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Streszczenie

Celem pracy jest prezentacja problemu determinacji zapytan, historii jego ba-
dania, a takze prezentacja wspétuzyskanych przez autora wynikow. Praca sklada sie
z dwdch integralnych czesci. Pierwsza zawiera wprowadzenie do rozwazanych zagad-
nien oraz jeden wynik o rozstrzygalnosci pewnego fragmentu problemu determina-
¢ji zapytan. Druga czes¢ to dwie zataczone prace: ”Can One Escape Red Chains?
Regular Path Queries is Undecidable.” oraz ”The First Order Truth behind Un-
decidability of Regular Path Queries Determinacy.”, w ktérych udowodniona jest

nierozstrzygalnosé¢ dwoch wariantéw problemu determinacji zapytan.

The aim of this work is to present a query determinacy problem, history of its
research, as well as the presentation of results co-created by the author. The work
consists of two integral parts. The first contains an introduction to the issues under
consideration and one result on the decidability of a certain fragment of the query
determinacy problem. The second part consists of two attached papers: ”Can One
Escape Red Chains? Regular Path Queries is Undecidable.” and ”The First Order
Truth behind Undecidability of Regular Path Queries Determinacy.”, in which the
undecidability of two variants of the query determinacy problem is proved.
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Rozdziat 1.

Wprowadzenie

1.1. Wstep

W ostatnich latach popularno$é zaczety zyskiwaé grafowe bazy danych. Sa one
uzywane coraz czedciej przy np. modelowaniu sieci spolecznosciowych w serwisach
takich jak Facebook, MySpace czy LinkedIn. W tego typu bazach dane modelowane
sg jako grafy, gdzie wierzchotki reprezentuja obiekty, a etykietowane krawedzie defi-
niuja relacje miedzy tymi obiektami.

Popularnosé grafowych baz danych motywuje rozwazanie teoretycznych zagad-
nien, potencjalnie rozwiazanych juz w tradycyjnym modelu relacyjnym, takze w
modelu grafowym. Wtasnie jeden z takich probleméw jest przedmiotem tej pracy
magisterskiej.

Zajmiemy sie tutaj Problemem determinacji zapytan. Wyobrazmy sobie
baze danych D, do ktérej nie mamy bezposredniego dostepu. Mamy natomiast dostep
do zbioru widokéw Q = {Q1,Q2,...Qk}. Oprécz tego otrzymujemy zapytanie Q.
Czy jesteSmy w stanie, niezaleznie od D), obliczy¢ Qg uzywajac do tego jedynie
widokow z Q7

1.2. Cel pracy

Celem pracy jest prezentacja Problemu determinacji zapytan, oméwienie
historii jego badania, a takze prezentacja wynikéw wspotuzyskanych przez autora
dla modelu grafowych baz danych.






Rozdziat 2.

Problem determinacji zapytan

2.1. Definicja problemu
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Rysunek 2.1

Ponizej wprowadzamy formalng definicje problemu determinacji zapytan, ktora
abstrahuje od konkretnego modelu baz danych.

Instancja problemu jest zbior zapytan Q = {Q1,...Qx}, i dodatkowe zapytanie Q.
Pytamy czy Q determinuje (g, co oznacza, ze dla kazdych dwoch struktur (in-
stancji baz danych) D; i D, takich ze Q(D;) = Q(D2) dla kazdego @ € Q, zachodzi
rowniez Qo(D1) = Qo(Dz2).

Warto tu zauwazy¢, ze instancjg problemu sa tu jedynie zapytania. Determina-
cja jest wiec wlasnoscia samych zapytan, a nie baz danych. Intuicyjnie Q@ determinuje
Qo, gdy informacja zawarta w widokach jest wystarczajaca do zdeterminowania wy-
niku zapytania Q.

2.2. Motywacja

Problem, formalnie zdefiniowany w poprzedniej sekcji, jest czysto teoretyczny.
Zostal on jednak zidentyfikowany i wyabstrahowany na podstawie praktycznych za-
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stosowan. Mozemy tutaj mysleé¢ o trzech aspektach: optymalizacji, integracji danych

i prywatno$ci.

Optymalizacja. W pierwszym przypadku wyobrazmy sobie, ze z powoddw
wydajnosciowych nie chcemy uzyskiwaé dostepu do gtéwnej bazy danych D. Mamy
natomiast efektywny dostep do pewnego zbioru widokéw tej bazy V = {Vy,...Vi},
ktore powstaly jako rezultat aplikacji zapytan Q = {Q1,...Qk} do D, a dokladniej
Vi = Q;(D) dla kazdego i. Mozemy my$leé¢, ze np. widoki znajduja sie w pamieci
podrecznej komputera, a D znajduje sie na dysku i czas dostepu do V jest znacznie
nizszy do D. Innym przykladem powyzszej sytuacji sg ogromne, rozproszone bazy
danych, gdzie moze si¢ zdarzy¢, ze D przechowywane jest w czeéciach rozdzielonych
po wielu centrach obliczeniowych, a widoki z V znajduja sie w tej samej lokalizacji,
z ktorej chcemy wykonaé zapytanie Qg. W powyzszych przypadkach chcieliby$my,
zeby Q determinowalo @y, bo to moze oznaczaé, ze uda nam sie obliczyé¢ Qo(ID)

jedynie na podstawie widokéw V.

Integracja danych. Integracja danych to problem polegajacy na polaczeniu
danych pochodzacych z réznych zrédet i zapewnieniu uzytkownikowi zunifikowanego
dostepu do tych danych. Ideatem dla uzytkownika bylby tu taki dostep do danych,
jakby pochodzily one z jednej bazy danych. W tym scenariuszu traktujemy bazowe
bazy danych jako widoki V globalnej, wirtualnej bazy . W momencie gdy uzyt-
kownik chce wykonaé zapytanie Qg do wirtualnej bazy D musimy zdecydowaé czy V
determinuje Qg i jesli tak to sprébowaé obliczy¢ wynik zapytania Q¢ bezposrednio
z widokow V.

Prywatno$¢. Trzeci aspekt, czyli prywatnosé, moze sie pojawi¢ w nastepujacej
sytuacji. Potraktujmy informacje, jakie przechowuje o nas portal Facebook, jako
baze danych D. Wéréd tych danych znajduja sie informacje o adresach, numerach
telefonu, preferencjach, historii zakupéw itd.; czesé z nich to informacje poufne. Przez
V = {Vy,...Vi} (gdzie V; := Q;(D)) mozemy rozumieé¢ np. informacje, do jakich
dostep maja poszczegolni uzytkownicy, reklamodawcy czy pracownicy Facebook’a.
Portal spotecznoSciowy powinien zapewnié, zeby na podstawie widokéw V nie dato
sie obliczy¢ wynikéw niektérych zapytan (Qg. Nie chcielibySmy np. zeby uzytkownicy
niebedacy naszymi przyjaciétmi mogli poznaé¢ nasze miejsce zamieszkania czy numer
telefonu. Jedli tworcy Facebook’a zadbaja o to, zeby Q nie determinowalo (g, dla
Qo bedacych zapytaniami generujacymi poufne dane, to zwieksza oni tym samym

prywatnosé uzytkownikéw.
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2.3. Grafowe bazy danych

Alice Eve

Books Movies

Rysunek 2.2

W grafowych bazach danych dane modelowane sg jako graf. Model ten w natu-
ralny sposéb odpowiada danym takim jak sieci spolecznosciowe, struktura internetu
czy dane biologiczne. Takie bazy danych sg mniej ekspresywne niz standardowe re-
lacyjne bazy, ale za to sa one bardziej elastyczne. Grafowe bazy danych sa waznym

tematem badan i zastosowan juz od ponad 20 lat.

Definition 1 (Grafowa baza danych). Instancja grafowej bazy danych nad al-
fabetem ¥ jest graf G = (V, E), gdzie wierzcholki V' reprezentuja obiekty, a etykie-
towane krawedzie E c V x V x 3 definiuja relacje miedzy obiektami V. X to zbior
mozliwych etykiet krawedzi, czyli réwnoczesnie mozliwych relacji miedzy obiektami.

I w teorii i w praktyce w grafowych bazach danych uzywane sa rézne rodzaje
zapytan. Jednym z bardziej popularnych jezykéw zapytan jest jezyk RPQs (ang.
Regular-Path-Queries) i to wlasnie na tym jezyku zapytan skupimy sie w tej pracy.
RPQs to po prostu wyrazenia regularne nad alfabetem etykiet grafu. Wyrazenie
takie zwraca pary wierzchotkéw polaczone $Sciezky etykietowana stowem z jezyka
definiowanego tym wyrazeniem. Jak tlumaczy [V16] RPQs to dobry jezyk zapytan
dla grafowych baz danych, bo ma rozstrzygalny problem zawierania zapytan, a z
drugiej strony pozwala na tatwa nawigacje po grafie. Pozwala on miedzy innymi
na podazanie sekwencja krawedzi, ktérej dtugoéé nie jest podana explicite. Jest to

mozliwe dzicki rekursji zapewnionej przez wyrazenia regularne.

Definition 2 (Zapytanie). Zapytanie do grafowej bazy danych G = (V, E) nad X
to wyrazenie regularne Reg nad alfabetem 3, ktore definiuje jezyk regularny Lpge,.

Definition 3 (Wynik zapytania). Wynik zapytania Reg na bazie danych G =
(V. E) to zbior par wierzcholkéw z V' polaczonych stowem z Lg.y. Formalnie Reg(G) =
{(u,v) eV xV:3w €Lpgey 3 Sciezka w G z u do v etykietowana przez w}.
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Przyktad 1. Rozwazmy grafowa baze danych widoczng na Rysunek 2.2. Zal6ézmy,
ze chcemy sie dowiedzie¢ jakie rzeczy lubia nasi przyjaciele, przyjaciele naszych
przyjaciél itd. W tym celu wykonujemy zapytanie knows*likes i otrzymujemy w
tym przypadku odpowiedz: {(Alice, Books), (Alice, Movies), (Bob, Movies)}.

2.4. Przyklady

W tej sekcji podajemy liste przyktadoéw pozwalajacych lepiej zrozumieé problem

determinacji.

e Qg Q = Q determinuje Q.

Dowdd. Zalézmy, ze Q(D1) = Q(D2) dla kazdego Q € Q. Mamy wtedy w
szezegdlnoded, ze Qo € Q, wiec Qo(Dy) = Qo(D2). O

e Q= {ab,bc} nie determinuje Qg = abc.

Dowdd. Rozwazmy baze danych Dy zlozona ze Sciezki xg < 1 LN T9 5 T3 1
. , , .. a b b c

baze Dy ztozona z dwoch roztacznych $Sciezek xg — u — x9, 1 — v = x3.

Wtedy (ab)(D1) = {(wo,z2)} = (ab)(D2) 1 (be)(D1) = {(z1,23)} = (bc)(D2),

ale (abc)(Dy) = {(xo,23)} # @ = (abc) (D). O
e Q={a*b"} determinuje Qo = a*b*.

Dowdd. (a*b*)(D) zwraca pary wierzchotkéw polaczone $ciezka etykietowana
stowem z jezyka a*b*. Kazda taka $ciezke mozemy podzieli¢ na cze$é etykie-
towana a* i na czesé etykietowana b*. Majac wiec wyniki (a*)(D) i (b*)(D)
obliczamy (a*b*)(D) jako {(z,2):3 y (z,9) € (a*)(D), (y2) € (4*)(D)}. O

2.5. Uzyskane wyniki

Wyniki wspoétuzyskane przez autora umieszczone sa w dwdch pracach: ” Can One
Escape Red Chains? Regular Path Queries is Undecidable.” [GMO18])
i "The First Order Truth behind Undecidability of Regular Path Queries Determi-
nacy.” (Zalacznik 2| [GMO18a]) oraz w Rozdziale 3.

W [GMO18] pokazujemy, ze Problem Determinacji Zapytan dla RPQs (Re-
gular Path Queries) jest nierozstrzygalny. Zamyka to tym samym problem posta-
wiony ponad 15 lat temu w [CGLV02]. W [GMO18al, budujac na technikach zapre-
zentowanych w pierwszej pracy, udowadniamy nierozstrzygalnosé¢ dla skonczonych
RPQs. Dokladniej pokazujemy, ze gdy instancje Problemu Determinacji Zapytan
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Q={Q1,...Qr} 1 Qo definiowane sa wyrazeniami regularnymi definiujacymi skon-
czone jezyki, to problem dalej jest nierozstrzygalny. Natomiast w Rozdziale 3. po-
kazujemy, ze Problem Determinacji Zapytan jest rozstrzygalny gdy wszystkie wyra-
zenia z Q = {Q1,...Q} definiuja jezyki jednostowowe.

