show a strategy
leading to Lm+1

m+1 and when P$ k was built, we will
show a strategy leading to L$ k

k.
Now we define a sequence of strategies Sklayer,

which, similarly to strategies for building P• •,

Page 14 of 19

55

Figure 4. G4 (left). Smaller picture in the top-right corner explains how different line styles on the main picture map to Σ0.9

Figure 5. L$ 3
6.

consist only of languages from Qgood, so instead
of writing Qigood we will just write i. Let:

• Sodd := (11) ++Scolor ++ (12, 13) ++Scolor,
• Seven := (10) ++Scolor ++ (12, 13) ++Scolor,
•

Sklayer :=





[], if k = 0

Sk−1layer ++Sodd, if k odd
Sk−1layer ++Seven, otherwise

.

Figure 6. L1
6.

Lemma 2. For all k ∈ N strategy S1
layer applied

to the current structure P$ k forces the Fugitive to
build L$ 1

k.

Proof. Assume the current structure is P$ k. Con-
sider languages from S1

layer:

• 11 = (AC
H)(BC

V) + (AW
V)(BW

H): This lan-
guage generates one request of the form
〈vi, vi+2, Q

11→
good〉 for every i ∈ [0, 2k − 2]}.

Page 15 of 19

56 DODATEK B. ZAŁĄCZNIK 2

Each of these requests results from a green
path labeled with G((AC

H)(BC
V)) connecting

vi and vi+2.
Notice that there are no requests generated by
Q11←
good. It is because neither (AW

V) nor (BW
H)

occurs in P$ k.
All generated requests have to be satisfied with
R((AW

V)(BW
H)) by Principle II. Notice that

when satisfying each request a new vertex is
created.

• Scolor = (3, 4, 5, 6, 7, 8, 9): This sequence of
languages adds missing green edges G(AC

H)
and G(BC

V) to the edges R(AW
H) and R(BW

V)
created by language 11.

• 12 = xC
(
(AC

H) + (BC
H) + (AC

V) + (BC
V)
)
+

xC +xW : This language generates requests of
the form {〈a′, t, Q12→

good〉 for all new vertices
t created by language 11. Each of these
requests results from a green path labeled
with xC

(
(AC

H) + (BC
H) + (AC

V) + (BC
V)
)

connecting a′ and t, for some vertex t created
by language 11.
Notice that there are no other requests gener-
ated since by Lemma 3 after applying strategy
Scolor each edge labeled with G(xC) has its
counterpart labeled with R(xW).
All generated requests have to be satisfied with
R(xW) by Principle II.

• 13 =
(
(AC

H) + (BC
H) + (AC

V) + (BC
V)
)
yC+

yC + yW : This language generates requests
of the form {〈t, b′, Q13→

good〉 for all new vertices
t created by language 11. Each of these
requests results from a green path labeled
with (

(
AC
H) + (BC

H) + (AC
V) + (BC

V)
)
yC

connecting t and b′, for some vertex t created
by language 11.
Notice that there are no other requests gener-
ated since by Lemma 3 after applying strategy
Scolor each edge labeled with G(yC) has its
counterpart labeled with R(yW).
All these requests have to be satisfied with
R(yW) by Principle II.

• Scolor = (3, 4, 5, 6, 7, 8, 9): This sequence of
languages adds missing green edges G(xC)
and G(yC) to edges added by languages 12
and 13.

Lemma 3. For all k,m ∈ N, k < m strategy Sodd

(for k+ 1 odd) and Seven (for k+ 1 even) applied
to L$ k

m forces the Fugitive to build L$ k+1
m .

Proof. Assume the Escape game starts from L$ k
m

for odd k < m. The proof for the case where k is
even is analogous. Consider languages from Seven:

• 10 = (BW
H)(AW

V) + (BC
V)(AC

H): generates
exactly
{〈vi,j , vi+1,j+1, Q

10→
good〉|i − j = k, i, j ∈

[0,m − 1]}∪ {〈vi,j , vi+1,j+1, Q
10←
good〉|i − j =

k, i, j ∈ [0,m − 1]}. All requests in the
first group result from paths labeled with
G((BC

V)(AC
H)) and all requests in the sec-

ond group result from paths labeled with
R((BW

H)(AW
V)).

All requests in the first group have to be
satisfied with R((BW

H)(AW
V)) (name the new

vertices vi+1,j) and all requests in the second
group have to be satisfied with G((BC

V)(AC
H))

(name the new vertices vi,j+1). All happens by
Principle II.

• Scolor: adds missing edges of opposite colors
incident to newly created vertices by languahe
11.

• 12 = xC
(
(AC

H) + (BC
H) + (AC

V) + (BC
V)
)
+

xC + xW : generates exactly
{〈a′, vi,j , Q12→

good〉|i − j = k + 1, i, j ∈
[0,m]} ∪ {〈a′, vi,j , Q12→

good〉|j − i =
k + 1, i, j ∈ [0,m]}. Each of these
requests results from a green path labeled
with xC

(
(AC

H) + (BC
H) + (AC

V) + (BC
V)
)

connecting a′ and t, for some vertex t created
by language 10.
Notice that there are no other requests gener-
ated since by Lemma 3 after applying strategy
Scolor each edge labeled with G(xC) has its
counterpart labeled with R(xW)
All generated requests have to be satisfied with
R(xW) by Principle II.