2.6. Wklad autoréow

W tej sekcji sprobujemy opisaé¢ wktad kazdego z autoréw w uzyskane wyniki.
Najtatwiej bytoby przypisa¢ autorom lematy, dowody, czy definicje, ktorych sa twor-
cami. Niestety jest to niemozliwe, gdyz poszczegdlne fragmenty zawarte w pracach
s finalnym produktem miesiecy préb i bledéow. Dowody i notacje przechodzity wiele
zmian, wiec nie sposob przypisac ich jednoznacznie ktoremus z autorow. Co wiecej,
w czasie badan powstaly wyniki, ktére pozwolily na lepsze zrozumienie problemu, a
nie zostaly umieszczone w koncowych pracach. Wartos¢ zawarta w tych posrednich
rezultatach nie powinna by¢ pominieta przy opisie wktadu kazdego z autorow. Bio-
rac to wszystko pod uwage sprobujemy tu opisaé historie badan wraz ze wskazaniem

wazniejszych momentow i przetomow.

W celu utatwienia odnoszenia sie do poszczegdlnych autoréw zastosujemy kon-
wencje, gdzie piszemy:

e 7J.” gdy méwimy o prof. Jerzym Marcinkowskim,
e "P.” gdy méwimy o Panu Piotrze Ostropolskim-Nalewaji,

e 7G.” | gdy méwimy o Grzegorzu Gluchu.

Badania rozpoczeliSmy od analizy prac o tematyce zwigzanej z problemem de-
terminacji dla zapytan regularnych. Na poczatku zaznajomiliémy sie z [A11], gdzie
rozstrzygalno$é¢ zostata udowodniona, gdy wszystkie jezyki z Q oraz jezyk Qo sa
jednostowowe, oraz z [GM15] gdzie nierozstrzygalnosé zostala pokazana dla zapytan
koniunkcyjnych. Juz od tego momentu zaadoptowaliSmy idee Red-Green Chase’a z
pracy [GM15], ktéra pozwala sprowadzi¢ problem determinacji do badania ewolu-
cji pewnej czerwono-zielonej struktury. Ewolucja tej struktury moze by¢ rozumiana
jako pewna gra dwuosobowa (nazwana Escape), grana pomiedzy Fugitive’em, a Cro-
codile’em, w ktérej trakcie w wyniku ruchow graczy budowana jest stopniowo pewna
baza danych. Fugitive dazy do zbudowania bazy danych bedacej kontrprzyktadem
na determinacje, a Crocodile prébuje przeszkodzié¢ Fugitive’owi. Rozumowanie w ter-
minach tej gry bylo obecne w rozwazaniach az do konca.

Pierwsza strategie walki z problemem zaproponowal G. Zauwazmy, ze kazde
wyrazenie regularne ztozone jest z liter z pewnego alfabetu X oraz operatoréw *, +, e
(gdzie o to konkatenacja). Dopuszczajac jedynie pewny podzbiér operatoréw mozna



14 ROZDZIAEL 2. PROBLEM DETERMINACJI ZAPYTAN

zmniejszy¢ ekspresywnosé wyrazen. Np. wyrazenia uzywajace jedynie operatora kon-
katenacji definiujg doktadnie jezyki jednostowowe. Zaproponowane podejscie pole-
galo na rozwiazywaniu nastepujacych problemoéw: Czy dla podzbioréow operatordw
A,B c {*,+,e} rozstrzygalny jest problem determinacji, gdy jezyki z Q uzywaja
jedynie operatorow z A, a jezyk Qg uzywa jedynie operatoréw z B? Zauwazmy, ze
gdy A oraz B zawieraja wszystkie operatory to otrzymujemy doktadnie problem
determinacji. Zauwazmy tez, ze gdy A = B = {e} to otrzymujemy dokladnie problem
rozwazany w [A11], ktéry wiemy, ze jest rozstrzygalny. Manipulujac wiec zbiorami
A i B jestesmy w stanie przechodzié¢ od probleméw prostych, przez trudniejsze, az
do docelowego problemu determinacji.

Strategia ta zaowocowata umiarkowanym sukcesem. Dosy¢ tatwo udowodniona
zostala rozstrzygalnosé dla szeregu konfiguracji zbiorow A i B, np. gdy A = @& lub
B = {*}. Najwazniejszym wynikiem w tej fazie bylo udowodnienie przez G. roz-
strzygalnosci, gdy A = {e} i B = {*,+, e}, co uogdlnia wynik z [A11]. Dowdd tego
rezultatu znajduje sic w Rozdziale |3.| Trudnosci z dowodzeniem rozstrzygalnosci za-
czely sie pojawiacé juz, gdy w A znajdowal si¢ wiecej niz jeden operator. Co ciekawe
owe trudnoéci w pewnym stopniu zostaly wyjasnione przez prace ”The First Order
Truth behind Undecidability of Regular Path Queries Determinacy.”, gdzie pokazu-
jemy, ze problem determinacji jest juz nierozstrzygalny, gdy A = B = {+,e} (czyli
gdy jezyki sa skonczone).

Kolejnym etapem badan bylo rozwazanie sytuacji gdzie A = {*,+,0} i B = {e},
czyli gdy Qo jest jednym stowem, a na jezyki z Q nie ma nalozonych zadnych re-
strykcji. Teraz wierzymy, ze ten problem jest nierozstrzygalny, ale w tamtym czasie
mieliSmy nadzieje na rozstrzygalnoéé. Pierwszym osiagnieciem byla tu redukcja pro-
blemu do A = {+,e}, B = {e}, czyli eliminacja nieskonczonych jezykéw z Q. Dalej
udowodniliSmy rozstrzygalnosé, gdy jezyki z Q byly skonczone i kazde stowo z je-
zyka miato te sama dlugosé. Wynik ten otrzymaliSmy przy pomocy idei ”czarnych
kolumn” stworzonej przez J. juz w [GM15]. Waznym wydarzeniem na tym etapie
bylo udowodnienie przez P. NP-trudnosci problemu, gdy A = {+,e}, B = {e}. Jednak
nie sama NP-trudno$¢ byla tu wazna, a fakt, ze udalo sie zakodowaé 3-kolorowanie
grafu w ewolucji Red-Green Chase’a w nietrywialny sposob. Ten rezultat pokazat
nam jak wymusi¢ pewien nietrywialny, kontrolowany mechanizm w problemie de-
terminacji. Analiza tego wyniku byla jednak niezwykle skomplikowana i narzedzia,

ktére do tamtej pory stworzyliémy, nie byty wystarczajace do poprawy rezultatu.

Nasze do$wiadczenia do tamtej pory méwily nam, ze obecnosé stéw réznej diu-
gosci w jezykach z Q jest kluczem do rozwigzania problemu. W celu zbadania tego
fenomenu zaczeliSmy studiowaé prace [F15], gdzie autor pokazuje ”przyblizona” de-
terminacje, gdy A = {+,e} i B = {e} i gdy alfabet jest jednoliterowy. " Przyblizona”
determinacja oznacza, ze podany w tej pracy algorytm jest w stanie rozstrzygaé de-
terminacje jedynie, gdy dlugos¢ stowa Qg jest odpowiednio duza w stosunku do stéw
z Q. Niestety nie udato nam sie doktadnie zrozumieé narzedzi uzytych w tej pracy.

Co wiecej, zaczela rosnaé nasza wiara w to, ze problem determinacji jest nierozstrzy-
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galny i bylidémy przekonani, ze techniki z [F15] nie pomoga nam w jej udowodnieniu.

7 powyzszych powodow porzuciliSmy ten kierunek poszukiwan.

W tym momencie naszych badan, mniej wiecej w tym samym czasie, nastapity
dwa przetomy. Pierwszy z nich to hipoteza, a tak naprawde pytanie postawione przez
G. na temat tzw. "sprezynek”, a drugi to narzedzie wymyslone przez P. do kontroli
ewolucji czerwono-zielonej struktury. Pierwsze spostrzezenie dotyczy pozornie pro-
stej sytuacji, gdy w Q znajduja sie 3 jezyki takie jak np. {ab,b,bc}, a stowo abc jest
podstowem pewnego stowa z )y. Powyzsza konfiguracja prowadzi, niezaleznie od ru-
chéw Fugitive’a, do pewnej nieskoniczonej struktury, ktéra nazwalidémy ”sprezynka”.
Przez pewien czas byliémy przekonani, ze ta nieskonczona struktura nie wnosi nic
do problemu, a jest jedynie artefaktem wynikajacym ze struktury gry. Jednak po
paru nieudanych prébach udowodnienia tego faktu okazalo sie, ze owe ”sprezynki”
moga by¢ kluczem do problemu determinacji. Stalo sie tak, poniewaz P. odkryt pe-
wien mechanizm pozwalajacy na zabranianie wybranych podstruktur w bazie danych
tworzonych przez graczy. Ten mechanizm zaaplikowany do ”sprezynki” pozwolit na
symulowanie dzialania deterministycznego skonczonego automatu w grze Escape. To
odkrycie pokazato nam jak kodowaé pewne obliczenia w ewolucji gry. Na tym etapie
byly to jedynie obliczenia DFA, ale idee zawarte w stworzonych narzedziach dawaty

nadzieje na wiecej.

W tym momencie byliSmy juz mocno przekonani co do nierozstrzygalnosci pro-
blemu determinacji i zaczeliSmy préby tworzenia redukcji z nierozstrzygalnych pro-
bleméw. Pierwszym celem bylo wymuszenie w grze FEscape powstania pewnej dwu-
wymiarowej struktury, ktora miataby stuzy¢ jako ”plansza”, na ktérej odbywa sie
obliczenie. Mozna mysle¢, ze na tej ”planszy” mogtaby by¢ zapisana cata historia ob-
liczenn pewnej maszyny Turinga. Pierwsza probg stworzenia takiej dwuwymiarowej
struktury bylo zastosowanie wielu ”sprezynek” obok siebie, ktére razem tworzy-
lyby pewna duza nieskonczona (potencjalnie dwuwymiarowa) strukture. Podejscie
to, na poczatku wydawalo sie bardzo obiecujace, ale zawieralo szereg probleméw.
Po pierwsze powstala struktura byla nieskoniczona, co znaczaco utrudniato analize.
Po drugie, po doktadniejszych badaniach okazalo sie, ze owa struktura nie ma wcale
natury czysto dwuwymiarowej, a wrecz przeciwnie jest niezwykle skomplikowana

siatka.

Na tym etapie z pomoca przyszedt J., ktéry wyabstrahowat esencje zalet ”spre-
zynek” i zaproponowal metode na stworzenie bardzo prostej siatki dwuwymiarowe;j.
Polegala ona na wybraniu jezyka Qo jako (ab)* i dodaniu do Q dwdch jezykéw
{ab,ba}. Taka konfiguracja jezykéw spowodowala, ze zaleznie od pierwszego ruchu
Fugitive’a (ktéry mozna utozsamié¢ z wybraniem liczby k € N) w grze tworzona byla
doktadnie kwadratowa siatka wymiaru k x k. Ta siatka stala sie ”plansza’, ktérej
poszukiwalismy.

Teraz potrzebowalismy juz tylko zakodowaé¢ w owej siatce jaki§ problem nieroz-
strzygalny. Na potrzeby tego opracowania mozemy mysle¢, ze jest to problem stopu
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dla maszyn Turinga. W tym celu zastosowaliSmy mechanizm zabraniania podstruk-
tur stworzony przez P.. Do konica dowodu potrzeba bylo jeszcze pare technicznych
narzedzi i spostrzezen. Trudno byltoby je tu dokladnie opisa¢ bez wprowadzania
wielu pojeé, dlatego ograniczymy sie jedynie do wymienia osiggnieé i ich autoréw.

e J. zaproponowal mechanizm, ktéry umozliwit rozréznianie pomiedzy wymia-

rami siatki,
o G. zauwazyl jak znaczaco uproéci¢ analize,

e P. zaprojektowal bardzo wazng metode wymuszania pierwszego ruchu Fugi-

tive’a.

W tym momencie twierdzenie o nierozstrzygalnosci problemu determinacji dla jezy-
kéw regularnych zostato juz udowodnione.

Dalej zadaliémy sobie pytanie, czy problem pozostaje nierozstrzygalny, gdy
ograniczymy sie do jezykéw skonczonych (czyli gdy A = {+,e} i B = {+,e}). Zadzi-
wiajace jest, ze dzieki nabytym do$wiadczeniom zdotalismy udowodnié nierozstrzy-
galnoéc¢ tego problemu jedynie w tydzien. Rozwiazujac te wersje problemu, chcielismy
oczywiscie zachowaé jak najwiecej pomystéw i technik z ogblnego przypadku. Jednak
w poréwnaniu do poprzedniej pracy musieliémy tu rozwiaza¢ dwa nowe problemy
wynikajace z tego, ze mozemy uzywac tylko jezykdéw skonczonych. Po pierwsze, gdy
jezyki sa skonczone. to mechanizm stworzony przez P. jest w stanie zabraniaé je-
dynie skonczonych podstruktur. Do udowodnienia nierozstrzygalnosci potrzebujemy
jednak méc tworzyé struktury o dowolnie duzym rozmiarze, pojawia sie wiec pro-
blem, jak kontrolowaé ich ewolucje. Po drugie, jezyk Qo = (ab)™, ktéry w pewnej
formie przetrwal w finalnej pracy, odpowiada wyborowi przez Fugitive’a rozmiaru
siatki. Nieskoficzono$é tego jezyka jest tu kluczowa, bo kazde stowo z jezyka odpo-
wiada jednemu rozmiarowi siatki, a chcemy przeciez pozwoli¢ na tworzenia siatek

dowolnego rozmiaru.

Idee rozwiazania pierwszego problemu zaproponowat J.. Pomyst polegat na tym,
ze struktura, ktéra bedzie powstawaé¢ w ciagu gry, bedzie mogla byé¢ dowolnie duza,
ale odleglosci wszystkich wierzchotkéw do dwéch wyrédznionych wierzchotkow a i b
beda ograniczone przez stala. Zostalo to zrealizowane za pomoca tzw. ”siegaczy”,
czyli krawedzi, ktore tacza a i b ze wszystkimi innymi wierzchotkami. Co ciekawe
narzedzie bardzo podobne do technik uzytych w ”siegaczach” pozwolito rozwiazaé
tez drugi problem. To narzedzie to konstrukcja jezykow w Q i Qg, ktora wymuszata
w grze stworzenie nieskonczonej dwuwymiarowej siatki. Potaczenie tych dwéch tech-
nik dalo juz poszukiwang nierozstrzygalno$¢ dla skonczonych jezykow. Co ciekawe
redukcji dokonywaliémy w tym momencie z problemu Mortality dla maszyn Turinga,
problemu bardzo rzadko uzywanego w podobnego typu redukcjach. Pdzniej znalez-
lismy jednak sposéb jak uprosci¢ rozumowanie i pozwoli¢ Fugitive’owi na wybor
rozmiaru siatki, a nie zmuszaé¢ go do stworzenia nieskonczonej struktury. To uprosz-

czenie i pomyst J. na uzycie idei rekursywnej nieseparowalnosci pewnych podzbioréw
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maszyn Turinga ztozyly sie na wersje dowodu, ktora umiesciliémy w pracy ” The First
Order Truth behind Undecidability of Regular Path Queries Determinacy.”.






Chapter 3.

Positive result

In this chapter we are going to prove the following theorem:

Theorem 4. Query Determinacy Problem for Regular Path Queries is decidable
when each Q; € Q is a one word language and Qo is a reqular language.

This theorem is a generalization of a result from [A11]:

Theorem 5. Query Determinacy Problem for Regular Path Queries is decidable

when each Q; € @ and Qo is a one word language.

3.1. Preliminaries

Structures. When we say “structure” we always mean a directed graph with edges
labeled with letters from some signature/alphabet 3. In other words every structure
we consider is relational structure D over some signature Y consisting of binary

predicate names. Letters D and G are used to denote structures.

For two structures G and G’ over X, with sets of vertices V and V', a function
h:V - V'is (as always) called a homomorphism if for each two vertices (z,vy)
connected by an edge with label E € ¥ in G there is an edge connecting (h(x), h(y)),
with the same label E, in G’.

Chains and chain queries. Given a set of binary predicate names . and a word

w =aiaz...a, over X° we define a chain query w(zg,x,) as a conjunctive query:

oy oz 101 (@0, 1) Aaz(z1,22) Acan(Tp-1,2p).

We use the notation w[zg, ] to denote the canonical structure (“frozen body”)
of query w(zg,x,) — the structure consisting of elements xg,z1,...x, and atoms

ai(zo, 1), a2(1,22), ... an(Tn-1,2n).

19
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Regular path queries. For a regular language @) over 3 we define a query, which
is also denoted by @, as:

Q('xa y) = EleQw(xv y)

In other words such a query @ looks for a path in the given graph labeled with
any word from @ and returns the endpoints of that path.

We use letters () and L to denote regular languages and Q@ and £ to denote
sets of regular languages. The notation @(D) has the natural meaning: Q(D) =

{z,y) IDEQ(z,y)}.

Definition 6 (Our2NFA-¢). Our two-way nondeterministic finite automaton with
e-moves is a 5-tuple M = (S,%,0,a,r) where:

S is a set of states,

> is the alphabet,

§:Sx(Bufe}) » 23xUleftstayright} Tt differs from a typical 2NFA in that after
reading a letter we can move to the left letter, the right letter or stay at the
same letter. It doesn’t change the expressivity of these automata but simplifies
construction in Section [3.3]

a € S is the start state and the only accepting state,

r € S is the reject state.

Let w = aias...a, be a word. Automaton starts reading the input w with the
head over a; and then proceeds according to the transition function §. M accepts w
if and only if there exists an execution such that after reading a,, for the first time
M is in state a and during this execution the head never moves to the left of the
first letter a; (that is during this execution the head always stays within the range

of the input aqas...ay).

Observation 1. As Our2NFA-e automata are only slightly modified versions of
general 2NFA-e¢ automata all languages recognized by Our2NFA-e¢ automata are
regular.

3.2. Characterization of determiniacy

In this section, in the spirit of ideas from [A11], we will characterize determi-
nacy in terms of connectivity of some graphs and inclusion of some languages. This
characterization is what will be used for proving determinacy, as it will be shown in

Section B.4]
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Definition 7. For a set of words A and a word w = ajas...a, let Gﬁ =(V,FE) be
an undirected graph such that:

e V={0,1,2,...,n},

o (i,j)e E=wli+1,j] €A, where w[i,j] = a;a;+1...a5 for 1<i<j<n.

We say that G{f} is connected if vertices 0 and n belong to the same connected

component.

The following Lemma is a result from [A11] that charactarizes determinacy in

terms of a graph Ggo.

Lemma 8. When all Q; € Q and Q¢ are one word languages then Q determines Qg
if and only if Ggo is connected.

Definition 9. For a set of words A over ¥ we define a language LA = {w e X" :
G4t is connected}.

Lemma 10. If Q determines w for each w € Qq, for regular language Qo then Q
determines Q.

Proof. Let Dy and D9 be such that Q(D1) = Q(D2). Then Qo(Dy) = {{x,y) | Dy £
QO(x7y)} = Uwer{($ay> | Dl F U)(.Z‘,y)} = UwEQo{<xay> | ]D)Q E '(U(.%',y)} = {<$7y) | D2 E
Qo(z,y)} = Qo(D2) M

The following Lemma is in the spirit of Lemma [8] It characterizes determinacy
in terms of the language L<.

Lemma 11. When all Q; € @ are one word languages and Qg s a regular language
then Q determines Qq if and only if Qo c L<.

Proof. For the ”if” direction we will use Lemma @ and show that O determines w
for each w € L2. Let w € L2, in particular it means that G% is connected which by
Lemma [§ proves that Q determines Q.

The ”only if” direction is proved by contraposition. This part of the proof is a
direct adaptation of a proof of Lemma [8| from [A11]. Tt is essentially the same proof
but the argument needs to be repeated and checked in our setting as Qg is a regular
language here (not necessarily a single word, as it was in [A11]).

Let w = ajas. .. a, € Qo ~ L2. We will construct two databases D' and D such
that Q(D") = Q(D") and Qo(D") # Qo(D"). We will first construct four databases
Do, D¢,Dy and D3, each of which isomorphic to Dy. Then we will set D' as a union
of Dy and D; and D" as a union of Dy and Ds.
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Dy is the canonical database of query w with constants cg,c1,...,c,. D1 is a
copy of Dy where each constant is replaced by fresh constant. For ease of reference

each constant c is replaced by ¢'.

We construct Dy as follows. Let G be a connected component of G2 that
contains vertex 0. Notice that by definition of w G’ doesn’t contain vertex n. Let
h be a natural bijection from Gl% to variables of Dy, which maps 7 to ¢; for each
vertex i of G2. Now let Dy be a copy of Dy where each constant in an image h[G']
is exchanged for its primed version. Let D3 be a copy of Dy where we changed the
primed constants for their non-primed version and the non-primed constants to their

primed version.

Now we need to convince ourselves that Q(D’) = Q(D"). First notice that
9(Dy), Q(D1), Q(Dy) and Q(D3) are pairwise isomorphic. Moreover Q(Dy) and
Q(IDy) are disjoint, so Q(D") = Q(Dg) u Q(Dy). Also Q(D”) = Q(Dy) u Q(D3). To
finish the claim we need to show that neither Dy nor D3 contains any facts that use
one primed and one non-primed constant. Assume that (c;,c}) € Q(D3) (other cases
work similarly). Then G’ is not a connected component of vertex 0 as there is an
edge between vertices ¢ and j in G% and we can add vertex j to G'.

To finish the proof we need to show that Qo(D’) # Qo(D"). It is because (co, ¢,,) €
Qo(D") and (co, ¢p) ¢ Qo(D"). It is because vertex n ¢ G' and because of that ¢y € D3
and ¢, € Ds. ]

3.3. Automata

In this section we will construct Our2NFA-e M that recognizes L. We will
first give some intuitions on how this automaton works and then we will present a

formal construction.

3.3.1. Intuitions

First let us recall that L* = {w € ¥* : G* is connected}. That means that
w=aas...a, € LA if and only if there exists a path in G;f} that connects vertices
0 and n. Our2NFA-e¢ M# working on a word w will look for such a path and will
accept w if and only if it finds such a path. Now imagine that M needs to decide
whether w € L. That is it should decide whether there exist a path in G2 = (V, E)
that connects vertices 0 and n. Let us further recall that (i,7) € E < w[i+1,j] € A.
Now for the better understanding it is good to think of vertices V' ={0,1,...,n} as
placed between letters of w like that: 0—a; —1-a3-2—----—a, —n. Then (i,j) € E
if and only if a word written between ¢ and j belongs to A.

Now we are ready to give some intuitions on how the automaton works. M4
starts working in the accepting state a with the head over a;. Then it works in
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phases, where each phase corresponds to a traversal of one edge in Gé. In each
phase, which starts with the head over a;, it nondeterministically chooses a word
u = biby...by € A and a direction dir (left or right). Then depending on which
direction was chosen it checks whether:

1. wli,i+k-1] = u, if dir = right,

2. wli-k,i-1] = u, if dir = left.

This check is done by comparing the input word letter by letter with u. If a mismatch
is found then M# transitions to the reject state and will never accept. However if
the condition (depending on dir either 1. or 2.) is satisfied then the automaton
transitions back to the accepting state a and the next phase starts. After such a
phase the head is over a;; if dir = right and over a;_p if dir = left.

This description gives us an automaton that recognizes LA. It is because each
successful (that is ending in the accepting state) phase corresponds to a traversal of
an edge in G (think about 0 —a; -1 —-as =2 —---—a, —n). So if w e LA and the
nondeterministic choices are made correctly, then the automaton will follow a path
connecting 0 and n and after reading a,, will accept. On the other hand if w ¢ LA
then no matter what nondeterministic choices are made, M will not accept as there

is no path in Gﬁ connecting 0 and n.

3.3.2. Construction

The construction of M# will take place in stages. First we will create an au-
tomaton M? that recognizes empty language and serves as a template upon which
MA will be built. Then for each word w € A we will add new states to the current
automaton to finally (after considering each word from .A) build M+,

Definition 12. Let M¥? = (S,%,6,a,7) be Our2NFA-e¢ where:

e S={a,r} is a set of states,
e § satisfies:

— For all ce X: §(a,c) = {(r,right)},
— For all ce 3: §(r,c) = {(r,right)},

Definition 13. For an Our2NFA-e¢ M = (S,3,d,a,r) and a word w = ajas...a, we
define M +w as a new Our2NFA-e M’ = (S',3,¢’,a,r) where:

o S'=Su{Ay, Ay, A YU {AT AL, AT}

o

S\{a} =9,
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e Forallie[l,n]:

5 (Ar.ag) = {(Ajs1,might)}, ifi<n
{(a,right)}, otherwise.

{(AT_ left)}, ifi>1

0'(A, ai) = '
{(a, stay)}, otherwise.

o 0'(a,¢) = 0(a,€) U {(A, stay), (A7, left)},
e All non specified transitions lead to {(r,right)}.

Definition 14. For a set of words A we define Our2NFA-¢ M4 as M2 + ¥ e 4 w.

It might be hard to follow the construction of M+ from the definitions only. That
is why we present here pictures of two sample automata over X = {z,y,z}: M {wyz} o
M? + xyz) and Mizyzyzt = A2 4 xyz + yz, see Figures and Automaton
M{#Y2} for instance recognizes exactly language L¥Y* = (xyz)*. You can see that by
considering what happens after visiting state a. Let M{*¥?} be in state a and the
"head” be over letter w; of a word w = wyws ... w,. Now M {zyz} nondeterministically
chooses either to transition to the state Z” and move the "head” to the left or
transition to the state X and do not move the "head”. If the automaton chose to
transition to state:

e X then to not to transition to the reject state r the following must be true:
w; = X, Wiyl = Y, wire = z and after reading these 3 letters automaton is in state
a once again and the "head” is over w;,3.

e 7" then to not to transition to the reject state r the following must be true:
wWi—1 = 2, W;i—2 = Y, w;—3 = = and after reading these 3 letters automaton is in
state a once again and the "head” is over w;_3.