• 13 =
(
(AC

H) + (BC
H) + (AC

V) + (BC
V)
)
yC+

yC + yW : generates exactly
{〈vi,j , b′, Q13→

good〉|i − j = k + 1, i, j ∈
[0,m]} ∪ {〈vi,j , b′, Q13→

good〉|j − i =
k + 1, i, j ∈ [0,m]}. Each of these
requests results from a green path labeled
with (

(
AC
H) + (BC

H) + (AC
V) + (BC

V)
)
yC

connecting t and b′, for some vertex t created
by language 10.
Notice that there are no other requests gener-

Page 16 of 19

57

ated since by Lemma 3 after applying strategy
Scolor each edge labeled with G(yC) has its
counterpart labeled with R(yW)
All generated requests have to be satisfied with
R(yW) by Principle II.

• Scolor: adds edges with labels G(xC) and
G(yC) to edges added by languages 12 and
13.

Lemma 4. For all k,m ∈ N, k < m strategy
S1
layer applied to Pk forces the Fugitive to build

L1
k, strategy Sodd (for k + 1 odd) and Seven (for

k + 1 even) applied to Lkm forces the Fugitive to
build Lk+1

m .

Proof. Similar analysis to that in Lemma 2 and
Lemma 3 can be applied here. Structures Pm and
P$ m differ by only two edges labeled with R($W)

and G($C). Letters $C and $W occur only in
languages Q5,15

good and this languages didn’t generate
any request in the process of building L$ k+1

m from
L$ k
m in the proof of Lemma 3 and building L$ 1

m

from P$ m in the proof of Lemma 2.

Lemma 5. For all m ∈ N strategy Smlayer forces
the Fugitive to build L$ m

m from P$ m and Lmm from
Pm..

Proof. That is an easy consequence of Lem-
mas 2,3,4 and the definition of Smlayer.

Observation XIV.6. By Exercise XIII.5 Lemma 5
proves Lemma 1.

XV. AND NOW WE FINALLY SEE THE SHADES
AGAIN

Now we are ready to finish the proof of Lemma
7.

First assume the original instance of Our Grid
Tilling Problem has no proper shading.

The following is straightforward from König’s
Lemma:

Lemma 1. If an instance I of OGTP has no proper
shading then there exist natural m such that for
any k ≥ m a square grid of size k has no shading

9Please use a color printer if you can.

that satisfies conditions (a1), (a2), (b1) and (b3) of
proper shading.

Let m be value from Lemma 1. By Lemma 1
the Crocodile can force the Fugitive to build a
structure isomorphic to either Gm+1 or G$ k for
some k ≤ m. Now suppose the play ended, in
some final position H isomorphic to one of these
structures. We take off our glasses, and not only we
still see this H, but now we also see the shades, with
each edge (apart from edges labeled with α, ω, x
and y) having one of the shades from S. Now
concentrate on the red edges labeled with (•W)
of H. They form a grid, with each vertical edge
labeled with V , each horizontal edge labeled with
H , and with each edge labeled with a shade from
S.

Now we consider two cases:

• If Gm+1 was built then clearly condition (b3)
of Definition 5 is unsatisfied. But this implies
that a path labeled with a word from one of the
languages Qbad occurs in H between a and b,
which is in breach with Principle III because
of language Q1

bad.
• If G$ k for k ≤ m was built then clearly condi-

tion (b2) or (b3) of Definition 5 is unsatisfied.
This is because we assumed that there is no
proper shading. But this implies that a path
labeled with a word from one of the languages
Qbad occurs in H between a and b, which is in
breach with Principle III because of language
Q1
bad.

This ends the proof of Lemma 7 (ii).
For the proof of Lemma 7 (i) assume the original

instance 〈S,F〉 of Our Grid Tiling Problem has a
proper shading– a labeled grid of side length m.
Call this grid G.

Recall that G$ m satisfies all regular constraints
from Q↔good and from Q↔ugly (Exercise XIII.6).
Now copy the shades of the edges of G to the
respective edges of G$ m. Call this new structure
(G$ m with shades added) M. It is easy to see that
M constitutes a counterexample, as in Lemma 1.