On the Figure you can see M {zy2v2} When you compare to you will see
how M {#¥2¥2} is constructed from M{#¥?} (remember that M{#v=v=} = ppievah py 2,
The analysis of this automaton is similar to the analysis of M{*¥*} and gives that
the language recognized by M{#¥2¥#} ig exactly L{zvzvz},

Lemma 15. For every set of words A, M recognizes L™, so L™ is a regular
language.

Proof. Automaton M A starts in state a. Then it proceeds to work in phases, where
a phase starts when M+ is in state a and finishes when M+ is in state a or 7.

Whenever M reaches state r it stays in this state forever and never accepts,
so we focus on situations when r is not reached. Each phase begins in state a and
then M“ nondeterministically chooses one of the e-moves and by that we think
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(x,right) (v,right)

/\/\/\/)

r.

(z.left) V right)
Yoy (z v 2
- (z ngm\

Figure 3.2: Automaton M{#¥%¥2} = M2 4 242+ yz. All nonspecified transitions lead to the
state 7.



26 CHAPTER 3. POSITIVE RESULT

that it chooses a word w € A and a direction dir (left or right). Then it proceeds
with reading the input in chosen direction dir and comparing it with w (read either
from left to right or from right to left depending on dir). If there is a mismatch it
transitions to 7 and stays there forever. Otherwise M# goes back to state a and
another phase begins. M accepts a word if after reading its last letter it is in state

a.

This means that M* accepts exactly L2 as this language consists of exactly
these words w for which G£ is connected. Ul

3.4. Putting it all together

Now we are ready to prove the main theorem (restated here for convenience):

Theorem 4. Query Determinacy Problem for Regular Path Queries is decidable

when each Q; € Q is a one word language and Qq is a reqular language.

Proof. By Lemma[11]it is enough to be able to decide whether, for given ()¢ and Q,
it holds that Qg ¢ L2. By Lemma [15| we know that L€ is a regular language. As we
know that inclusion of regular languages is decidable it ends the proof. O
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Abstract. For a given set of queries (which are expressions
in some query language) Q = {Q1, Q2,...Qx} and for an-
other query Q, we say that Q determines Qy if — informally
speaking — for every database D, the information contained
in the views Q(D) is sufficient to compute Qy(D).

Query Determinacy Problem is the problem of deciding,
for given Q and Qy, whether Q determines Qy. Many versions
of this problem, for different query languages, were studied
in database theory. In this paper we solve a problem stated
in [CGLV02] and show that Query Determinacy Problem is
undecidable for the Regular Path Queries - the paradigmatic
query language of graph databases.

1 Introduction

Query determinacy problem (QDP). Imagine there is a
database D we have no direct access to, and there are views of
this D available to us, defined by some set of queries Q = {Q;,
Qz, ... 0Ok} (where the language of queries from Q is a pa-
rameter of the problem). And we are given another query Q,.
Will we be able, regardless of D, to compute Qy(D) only us-
ing the views Q;(D), Q2(D), . . . Qx(D)? The answer depends
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on whether the queries in Q determine' query Q. Stating it
more precisely, the Query Determinacy Problem is?:

The instance of the problem is a set of queries Q =
{Q1, ... 0k}, and another query Q.

The question is whether Q determines Q,, which means that
for (&) each two structures (database instances) D; and D,
such that Q(D;) = Q(D,) for each Q € Q, it also holds that

Qo(D1) = Qo(Dy).

QDP is seen as a very natural problem in the area of database
theory, with a 30 years long history as a research subject -
see for example [HO01], or Nadime Francis thesis [F15] for a
survey. In [DPT99] QDP naturally appears in the context of
query evaluation plans optimization. More recent examples
are [FG12], where the context for QDP is the view update
problem or [FKN13], where the context is description logics.
In the above examples the goal is optimization/efficiency
so we “prefer” Qp to be determined by Q. Another context,
where it is “preferred” that Qy is not determined, is privacy:
we would like to release some views of the database, but in
a way that does not allow certain query to be computed.

The oldest paper we were able to trace, where QDP is
studied, is [LY85]. Over the next 30 years many decidable
and undecidable cases have been identified. Let us just cite
some more recent results: [NSV10] shows that the problem
is decidable for conjunctive queries if each query from Q has
only one free variable; in [A11] decidability is shown for Q
and Q, being “conjunctive path queries”. This is generalized
in [P11] to the the scenario where Q are conjunctive path
queries but Qy is any conjunctive query.

The paper [NSV06] was the first to present a negative
result. QDP was shown there to be undecidable if unions
of conjunctive queries are allowed in Q and Qp. In [NSV10]
it was proved that determinacy is also undecidable if the
elements of Q are conjunctive queries and Qy is a first or-
der sentence (or the other way round). Another negative
result is presented in [FGZ12]: determinacy is shown there
to be undecidable if Q is a DATALOG program and Q, is a
conjunctive query. Finally, closing the classification for the
traditional relational model, it was shown in [GM15] and
[GM16] that QDP is undecidable for Qy and the queries in Q

1 Or, using the language of [CGLV00], [CGLV00a] [CGLV02] and [CGLV02a],
whether Q are lossless with respect to Q.

2More precisely, the problem comes in two different flavors, “finite” and
“unrestricted”, depending on whether the (%) “each” ranges over finite struc-
tures only, or all structures, including infinite.
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being conjunctive queries.

ODP for Regular Path Queries. While the determinacy
problem is now well understood for the pure relational model?,
it has been, for a long time, open for the graph databases
scenario. In this scenario, the underlying data is modeled as
graphs, in which nodes are objects, and edge labels define
relationships between those objects. Querying such graph-
structured data has received much attention recently, due to
numerous applications, especially for the social networks.

There are many more or less expressive query languages
for such databases (see [B13]). The core of all of them (the
SQL of graph databases) is RPQ — the language of Regular
Path Queries. RPQ queries ask for all pairs of objects in the
database that are connected by a specified path, where the
natural choice of the path specification language, as [V16]
elegantly explains, is the language of regular expressions.
This idea is at least 30 years old (see for example [CMW87,
CM90]) and considerable effort was put to create tools for
reasoning about regular path queries, analogous to the ones
we have in the traditional relational databases context. For
example [AV97] and [BFW98] investigate decidability of the
implication problem for path constraints, which are integrity
constraints used for RPQ optimization. Also, containment
of conjunctions of regular path queries has been addressed
and proved decidable in [CDGL98] and [FLS98], and then, in
more general setting, in [JV09] and [RRV15].

It is natural that also query determinacy problem has been
stated, and studied, for Regular Path Queries model. This
line of research was initiated in [CGLV00], [CGLV00a]
[CGLV02] and [CGLV02a], and it was [CGLV02] where the
central problem of this area — decidability of QDP for RPQ
was first stated (called there “losslessness for exact seman-
tics”).

A method for computing a rewriting of a regular path
query in terms of other regular expressions (if such rewrit-
ing exists) ¢ is shown in [CGLV02]. And it is proven that
it is 2ExpSpace-complete to decide whether there exists a
rewriting of the query that can be expressed as a regular
path query. Then a notion of monotone determinacy is de-
fined, meaning that not only Qy(D) is a function® of Q(D)
but this function is also monotone — the greater Q(D) (in
the inclusion ordering) the greater Qy(D), and it is shown
that monotone determinacy is decidable in ExpSpace. This
proves that monotone determinacy, which is - like rewritabil-
ity — also a notion related to determinacy but stronger, does
not coincide with the existence of a regular path rewriting,
which is 2ExpSpace-complete (while of course the existence
of rewriting implies monotonicity). This proof is indirect

3 Apparently, when talking about the relational model, there may still be
some work to do concerning QDP in the context of bag semantics, see
[GB14].

“Existence of rewriting is a related property to determinacy, but stronger.

5D is an argument here. Saying that “Q(D) is a function of Q(D)” is equiv-
alent to saying that Q determines Q.
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and it is interesting that a specific example separating mono-
tone determinacy and rewritability has only been shown
in [FSS14]. However, [CGLV02a] also provides an example
where a regular path view determines a regular path query
in a non-monotone way showing that, in this setting, deter-
minacy does not coincide with monotone determinacy.

In [CGLV02], apart from the standard QDP, the authors
consider the so called “losslessness under sound semantics”.
They show that computing “certain answers” (under this
semantics) of a regular path query with respect to a regular
path view reduces to the satisfiability of (the negation of)
uniform CSP (constraint satisfaction problem). Building on
this connection and on the known links between CSP and
Datalog [FV98], they show how to compute approximations
of this CSP in Datalog. This is studied in more detail in
[FSS14] and a surprising result is proved, that when a regular
path view determines a regular path query in a monotone
way, then one of the approximations is exact.

But, despite the considerable body of work in the area
around the main problem, little was so far known about the
problem of decidability of QDP for RPQ itself. On the positive
side, the previously mentioned result of Afrati [A11] can be
seen as a special case, where each of the regular languages
(defining the queries) only consists of one word (path queries,
considered in [A11] constitute in fact the intersection of
CQ and RPQ). Another positive result is presented in [F17],
where “approximate determinacy” is shown to be decidable if
the query Qy is (defined by) a single-word regular language,
and the languages defining the queries in Qp and Q are over
a single-letter alphabet. The failure to solve the problem
completely even for this very simple variant shows how
complicated things very quickly become. But it is the analysis
which is so obviously hard (not QDP itself as a computational
problem) and it is not immediately clear how QDP for RPQ
could be used to encode anything within. In consequence,
no lower bounds have been known so far, except of a simple
one from [F15], where undecidability is shown if Q, can be
context-free rather than just regular.

Our contribution. The main result of this paper is:

Theorem 1.1. QDP-RPQ, the Query Determinacy Problem
for Regular Path Queries, is undecidable.

To be more precise, we show that the problem, both in
the “finite” and the “unrestricted” version, is co-r.e.-hard,
which means that if we take, as an input to our encoding,
a Turing machine which accepts (the empty input) then, as
the result of the encoding we get a negative instance of QDP
(“no determinacy”), and if we begin from a non-accepting
machine then the resulting instance is positive. Notice that
this gives the precise bound on the complexity of the “finite”
version of QDP for RPQ - it is easy to see that finite non-
determinacy is recursively enumerable. But there is no such
upper bound for the “unrestricted” case, and we are not sure
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what the precise complexity can be. We believe that the
problem may be harder than co-r.e.-complete.

Regarding the technique we use: clearly we were tempted
to save as much as possible from the techniques of [GM15]
and [GM16]. But hardly anything survived in the new situa-
tion (one exception is that the idea of the green-red Chase
from [G15] evolved into the notion of Escape here). The two
important constructions in [GM15] and [GM16] used queries
with high number of free variables (this is where states of
the Turing machine are encoded, in the form of spiders with
fancy colorings) and queries which can be homomorphically,
non-trivially, mapped into themselves — this is how the orig-
inal small structure (“green spider” in [GM15] and [GM16]
or (green) Dy in this paper) could grow. None of the mecha-
nisms is available in the current context, so in principle the
whole proof was built from scratch.

Remark. [B13] makes a distinction between “simple paths
semantics” for Recursive Path Queries and “all paths seman-
tics”. As all the graphs we produce in this paper are acyclic
(DAGs), all our results hold for both semantics.

Organization of the paper The rest of this paper is devoted
to the proof of Theorem 1.1. In short Section 2 we introduce
the (very few) notions and some notations we need to use.

In Section 3 we first follow the ideas from [GM15] defining
red-green signature. Then we define the game of Escape and
state a crucial lemma (Lemma 3.3), asserting that this game
really fully characterizes determinacy for Recursive Path
Queries. In Section 3.3 we prove this Lemma.

At this point we will have all the tools ready for proving
Theorem 1.1. In Section 4 we explain what is the undecidable
problem we use for our reduction, and present the reduction.
In Sections 5 — 10 we use the characterization provided by
Lemma 3.3 to prove correctness of this reduction.

2 Preliminaries

Structures. When we say “structure” we always mean a
directed graph with edges labeled with letters from some
signature/alphabet X. In other words every structure we
consider is relational structure D over some signature %
consisting of binary predicate names. Letters D, M, G and H
are used to denote structures. Q is used for a set of structures.

For two structures G and G’ over X, with sets of vertices
V and V', a function h : V — V’ is (as always) called a
homomorphism if for each two vertices (x, y) connected by
an edge with label E € ¥ in G there is an edge connecting
(h(x), h(y)), with the same label E, in G’.

Chains and chain queries. Given a set of binary predicate
names X and a word w = ajas...a, over X* we define a
chain query w(xy, x,) as a conjunctive query:
Fxooxn @1(X0, X1) A ag(x1, X2) A ... an(Xp_1, Xn).
We use the notation w[x, x,] to denote the canonical
structure (“frozen body”) of query w(xy, x,,) — the structure

DODATEK A. ZALACZNIK 1

LICS *18, July 9-12, 2018, Oxford, United Kingdom

consisting of elements xg, x1, . . . x, and atoms a;(xg, x1),
ax(x1,x2), . . . An(Xp—1, Xn).

Regular path queries. For a regular language Q over ¥ we
define a query, which is also denoted by Q, as:

Q(x,y) = Jweow(x, y)

In other words such a query Q looks for a path in the
given graph labeled with any word from Q and returns the
endpoints of that path.

We use letters Q and L to denote regular languages and Q
and L to denote sets of regular languages. The notation Q(D)
has the natural meaning of: Q(D) = {{x,y) |D = Q(x,y)}.

3 Red-Green Structures and Escape
3.1 Red-green signature and Regular Constraints

For a given alphabet (signature) X let ¥; and X be two
copies of X one written with "green ink" and another with
"red ink". Let £ = S5 U 2.

For any word w from X" let G(w) and R(w) be copies of
this word written in green and red respectively. For a regular
language L over X let G(L) and R(L) be copies of this same
regular language but over X and Xy respectively. Also for
any structure D over ¥ let G(D) and R(D) be copies of this
same structure D but with labels of edges recolored to green
and red respectively.

For a pair of regular languages L over X and L’ over X’ we
define Regular Constraint L — L’ as a formula

Vi yLl(x,y) = L'(x,y).

We use the notation D |= r to say that an RC r is satisfied
inD. Also, we write D |= T for a set T of RCs when for each
t € Titis true that D | t.

For a graph D and an RC t = L — L’ let rq(t,D) (as
“requests”) be the set of all triples (x,y,L — L’) such that
D | L(x,y) and D | L’(x, y). For a set T of RCs by rq(T, D)
we mean the union of all sets rq(¢,D) such that ¢t € T. Re-
quests are there in order to be satisfied:

function ApD

arguments:

e Structure D

e RCL—- L

e pair (x,y) such that (x,y,L — L’) € rq(L — L’,D)
body:

1: Take a word w = aga;...a, from L’ and create a
new path wx, y] = ao(x, x1), a1(x1, x2), . . ., an(xp-1,y)
where x1, x5, ...,X,_1 are new vertices

2: return D U w(x, y].

Notice that the result Add(D, L — L’, {x,y)) depends on
the choice of w € L’. So the procedure is non-deterministic.
For a regular language L we define L™ = G(L) — R(L)
and L™ = R(L) — G(L). All regular constraints we are going
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to consider are either L™ or L™ for some regular language
L.

For a regular language L we define L = {L™,L } and
for a set L of regular languages we define:

£o=[]Jr°.
LelL

Requests of the form (x, y, t) forsome RCt € L™ (t € L7)
are generated by G(L) (resp. by R(L)). Requests generated by
G(L) or by R(L)) are said to be generated by L.

The following lemma is straightforward to prove and char-
acterizes both determinacy and finite dterminacy in terms
of regular constraints:

Lemma 3.1. A set Q of regular path queries over X does not
determine (does not finitely determine) regular path query Qq,
over the same alphabet, if and only if there exists a structure
(resp. a finite structure) M and a pair of vertices a,b € M such
that M |= Q7 and M |= (G(Qo))(a, b) but M = (R(Qo))(a, b).

Any structure M, as above, will be called counterexample.

3.2 The game of Escape

An instance Escape(Qy, Q) of a solitary game called Escape,
played by a player called Fugitive, is:

e aregular language Q, of forbidden chains over X.

e a set of regular languages Q over X,

The rules of the game are:

o First Fugitive picks the initial position of the game as
Dy = (G(w))|[a, b] for some w € Q.

e Suppose D; is the position of the game after Fugitive
move i and S; = rq(Q7,D;). Then, in move i + 1,
Fugitive can move to any position of the form:

Din= | AddDst (xy)
(x,y,1)€S;

o Fugitive loses when for a final position H = |J Dj it is

i=0
true that H = (R(Qo))(a, b).

In other words, in order to get D;44, Fugitive needs to
create, simultanously for each request in D;, a new path
that satisfies this request, and add all these paths, in a free
way, to D;. This is of course very much non-deterministic,
so position D;;; depends on the Fugitive’s choice®.

Let us note that D;; = D; when rq(Q°,D;) is empty.

It also would not hurt if, before proceeding with the read-
ing, the Reader wanted to solve:

Exercise 3.2. Notice that ifi is even (odd) then all the requests
from S; are generated by G(L) (resp. R(L)), for some L € Q
which means that all the edges added by Fugitive in his move
i+ 1 are red (resp. green).

SLike in any reasonable game, the position after each move depends here on

the position before this move, on the rules of the game, and on the decisions
of the player who makes this move.

Institute of Computer Science, University of Wroctaw

Let step be ternary relation such that (D,D’, L) € step
when D’ can be the result of one move of Fugitive, in position
D, in the game of Escape with set of regular languages L.

Obviously, different strategies of Fugitive may lead to dif-
ferent final positions. We will denote set of all final positions
reachable from a starting structure D, for a set of regular
languages £, as Q(L7,Dy).

Now we can state the crucial Lemma, that connects the
game of Escape and (the unrestricted version of) QDP-RPQ:

Lemma 3.3. Foran instance of QDP-RPQ consisting of regular
language Qo over X and a set of regular languages Q over X
the two conditions are equivalent:

(i) Q does not determine Q,
(ii) Fugitive has a winning strategy in Escape(Qo, Q).

3.3 Universality of Escape. Proof of Lemma 3.3

First let us leave it as an easy exercise for the Reader to prove:

Lemma 3.4. For each set of RCs T, for each initial position
Dy and for each H € Q(T,Dy) it holds thatH |= T.

With the above Lemma, the proof of Lemma 3.3 (ii)=(i) is
straightforward: the winning final position of Fugitive can
serve as the counterexample M from Lemma 3.1.

The opposite direction, (i)=>(ii) is not completely obvious.
Notice that it could a priori happen that, while some coun-
terexample exists, it is some terribly complicated structure
which cannot be constructed as a final position in a play of
the game of Escape. We should mention here that all the no-
tions of Section 3 have their counterparts in [G15]. Instead of
Regular Constrains however, in [G15] one finds conventional
Tuple Generating Dependencies’, and instead of the game
of Escape one finds the conventional notion of Chase. But,
while in [G15] the counterpart of Lemma 3.3 follows from
the well-known fact that Chase is a universal structure, here
we do not have such convenient tool available off-the-shelf,
and we need to built our own.

Lemma 3.5. Suppose structures Dy and M over ¥ are such
that there exists a homomorphism hy : Dy — M. Let T be a
set of RCs and suppose M |= T. Then from some final position
H € Q(T,Dy) there exists a homomorphism h : H — M such
that hy C h.

Proof. First we need to prove:

Lemma 3.6. For structures D;, M over %, a homomorphism
h; : D; — M and set of RCs T if M |= T then there exists
some structureD;.q such that step(D;, D41, T) and there exists
homomorphism h;y1 : Djy1 — M such that h; C hjyq.

Proof. Forr = (x,y,X — Y)inR; = rq(T,D;) let x’ = h;(x)
and y’ = h;(y). We know that M |= T so M |= Y(x’,y’) and
thus for some a;a; ... a, €Y there is path p’ = a;(x’, x]),

Notice that if all each of the languages in Q consists of a single word, then
RCs degenerate into TGDs and Escape degenerates into Chase.
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Figure 1. Our Grid.

ax(x{,x3)...an(x,_;,y’) in M. Let D] be a structure created

by adding to D; new path p = a;(x, x1),

az(x1, x3), . . . an(xp-1,y) (with x; being new vertices). Let
hi = h; U {{x;, x{)|i € [n - 1]}. Now let D" = | J, g, D} and
h; = U,er, h]. It is easy to see that D] and h; are requested
Diyq and hi+1. O

To end the proof of Lemma 3.5 notice that if Dy, Dy, . . . are
as constructed by Lemma 3.6 then | Ji2, D; is equal to some
final position from Q(T,Dyp) and that [J;2, h; is required
homomorphism h. o

Now we will prove the (i)=(ii) part of Lemma 3.3.

Let M be a counterexample from Lemma 3.1, a,b and
w € Qp such that M |= (G(w))(a,b) and M £ (R(Qy))(a, b).
Applying Lemma 3.5 to Dy = G(w[a, b]) and to M we know
that there exists a final position H such that there is homo-
morphism from H to M. It is clear that H [~ (R(Qy))(a, b)
as we know that M £ (R(Qo))(a, b). This shows that H is
indeed a winning final position.

This concludes the proof of the Lemma 3.3.

4 The Reduction

Definition 4.1 (Our Grid Tiling Problem (OGTP)). Given
a set of shades S (black € S) and alist # C {V,H} xS X

{V,H} xS of forbidden pairs (a, b) where a,b € {V,H} xS

determine whether there exists a square grid G (a directed

graph, as in Figure 1. but of any size) such that:

(al) each horizontal edge of G has a label from {H} X S;

(a2) each vertical edge of G has a label from {V} X S;

(b1) bottom-left vertical edge has the label (V, black);

(b2) upper-right horizontal edge has the label (H, black);

(b3) G contains no forbidden paths of length 2 labeled by
(a,b) € F.

By standard argument one can show that:
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Lemma 4.2. Our Grid Tiling Problem is undecidable.

Now we present a reduction from OGTP to the QDP-RPQ.
Suppose an instance (S, ¥) of OGTP is given, we will con-
struct an instance (@, Qo) of QDP for RPQ.

The edge alphabet (signature) will be ¥ = {a, f, w} U X,
where 3y = {A,B} X {H,V} X {W,C} X 8. We think of H
and V as directions — Horizontal and Vertical. W and C stand
for Warm and Cold. It is worth reminding at this point that
relations from 3 will - apart from a value from {A, B}, shade,
direction and temperature — have also color, red or green.

Notation 4.3. We use the following notation for elements of
Zo: (;p}) = (p.q.7.5) € Zp

Symbol e and empty space are to be understood as wildcards.
This means, for example, that notation (,A;) denotes the set
(A, (AG)) and (o) denotes {(,A}).(,BY)).

Now we define @ and Qo. Let Q04 be a set of 8 languages:
1. w

a+p

- (BY)NAY) + (BL)(AG)

- (A(BY) + (AY)(BY)

. (BY) + (BY)

- (B}Y) +(Bf)

- (AY) +(AY)

(A +(AY)

Let Qpqq be a set of languages:

L .3( @seS\{black}(sA‘(/v))zo*w

2. ﬂzg( @seS\{black}(sBI‘iIV))w
3. 2y (o )(,#Y )%y w for each forbidden ((d, a), (d’, b)) €
F.

Finally, let @41, be a set of languages:
1 aZy(e")Z¥w
2. X (e)ZFw
We write Q;ood’ QZad’ Q;gly
of the corresponding group. Now we can define

Q = ngod ) Qbad ) ngly

to denote the i-th language

The sense of the construction will (hopefully) become
clear later. But already at this point the reader can notice
that there is a fundamental difference between languages
from Q004 and languages from Qpaq U Qug1y- Languages
from Q04 are all finite. The regular constraints (QZOO 2D
and (Q;ood)H are of the form “for vertices x, y, z and edges
e1(x,y) and e(y, z) of some color in the current structure,
create a new y’ and add edges e](x, y’) and e, (y’, z) of the op-
posite color” where the pair (e;, e2) comes from some small
finite set of possible choices. Satisfying requests generated by
the remaining languages in Qgo04 do not even allow/require
adding a new vertex y’ - just one new edge is added.
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On the other hand, each language in Qp 44 UQy 41y contains
infinitely many words — all words with some bad or ugly
pattern. For L € Qpqq U Qug1y requests generated by L are
of the form “if you have any path in the current structure,
green or red, between some verticies x and y, containing
such pattern, then add any new path from x to y, of the
opposite color, also containing the same pattern”.

A small difference between languages in Qp,q and in
Qugly is that languages in Q,4;, do not depend on the con-
straints from the instance of Our Grid Tiling Problem while
ones in Qp,4 encode this instance. One important difference
between languages in Qgooq U Qugiy and Qpqq is that only
the last do mention shades.

Finally, define Qg;qr; = a[(Ag)(B‘C,)]er, and let:

Qo == Qstart + @ L+ @ L

LEngly LeQpaa

5 The structure of the proof of correctness

To end the proof of Theorem 1.1 we need to prove:

Lemma 5.1. The following three conditions are equivalent:

(i) An instance (S, F) of OGTP has no solution.
(ii) Q determines Q.
(iii) Q finitely determines Qy.