REFERENCES

[AV97] S. Abiteboul and V. Vianu, Regular path

Page 17 of 19

58 DODATEK B. ZAŁĄCZNIK 2

queries with constraints; Proc. of the 16th PODS,
pp. 122–133, 1997;
[A11] F. N. Afrati, Determinacy and query
rewriting for conjunctive queries and views;
Th.Comp.Sci. 412(11):1005–1021, March 2011;
[AG08] R. Angles, C. Gutierrez, Survey of Graph
Database Models; ACM Comp. Surveys Vol. 40
Issue 1, February 2008;
[B13] P.Barceló, Querying graph databases. Sim-
ple Paths Semantics vs. Arbitrary Path Semantics;
PODS 2013, pp. 175-188;
[CMW87] I. F. Cruz, A. O. Mendelzon, and P.
T. Wood, A graphical query language supporting
recursion; Proc. of ACM SIGMOD Conf. on Man-
agement of Data, 1987;
[CGL98] D. Calvanese, G. De Giacomo, and M.
Lenzerini, On the decidability of query containment
under constraints; in Proc. of the 17th PODS,” pp.
149–158, 1998;
[CGLV00] D. Calvanese, G. De Giacomo, M. Lenz-
erini, M.Y. Vardi. Answering regular path queries
using views; Proc.. 16th Int. Conf. on Data Engi-
neering, pages 389–398, IEEE, 2000;
[CGLV00a] D. Calvanese, G. De Giacomo, M.
Lenzerini, M. Y. Vardi. View-based query process-
ing and constraint satisfaction; Proc. of 15th IEEE
LICS, 2000;
[CGLV02] D. Calvanese, G. De Giacomo, M. Lenz-
erini, M.Y. Vardi. Lossless regular views; Proc. of
the 21st PODS, pages 247–258, 2002;
[CGLV02a] D. Calvanese, G. De Giacomo, M.
Lenzerini, and M.Y. Vardi. Rewriting of regular
expressions and regular path queries; Journal of
Comp. and System Sc., 64:443–465, 2002;
[DPT99] A. Deutsch, L. Popa, and Val Tannen,
Physical data independence, constraints, and opti-
mization with universal plans; Proc. of 25th VLDB,
pages 459– 470, 1999;
[F15] Nadime Francis, PhD thesis, ENS de Cachan,
2015;
[F17] N.Francis; Asymptotic Determinacy of
Path Queries Using Union-of-Paths Views;
Th.Comp.Syst. 61(1):156-190 (2017);
[FG12] E. Franconi and P. Guagliardo The view
update problem revisited CoRR, abs/1211.3016,
2012;

[FGZ12] Wenfei Fan, F. Geerts, and Lixiao Zheng,
View determinacy for preserving selected informa-
tion in data transformations; Inf. Syst., 37(1):1–12,
March 2012;
[FLS98] D. Florescu, A. Levy, and D. Suciu, Query
containment for conjunctive queries with regular
expressions; Proc. of the 17th PODS,” pp. 139–148,
1998;
[FV98] T. Feder and M. Y. Vardi, The compu-
tational structure of monotone monadic SNP and
constraint satisfaction: A study through datalog
and group theory; SIAM Journal on Computing,
28(1):57–104, 1998;
[FSS14] N. Francis, L. Segoufin, C. Sirangelo
Datalog rewritings of regular path queries using
views; Proc. of ICDT, pp 107–118, 2014;
[GB14] M. Guarnieri, D. Basin, Optimal Security-
Aware Query Processing; Proc. of the VLDB En-
dowment, 2014;
[GM15] T. Gogacz, J. Marcinkowski,The Hunt for
a Red Spider: Conjunctive Query Determinacy Is
Undecidable; LICS 2015: 281-292;
[GM16] T. Gogacz, J. Marcinkowski, Red Spider
Meets a Rainworm: Conjunctive Query Finite De-
terminacy is Undecidable; PODS 2016: 121-134;
[GM018] G. Głuch, J. Marcinkowski, P.
Ostropolski-Nalewaja Can One Escape Red
Chains? Regular Path Queries is Undecidable.;
LICS 2018: 492-501;
[JV09] V. Juge and M. Vardi, On the containment
of Datalog in Regular Datalog; Technical report,
Rice University, 2009;
[LY85] Per-Ake Larson and H. Z. Yang, Computing
queries from derived relations; Proc. of the 11th
International Conference on Very Large Data Bases
- Volume 11, VLDB’85, pages 259–269. VLDB
Endowment, 1985;
[NSV06] A. Nash, L. Segoufin, and V. Vianu,
Determinacy and rewriting of conjunctive queries
using views: A progress report; Proc. of ICDT
2007, LNCS vol. 4353; pp 59–73;
[NSV10] A. Nash, L. Segoufin, and V. Vianu. Views
and queries: Determinacy and rewriting; ACM
Trans. Database Syst., 35:21:1–21:41, July 2010;
[P11] D. Pasaila, Conjunctive queries determinacy
and rewriting; Proc. of the 14th ICDT, pp. 220–

Page 18 of 19

59

231, 2011;
[RRV15] J. Reutter, M. Romero, M. Vardi, Regular
queries on graph databases; Proc. of the 18th
ICDT; pp 177–194; 2015;
[V16] M.Y. Vardi, A Theory of Regular Queries;
PODS/SIGMOD keynote talk; Proc. of the 35th
ACM PODS 2016, pp 1-9;

Page 19 of 19

60 DODATEK B. ZAŁĄCZNIK 2

	Wprowadzenie
	Wstęp
	Cel pracy

	Problem determinacji zapytań
	Definicja problemu
	Motywacja
	Grafowe bazy danych
	Przykłady
	Uzyskane wyniki
	Wkład autorów

	Positive result
	Preliminaries
	Characterization of determiniacy
	Automata
	Intuitions
	Construction

	Putting it all together

	Bibliografia
	Załącznik 1
	Załącznik 2