The (ii) = (iii) implication is obvious®.

Next 4 pages will be devoted to the proof of the (i) = (ii)
implication. We will employ Lemma 3.3, showing that if the
instance (S, #) has no solution then Fugitive does not have
a winning strategy in the Escape(Q, Qo). As we remember
from Section 3.2, in such a game Fugitive will first choose,
as the initial position of the game, a structure w(a, b] for
some w € G(Q). Then, in each step, he will identify all the
requests present in the current structure and satisfy them. He
will win if he will be able to play forever without satisfying
the query (R(Q0))(a, b).

While analyzing the strategy of Fugitive we will use the
words “must not” and “must” as shorthands for “or otherwise
he will quickly lose the game”.

Now our plan is first to notice that in his strategy Fugitive
must obey the following principles:

(I) The structure resulting from his initial move must be
(G(w))la, b] for some w € Qgsqrt.

(I) He must never allow any request generated by Qpq4 U
Qug1y to form in the current structure. Notice that if no such
words ever occur in the structure then all the requests are
generated by languages from Qgq04-

Then we will assume that Fugitive’s play indeed follows
the two principles and we will imagine us watching him
playing, but watching in special glasses that make us in-
sensitive to the shades from S. Notice that, since the only
8Notice that we are of course not going to prove that determinacy coincides

with finite determinacy. It does not! But for the instances resulting from
our reduction they indeed coincide.
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requests Fugitive will satisfy, are from Qg04, we will not
miss anything - as the definitions of languages in Q004 are
themselves shade-insensitive. In Section 9 we will prove that
Fugitive must construct some particular structure, defined
earlier in Section 7 and called G,,, for some m € N. Then,
in a short Section 10 we will take off our glasses and recall
that the edges of G, actually have shades. Assuming that
the original instance of OGTP has no solution, we will get
that R(Qpqq)(a, b) holds in the constructed structure. This
will end the proof of the (i)=(ii) direction. For the implica-
tion (—i)=(-ii) we will notice, again in Section 10 that if
(S, F) has a solution, then one of the structures G,,, with
shades duly assigned to edges, forms a counterexample M
as required by Lemma 3.1. Since this M will be finite, we
will show that if the instance (S, ) of OGTP has a solution,
then Q does not finitely determine Q, (which is a stronger
statement than just saying that Q does not determine Q).

6 PrincipleI:D,

The rules of the game of Escape are such that Fugitive loses
when he builds a path (from a to b) labeled with w € R(Qy).
So — when trying to encode something — one can think of
words in Qg as of some sort of forbidden patterns. And thus
one can think of Q) as of a tool detecting that the player is
cheating and not really building a valid computation of the
computing device we encode. Having this in mind the Reader
can imagine why the words from languages from the groups
Qpaaq and Qu g1y, Which clearly are all about suspiciously
looking patterns, are all in Qy.

But another rule of the game is that at the beginning
Fugitive picks his initial position Dy as a path (from a to b)
labeled with some w € G(Qyp), so it would be nice to think
of Qy as of initial configurations of this computing device.
The fact that the same object is playing the set of forbidden
patterns and, at the same time, the set of initial configurations
is a problem. But this problem is solvable, as we are going to
show in this Section. And having the languages Qpaq UQu g1y
also in Qy is part of the solution.

Assume that H is a final position of a play of the Escape
game that started with Dy = G(w)[a, b] for some w € Q,.
This means, by Lemma 3.4, that H |= Q. Recall that His a
structure over ¥, which means that each edge of H is either
red or green.

Observation 6.1. Forallx,y € HifH |= G(L)(x, y) for some
L € Qugiy Y Qpaa then H |= R(Qo)(x, y).

Proof. Notice that G(L) — R(L) € Q~ so H |= R(L)(x, y) and
as L C Q it follows that H |= R(Qo)(x, y). O

Lemma 6.2 (Principle I). Fugitive must choose to start the
Escape game from Dy = G(q)|a, b] forq € Qsiar:-
Proof. If ¢ € Qo \ Qstart then Dy = G(L)(a,b) for some

L € Qugiy Y Qpaq and it follows from Observation 6.1. that
Fugitive loses. O
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7 The grid G,

Definition 7.1. G,,, for m € N, is (see Fig. 2) a directed
graph (V, E) where

V ={a, b} U{v;; : i,j € [0,m]} and where the edges
from E are labeled with symbols a or § or w or one of the
symbols of the form (pg), where - like before - p € {A, B},
q € {H,V} and r € {W,C}. Each label has to also be either
red or green (this gives us (3 + 23)2 possible labels, but only
12 of them will be used). Notice that there is no s € S here:
the labels we now use are sets of symbols from ¥ like in
Notation 4.3. One should imagine that we watch Fugitive’s
play in shade filtering glasses.

The edges of G, are as follows:

e Vertex vy, is a successor of a. Vertex b is a successor
of Uy, m. The successors of v; ; are viyq,; and v; j4q
(if they exist). Each node is connected to each of its
successors with two edges, one green and one red.

e Each “Cold” edge, labeled with a symbol in (), is
green.

e Each “Warm” edge, labeled with a symbol in (o"), is
red.

e Each edge (v;,j, vis1,) is horizontal - its label is from
(o10).

e Each edge (v; j,v; j+1) is vertical- its label is from
(o).

e The label of each edge leaving v; ; # vy, m, with i + j
even, is from (A), the label of each edge leaving v; ; #
Um,m, With i + j odd, is from (B).

e Edges (a, vy,9) with label G(«) and (a, vy, ¢) with label
R(p) are in E.

e Edges (v, m, b) with label G(w) and (v, m, b) with
label R(w) are in E.

8 Principle II

In this section we assume that the Fugitive obeys Principle I

and he selects the initial structure Dy = G(a[(AIC{)(B‘C,)]’"w)[a, b]

for some m.

Lemma 8.1. Suppose H is the final position of a play of the
Escape game which started from Dy.

1. Every edge e € H labeled with G(a), R(a), G(f) or R(S)
begins in a.
2. Every edge e € H labeled with G(w) or R(w) ends in b.

Proof. (1) By induction we show that the claim is true in
every Dj. It is clearly true in Dy. For the induction step use
the fact that for every language L € Q and for each word
w € L if w contains « or f then:

— this a or f is the first letter of w and

- all words in L begin from « or f.

(2) Analogous. O

9Please use a color printer if you can.
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Lemma 8.2 (Principle II). Fugitive must never allow any
request generated by Qpaq and Qg1 to form in the current
structure.

Proof. Let D be the current structure and L € Qpqq U Qug1y-

First assume that D |= R(L)(x, y) for some x, y. Notice that
from Lemma 8.1 x = a and y = b. Because of that D |=
R(L)(a, b) which means that D |= R(Qo)(a, b) and Fugitive
loses.

Now assume that D | G(L)(x,y) for some x,y. Simi-
larly, from Lemma 8.1, x = a and y = b. We have that
(a,b,L7) € rq(Q,D) so Fugitive must satisfy this request
with R(w)|[a, b] for some w € L which loses,as L C Q,. O

9 Now we do not see the shades

As we already said, now we are going to watch, and analyze,
Fugitive’s play in shade filtering glasses. We assume he obeys
Principle I, otherwise he would lose. We also assume he
obeys Principle II, but wearing our glasses we are not able
to tell whether any word from G(Qp,4) U R(Qpqq) occurs in
the current structure. For this reason we cannot use, in our
analysis, arguments referring to languages in Qp,4. We are
however free to use arguments from Principle IL, referring
to languages in Q414

Lemma 9.1. Suppose in his initial move Fugitive selects Dy =
G(a[(AIf[)(B‘C,)]ma))[a, b]. Then the final position H must be
equal (from the point of view of a shades-insensitive spectator)
to G,.

To prove Lemma 9.1 it is enough to show that:

Lemma 9.2. Let L; be like on Figure 3 and LY and L¥ be
parts of L; consisting of (resp.) green and red edges. Then:

(i) Do =L,

(ii) Dy; = LS,— ULy,
(iii) Dyjr = LR UL,
Lemma 9.2 (i) is Principle I restated. Next subsections of this
Section are devoted to the proof of Lemma 9.2 (ii) and (iii).
This will be done by induction on i.

9.1 General rules for the Fugitive

Now assume D, as demanded by Lemma 9.1 was really se-
lected and denote vertices of this Dy by a, x1, . . . , x,, b, with
n = 2m + 1 (see Figure 3).

Lemma 9.3. For every final position H that was built obeying
Principles I and II:
1. Every edge e € H labeled with G(«), R(t), G(f) or R(S)
connects a and x.
2. Every edge e € H labeled with G(w) or R(w) connects
xp and b.

Proof. Notice that by Principle II there were no requests
formed by either Qpqq or Q, 41, during the game that led to
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Figure 2. G, with m = 4 (left). Smaller picture in the top-right corner explains how the different line styles on the main

picture map to 3.’

Figure 3. Five first Layers of G,, with m = 6.

H. It means that all requests were generated by Q004 But
for every language L € Q004 for each w € L if w contains
a, f or w then w is a one letter word, and also all other words
of this language contain one letter. So satisfying a request
involving «,  or w never requires creating new vertices. O

Lemma 9.4. For eachy € H,y # a there exist, in H:
e ared path from x; toy,

e a green path from x; toy,
Foreachy € H,y # b there exist, in H:
e ared path from y to x,,

e a green path fromy to x,.

Proof. Notice that for each ¢ € X, there exists a language
L € Qgooa such that ¢ € L. This means that for all u, w € H
such that these vertices are endpoints of a green edge e =
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(u, w,G(c)), ¢ € X there is also a red path connecting u and
w € H (this is since H |= ngod ).

Reasoning for red edges is analogous. O

In his first move Fugitive must satisfy all the requests in
So = rq(Q°, Dy). Notice that (since all the edges of Dy are
green and there are no bad or ugly patterns in D) all requests
in Sy are actually generated by RCs in Qg;; 4+ And one of
them is generated by (Q;DO 2) - Next lemma does not look
spectacular, but this is how we get our foot in the door:

Lemma 9.5. Request req = {a,x1,(a + )7 in Sy must be
satisfied with R(f)[a, x1].

Proof. First notice that there are numerous requests in Sy
generated by Q;ood’ all of them of the form (x;, x;12, Q;ojd).
Each of them can potentially be satisfied in one of two
ways: either by adding a new path labeled with a word
R((AY)(B}Y)) from x;, xi42 or by adding a new path labeled
with R((A )(B ).

Con31der what would happen if Fugitive tried to satisfy req
with R(a) instead of R(f). First assume that there exists req €
So generated by Q;Dod that is satisfied with R((A}"/)(Bg))
ThenD; | R(Q1 Jly )(a, b) and this is forbidden by Principle
II. So all requests in Sy generated by ngo d

fied with R((A5)(BS)). But then Dy = R(Qstare)(a, b) and
Fugitive loses. O

must be satis-

Now we know that, alongside the green «, there must
exist the red f leading to x; (see Figure 2). From this we get
that:

Lemma 9.6. If H is a final position that was built obeying
Principles I and II (which started with D) then: for each edge
ee€H,

1. e is labeled with ¢ € R(Zy) © ¢ € R(e")

2. e is labeled with c € G(3y) © ¢ € G(°)

Proof. (1) Assume by contradiction that there exists a red
edge e € H, from some x to some x’, labeled with ¢ € R(e€).
By Lemma 9.4 there is a path, consisting of edges from R(Z),
from x; to x and another such path from x” to x,,. This implies
that H |= Qigly(a, b) which is forbidden by Principle II. (2)

Like (1) but then H |= ugly(a b). O

- i P
Notice that each ngad fori=3...

(from the point of view of a shades-insensitive spectator).
This sounds like good news for Fugitive: when satisfying
requests generated by these languages he has some choice.
But actually he does not, as the next lemma tells us:

Lemma 9.7. Leti € {3...8} and let Q;ood = {wi, w/}.
1. IfD; |= G(w;)(x,y), for somej, andD; |~ R(Q;md)(x, y)
then {x,y, good> € rq(ngod, D;) and the Fugitive
must satisfy this request with R(w])[x, y].

8 consists of two words
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2. IfD;j |= R(w;)(x, y), for some j, andD; | G(Q;ood)(x, Y)
then (x,y, good> € rq(ngod,Dj) and the Fugitive
must satisfy this request with G(w})[x, y].

Proof. (1) Let i € {3,...,8} and let j be such that D; |=
G(w;)(x,y) and D; |& R(Q;aod)(x, y) Assume by contra-
diction that Fugitive satisfies (x,y, Q" ) with R(w;)[x, y].
Then Dj,1 |E G(w;)(x,y) and Dj4; |= R(w;)(x,y). Let ¢ be
any letter of w; (notice that ¢ € X). We have that there
exist vertices u, w,p, g € Dj4; such that Dj; |= G(c)(u, w)
and Dj,; = R(c)(p, q) and this contradicts Lemma 9.6. (2)
Analogous to the proof of (1). O

Now, in Section 9.2 we assume that D,; = LZGl. ULy;—; and
show that Dy;, is as claimed in Lemma 9.2 (ii) and in Section
9.3 we assume that Dy;; = L21+1 U L,; and show that Dy;
is as claimed in Lemma 9.2 (iii).

9.2 Fugitive’s move 2i: from D;; to Dy;4;

Observation 9.8. ForDD,; it is true that:

(1) All requests in Dy; generated by Q;ood
with R(A})(BY)).

(2) All requests in Dy; generated by Q;ood
with R(B}Y )(A})).

(3) All requests in Dy; generated by onod
with R(BY).

(4) All requests in Dy; generated by Q%
with R(Alvq‘/).

must be satisfied
must be satisfied
must be satisfied

good MUt be satisfied

Proof. For (1). By hypothesis all requests that are gener-
ated by Q4 in Dy; are of the form (x, y, G((A )(BC)) -

R(Q400d)> (Note that (AS)(BS) € ngod)
Fugitive must satisfy all such requests with R((A“’,V)(B}’{V))
Rest of the proofs for (2)-(4) are analogous. O

By Lemma 9.7

9.3 Fugitive’s move 2i + 1: from Dy;,1 to Dy,

Proof of the following Observation is analogous to the one
of Observation 9.8.

Observation 9.9. ForDy;,q it is true that:
1. All requests in Dy;,1 generated by Q;ood must be satis-

fied with G((A )(B ).
2. All requests in Dy;.1 generated by onud

fied with G((B )(A )).

3. All requests in Dy;.1 generated by Q;ood
fied with G(A ).

4. All requests in Dy;y; generated by Q°
fied with G(B ).

must be satis-
must be satis-

must be satis-
good

9.4 The end. No more requests!

Now it is straightforward to verify that:
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Observation 9.10. All requests generated by Qgooq are al-
ready satisfied in D1 = Gp,.

10 And now we see the shades again

Now we can finish the proof of Lemma 5.1 (i) = (ii).

Suppose the Fugitive’s play ended, in some final position
H = G,,. We take off our glasses, and not only we still see
this H, but now we see it in full colors, with each edge (apart
from edges labeled with «, § and w) having one of the shades
from S. Assume that the original instance S, F of Our Grid
Tiling Problem has no solution, and concentrate on the red
edges of H. They form a square grid, with each vertical edge
labeled with V, each horizontal edge labeled with H, and
with each edge labeled with a shade from S. So clearly, one
of the conditions (b1)-(b3) of Definition 4.1 is unsatisfied.
But this implies that a path labeled with a word from one of
the languages Qllm i QZa 4 occurs in H, which is in breach
of Principle II. This ends the proof of Lemma 5.1 (i)— (ii).

For the proof Lemma 5.1 (—i)— (—iii) assume the original
instance (S, ) of Our Grid Tiling Problem has a solution —
a labeled grid m X m for some m. Call this grid G.

Recall that Gy, is finite and it satisfies all regular con-
straints from Q;(;o 4 (Observation 9.10) and from Q;_;ly (for
trivial reasons, as no paths from any G(L) U R(L) with L €
ngly occur in G,,). Now copy the shades of the edges of G
to the respective edges of G,,. Call this new structure (G,,
with shades added) M. It is easy to see that M constitutes a
finite counterexample, as in Lemma 3.1.
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Grzegorz Gtuch, Jerzy Marcinkowski, Piotr Ostropolski-Nalewaja
Institute of Computer Science, University of Wroctaw

Abstract. In our paper [GMO18] we have solved
an old problem stated in [] showing that determi-
nacy is undecidable for Regular Path Queries. Here
a strong generalisation of this result is shown, and
— we think — a very unexpected one. We prove
that no Regularity is needed: the problem remains
undecidable even for finite unions of Path Queries.

I. INTRODUCTION

Query determinacy problem (QDP). Imagine
there is a database D we have no direct access
to, and there are views of this D available to
us, defined by some set of queries @ = {Q1,
Q2,...Qr} (where the language of queries from
Q is a parameter of the problem). And we are
given another query (Qo. Will we be able, regardless
of D, to compute Qu(D) only using the views
Q1(D), Q2(D), ... Qk(D)? The answer depends on
whether the queries in Q determine' query Q.
Stating it more precisely, the Query Determinacy
Problem is’:

The instance of the problem is a set of queries Q =
{Q1,...Q}, and another query Qo.

The question is whether Q determines )y, which
means that for (&) each two structures (database
instances) Dy and D, such that Q(ID;) = Q (D) for
each () € Q, it also holds that Qo(D1) = Qo(D2).

I Or, using the language of [CGLVO00], [CGLVO00a]
[CGLV02] and [CGLV02a], whether Q are lossless with respect
to Qo.

2More precisely, the problem comes in two different flavors,
“finite” and “unrestricted”, depending on whether the (&) “each”
ranges over finite structures only, or all structures, including
infinite.

QDP is seen as a very natural static analysis prob-
lem in the area of database theory. It is important
for privacy (when we don’t want the adversary
to be able to compute the query) and for (query
evaluation plans) optimisation (we don’t need to
access again the database as the given views already
provide enough information).

And, as a very natural static analysis problem, it
has a 30 years long history as a research subject —
the oldest paper we were able to trace, where QDP
is studied, is [LY85], where decidability of QDP
is shown for the case where Qg is a conjunctive
query (CQ) and also the set Q consists of a single
CQ.

But this is not a survey paper, so let us just point
a reader interested in the history of QDP to Nadime
Francis thesis [F15], which is a very good read
indeed.

A. The context

As we said, this is a technical paper not a survey
paper. But still, we need to introduce the reader to
the the technical context of our results. And, from
the point of view of this introduction, there are two
lines of research which are interesting: decidability
problems of QDP for positive fragments of SQL
(conjunctive queries and their unions) and for
fragments of the language of Regular Paths
Queries (RPQs) — the core of most navigational
graph query languages.

QDP for fragments of SQL. A lot of progress was
done in this area in last 10+ years.

The paper [NSV06] was the first to present
a negative result. QDP was shown there to be
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undecidable if unions of conjunctive queries are
allowed in Q and @y. The proof is moderately
hard, but the queries themselves are high arity?
and hardly can be seen as living anywhere close
to database practice.

In [NSVI10] it was proved that determinacy is
also undecidable if the elements of Q are conjunc-
tive queries and Qg is a first order sentence (or
the other way round). Another somehow related
(although no longer contained in the first order/SQL
paradigm) negative result is presented in [FGZ12]:
determinacy is shown there to be undecidable if
Q is a DATALOG program and )y is a con-
junctive query. Finally, closing the classification
for the traditional relational model, it was shown
in [GM15] and [GM16] that QDP is undecidable
for Qo and the queries in Q being conjunctive
queries. The queries in [GM15] and [GM16] are
quite complicated (the Turing machine there is
encoded in the arities of te queries), and again
hardly resemble anything practical.

On the positive side, [NSV10] shows that the
problem is decidable for conjunctive queries if each
query from Q has only one free variable.

Then, in [A11] decidability was shown for Q and
Qo being “conjunctive path queries” (see Section
III-A for the definition). This is an important result
from the point of view of the current paper, and the
proof in [A11], while not too difficult, is very nice
— it gives the impression of deep insight into the
real reasons why a set of conjunctive path queries
determines another conjunctive path query.

The result from [A11] begs for generalisations,
and indeed it was generalised in [P11] to the the
scenario where Q are conjunctive path queries but
Qo is any conjunctive query.

QDP for Regular Path Queries. A natural ex-
tension of QDP to graph database scenario is con-
sidered here. In this scenario, the underlying data
is modelled as graphs, in which nodes are objects,
and edge labels define relationships between those
objects. Querying such graph-structured data has
received much attention recently, due to numerous
applications, especially for the social networks.

There are many more or less expressive query

3By arity of a query we mean here the number of free
variables.

languages for such databases (see [B13]). The core
of all of them (the SQL of graph databases) is
RPQ - the language of Regular Path Queries. RPQ
queries ask for all pairs of objects in the database
that are connected by a specified path, where the
natural choice of the path specification language, as
[V16] elegantly explains, is the language of regular
expressions. This idea is at least 30 years old (see
for example [CMW87, CM90]) and considerable
effort was put to create tools for reasoning about
regular path queries, analogous to the ones we
have in the traditional relational databases con-
text. For example [AV97] and [BFWO98] investigate
decidability of the implication problem for path
constraints, which are integrity constraints used for
RPQ optimisation. Also, containment of conjunc-
tions of regular path queries has been addressed
and proved decidable in [CDGL98] and [FLS98],
and then, in more general setting, in [JV09] and
[RRV15].

Naturally, also query determinacy problem
has been stated, and studied, for Regular Path
Queries model. This line of research was initi-
ated in [CGLVO00], [CGLV00a], [CGLV02] and
[CGLVO02a], and it was [CGLV02] where the cen-
tral problem of this area — decidability of QDP for
RPQ was first stated (called there “losslessness for
exact semantics”)

On the positive side, the previously mentioned
result of Afrati [A11] can be seen as a special case,
where each of the regular languages (defining the
queries) only consists of one word (path queries,
considered in [A11] constitute in fact the intersec-
tion of CQ and RPQ). Another positive result is
presented in [F17], where “approximate determi-
nacy” is shown to be decidable if the query Qg
is (defined by) a single-word regular language (a
path query), and the languages defining the queries
in Qo and Q are over a single-letter alphabet. See
how difficult the analysis is here — despite a lot
of effort (the proof of the result in [F17] invokes
ideas from [A11] but is incomparably harder) even
a subcase (for a single-word regular language) of
a sub-case (unary alphabet) was only understood
“approximately”.

On the negative side, in [GMO18], we showed
(solving the problem from [CGLV02]), that QDP
is undecidable for full RPQ.

Page 2 of 19
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B. Our contribution

The main result of this paper, and — we think —
quite an unexpected one, is the following general-
isation of the main result from [GMO18]:

Theorem I.1. QDP-FRPQ, the Query Determinacy
Problem for Finite Regular Path Queries, is unde-
cidable.

To be more precise, we show that the problem,
both in the “finite” and the “unrestricted” version,
is undecidable.

It is, we believe, interesting to see that this
negative result falls into both lines of research
outlined above. Finite Regular Path Queries are of
course a subset of RPQ, where star is not allowed
in the regular expressions (only concatenation and
plus are). But other name of Finite Regular Path
Queries is Unions of Conjunctive Path Queries, so
they also fall into the SQL category.

Our result shows that the room for generalising
the positive result from [A11] is quite limited. And,
since the queries we consider are finite unions
of completely practical conjunctive queries (the
lengths of the paths in our proof are all bounded by
a small constant) they constitute the simplest known
undecidable case in each of the two categories
(positive SQL queries and RPQ queries). What we
however find most surprising is the discovery that
it was possible to give a negative answer to the
question from [CGLVO02], which had been open
for 15 years, without talking about RPQs at all
— undecidability is already in the intersection of
RPQs and (positive) SQL.

As a positive side-result we generalise the result
from [A11] showing that:

Theorem 1.2. QDP is decidable when Qg is (de-
fined by) an arbitrary regular language and each
of Q consists of a single word.

Theorem 1.2 is just a slight generalization of
the result (and the technique) from [A11]. But, as
far as we understand, it is the first known natural
decidable case of QDP for queries in RPQ not
definable as (first order) conjunctive queries.

Remark. [B13] makes a distinction between “sim-
ple paths semantics” for Recursive Path Queries
and “all paths semantics”. As all the graphs we

produce in this paper are acyclic (DAGs), all our
results hold for both semantics.

Organization of the paper Sections III-XV of this
paper are devoted to the proof of Theorem I.1. In
short Section III we introduce (very few) notions
and some notations we need to use.

In Section IV we first follow the ideas from
[GMO18] defining the red-green signature. Then
we define the game of Escape and state a crucial
lemma (Lemma 2), asserting that this game really
fully characterises determinacy for Regular Path
Queries. In Section IV-C we prove this Lemma.
This part follows in the footsteps of [GMO18],
but with some changes: in [GMO18] Escape is a
solitary game, and here we prefer to see it as a
two-players one.

At this point we will have the tools ready for
proving Theorem I.1. In Section VI we explain
what is the undecidable problem we use for our
reduction, and present the reduction. In Sections
VII - XV we use the characterisation provided by
Lemma 2 to prove correctness of this reduction.
Proof of Theorem 1.2 can be found in Appendix 1.

II. HOW THIS PAPER RELATES TO [GMO18]

This paper builds on the top of the technique
developed in [GMO18] to prove undecidability of
QDP-RPQ for any languages, including infinite.

From the point of view of the high-level ar-
chitecture the two papers do not differ much. In
both cases, in order to prove that if some compu-
tational device rejects its input then the respective
instance of QDP-RPQ (or QDP-FRPQ) is positive
(there is determinacy) we use a game argument. In
[GMO18] this game is solitary. The player, called
Fugitive constructs a structure/ graph database (a
DAG, with source a and sink b). He begins the
game by choosing a path Dy from a to b, which rep-
resents a word from some regular language G(Qo).
Then, in each step he must “satisfy requests”— if
there is a path from some v to w in the current
structure, representing a word from some (*) regu-
lar language () then he must add a path representing
a word from another language Q' connecting these
v and w. He loses when, in this process, a path
from a to b from yet another language R(Qo) is
created.
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In this paper this game is replaced by a two-
players game. But this is a minor difference. There
are however two reasons why the possibility of
using infinite languages is crucial in [GMO18].
Due to these reasons while, as we said, the general
architecture of the proof of the negative result in
this paper is the same as in [GMOI18] the imple-
mentation of this architecture is almost completely
different here.

The first reason is as follows.

Because of the symmetric nature of the con-
straints, the language ) (in (*) above) is always
almost the same as language @’ (they only have
different “colors”, but otherwise are equal). For this
reason it is not at all clear how to force Fugitive to
built longer and longer paths. This is a problem for
us, as to be able to encode something undecidable
we need to produce structures of unbounded size.
One can think that paths of unbounded length
translate to potentially unbounded length of Turing
machine tape.

In order to solve this problem we use — in
[GMO18] - language G(Qo). It is an infinite lan-
guage and — in his initial move — Fugitive could
choose/commit to a path of any length he wished
but no longer paths could occur later in the game.
Since now we only have finite languages, so also
G(Qo) must be finite, we needed here to invent
something completely different, This long path is
now generated step by step (see Sections XI-XII)
using (mainly) the machinery of regular languages

;zod - éz;zod'

The second reason is in R((Q)). This — one can
think — is the language of “forbidden patterns” —
paths from a to b that Fugitive must not construct.
If he does, it means that he ‘“cheats”. But now
again, R(Q) is finite. So how can we use it to
detect Fugitive’s cheating on paths no longer than
the longest one in R(Qo)? This at first seemed
to us to be an impossible task. And the solution
is in a complicated machinery of languages pro-
ducing edges labelled with z and y (languages

bood— Doooa Producing z and y and all languages

good o
in Q4 checking constraints).

III. PRELIMINARIES AND NOTATIONS

Structures. When we say “structure” we always
mean a directed graph with edges labelled with

letters from some signature/alphabet 3. In other
words every structure we consider is relational
structure D over some signature . consisting of
binary predicate names. Letters D, M, G and H
are used to denote structures. (2 is used for a set of
structures. Each structure we consider will contain
two distinguished constants a and b.

For two structures G and G’ over X, with sets
of vertices V and V', a function h : V — V' is
(as always) called a homomorphism if for each two
vertices (x,y) connected by an edge with label E €
Y in G there is an edge connecting (h(x),h(y)),
with the same label E, in G'.

A. Path queries.

Given a set of binary predicate names > and a
word w = ajasy...a, over X* we define a path
query w(zxg,x,) as a conjunctive query:

Tar,ozn 101 (20, 1) A az(x, z2) A
O (Tr—1, ).

We use the notation w|xg,x,] to denote the
canonical structure (“frozen body”) of query
w(xg, Tn) — the structure consisting of elements
Zo,T1, ... Ty and atoms a(zg, 1),
az(x1,22), ... ap(Tp_1,Tn)-

Regular path queries. For a regular language ()
over X we define a query, which is also denoted by

Q, as:
Q(%y) = HweQw(.’IJ7y)

In other words such a query Q looks for a path
in the given graph labelled with any word from @
and returns the endpoints of that path. Clearly, if @
is a finite regular language, then Q(x,y) is a union
of conjunctive queries.

We use letters () and L to denote regular lan-
guages and Q and £ to denote sets of regu-
lar languages. The notation Q(D) has the natural

meaning: Q(D) = {{z,y) | D E Q(z,y)}.
IV. RED-GREEN STRUCTURES AND ESCAPE
A. Red-green signature and Regular Constraints

For a given alphabet (signature) X let ¥ and X p
be two copies of X one written with “green ink”
and another with “red ink”. Let ¥ = ¥¢ U Xg.

Page 4 of 19



46

DODATEK B. ZALACZNIK 2

For any word w from ¥* let G(w) and R(w)
be copies of this word written in green and red
respectively. For a regular language L over X let
G(L) and R(L) be copies of this same regular
language but over ¥ and Y i respectively. Also
for any structure D over ¥ let G(D) and R(D) be
copies of this same structure 1D but with labels of
edges recolored to green and red respectively.

For a pair of regular languages L over 3 and L’
over X' we define Regular Constraint L — L’ as
a formula

vm,yL('ra y) = L/(.T, y)

We use the notation D |= 7 to say that an RC r
is satisfied in . Also, we write D =T for a set T’
of RCs when for each ¢ € T it is true that D |= ¢.

For a graph D and an RC ¢ = L — L’ let
rq(t,D) (as “requests”) be the set of all triples
(v,y,L — L') such that D E L(z,y) and
D ¥~ L'(z,y). For a set T of RCs by rq(T,D)
we mean the union of all sets rq(¢,D) such that
t € T. Requests are there in order to be satisfied:

function ADD
arguments:
o Structure D
e RCL— L
e pair (z,y) such that (x,y,L — L') €
rq(L — L', D)
body:

1: Take a word w = agay...a, from
L’ and create a new path wlz,y] =
ao(z,x1),a1(x1,22), ..., an(Tn_1,y) where
x1,%2,...,Tp_1 are NEW vertices

2: return D U w(z, y].

Notice that the result Add(D,L — L', (z,y))
depends on the choice of w € L'. So the procedure
is non-deterministic.

For a regular language L we define L~ =
G(L) — R(L) and L* = R(L) — G(L). All
regular constraints we are going to consider are
either L™ or L* for some regular L.

For a regular language L we define L =
{L7,L*} and for a set £ of regular languages
we define:

L = U Le.
Lel

Requests of the form (z,y,t) for some RC ¢ €
L™ (t € L) are generated by G(L) (resp. by
R(L)). Requests G(L) and R(L) jointly are said
to be generated by L.

The following lemma is straightforward to prove
and characterises determinacy in terms of regular
constraints:

Lemma 1. A set Q of regular path queries over
32 does not determine (does not finitely determine)
a regular path query o, over the same alphabet,
if and only if there exists a structure M (resp. a
finite structure) and a pair of vertices a,b € M

such that M = Q" and M | (G(Qo))(a,b) but
M = (R(Qo))(a, b).

Any structure M, as above, will be called coun-
terexample.

B. The game of Escape

An instance Escape(Q)p, Q) of a game called
Escape, played by two players called Fugitive and
Crocodile, is:

« afinite regular language Q) of forbidden paths
over 2.
o aset Q of finite regular languages over X,

The rules of the game are:

« First Fugitive picks the initial position of the
game as Dy = (G(w))][a, b] for some w € Q.
e Suppose Dy is the current position of
some play before move 5 + 1 and Sy =
rq(Q%,Dg). Then, in move §+ 1, Crocodile
picks one request (z,y,t) € Sz and then
Fugitive can move to any position of the form:

D5+1 € Add(DlBat» <ray>)

« For a limit ordinal A the position D, is defined

as | Dg.
B<A
o If rq(Q,D;) is empty then for each j > i
structures ID; and ID; are equal.
o Fugitive loses when for a final position D2 =
U Dg it is true that D2 = (R(Qo))(a,b).
5<w2
Otherwise he wins.
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Notice that we want the game to last w? steps.
This is not really crucial (if we were careful enough
w steps would be enough) but costs nothing and
will simplify presentation in Section XI.

Obviously, different strategies of both players
may lead to different final positions. We will denote
the set of all final positions reachable (by any
sequence of moves of both players) from an initial
position Dy, for a set of regular languages L, as
Q(L7,Dy).

Now we can state the crucial Lemma, that con-
nects the game of Escape and QDP-RPQ:

Lemma 2. For an instance of QDP-RPQ consisting
of regular language )y over ¥ and a set of
regular languages Q over 3 the two conditions are
equivalent:

(i) Q does not determine @),
(ii) Fugitive has a winning strategy in Escape(Q,

Q).
C. Universality of Escape. Proof of Lemma 2

It is clear that (i) < (i) is true. All we need
is to use the final position of a play won by
Fugitive as the counterexample for determinacy
as in Lemma 1. But the other direction is not at
all obvious. Notice that it could a priori happen
that, while some counterexample exists, is is some
terribly complicated structure which Fugitive can
not force Crocodile to reach as a final position in
a play of the game of Escape.

We should mention here that all the notions of
Section IV are similar to those of [GMO18] but
are not identical. Most notable difference is in the
definition of the game of Escape, as it is no longer
a solitary game, as it was in [GMOI18].

This makes the analysis slightly harder here, but
pays off in Sections VII XV.

Lemma 3. Suppose structures Do and M over
Y are such that there exists a homomorphism
ho : Dg — M. Let T be a set of RCs and suppose
M = T Then (regardless of the Crocodile’s moves)
Fugitive can reach some final position D 2 €
(T, Do) such that there exists a homomorphism
h from D2 to M.

Proof. Next lemma provides the induction step for
the proof of Lemma 3.

Let us define step as arity four relation such that
(D, D', T,r) € step when D' can be the result of
one move of Fugitive, in position D, in the game of
Escape with set of RCs T and a particular request
r € rq(T, D) picked by Crocodile.

Lemma 4. Let Dg, M be structures over S and
hg : Dg — M be a homomorphism. Suppose that
for a set T of RCs it is true that M = T. Then
for every v € T there exists some structure Dg4q
such that step(Dg,Dg11,T, 1) and that there exists
homomorphism hgi1 : Dgy1 — M such that hg C

hpir.

Proof. Let r = (z,y,X —Y) for some z,y € Dg
and let ©’ = hg(xz) and ¥’ hg(y). Since
D | X(x,y) and since hg is a homomorphism
we know that M E X(2/,y'). But M = T so
there is also M = Y(2/,4’) and thus for some
ajas . ..a, €Y there is path p’ = aq (2, ),
az(zy,25) ... an(ry,_1,y") in M. Let Dj be a
structure created by adding to IDg new path p =
ar(z, 1),

az(z1,22),. .. an(Tn—1,y) (With z; being new ver-
tices). Let hjy = hg U {(xi,i41)]i € [n — 1]} It
is easy to see that I; and hj; are requested Dgq
and hgiq. ]

Now we consider the limit case. Let A be a limit
ordinal such that A < w?2. By definition we know
that Dy = [Jz_, Ds. Now we need to construct a
homomorphism hy. Let hy := UB<>\ hg. Observe
that such hj is a valid homomorphism from D) to
M.

This along with Lemma 4 proves that D, and
h2 are as required by Lemma 3. O

Now we will prove the (i)=-(ii) part of Lemma 2.

Assume (i). Let M be a counterexample as in
Lemma 1. Let a,b and w € Qg be such that M =
(G(w))(a,b) and M = (R(Qo))(a,b). Applying
Lemma 3 to Dy = G(w)[a,b] and to M we know
that Fugitive (regardless of the Crocodile’s moves)
can reach some winning final position D,z such
that there is homomorphism from D2 to M. It is
clear that D> = (R(Qo))(a,b) as we know that
M b~ (R(Qo))(a, b). This shows that D,z is indeed
a winning final position.

This concludes the proof of the Lemma 2.
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V. SOURCE OF UNDECIDABILITY

Definition 1 (Recursively inseparable sets). Sets
A and B are called recursively inseparable when
each set C, called a separator, such that A C C
and BN C =, is undecidable.

It is well known that:

Lemma 2. Let T be the set of all Turing Machines.
Then sets T, = {¢p € T : $(0) = 1} and T, =
{¢p € T : ¢(0) = 0} are recursively inseparable.
By #(0) we mean the returned value of the Turing
Machine ¢ that was run on an empty tape.

Definition 3 (Square Grids). For a k € N let [k]
be the set {i € N:0 < i < k}. A square grid is
a directed graph (V, E) where V = [k] x [k] for
some natural k > 0 or V.= N x N. E is defined
as (i, ), (i +1,5)) and E((i,j), {i,j + 1)) for
each relevant 1,5 € N.

Definition 4 (Our Grid Tilling Problem
(OGTP)). An instance of this problem is a set
of shades S (grayblack € S) and a list F C
{V,H} xS x{V,H} xS of forbidden pairs {c, d)
where ¢,d € {V,H} x S. Let the set of all these
instances be called T.

Definition 5. A proper shading* is an assignment
of shades to edges of some square grid G (see
Figure 1) such that:

(al) each horizontal edge of G has a label from
{H} x S.

each vertical edge of G has a label from
{V} xS

bottom-left horizontal edge is shaded gray’.
upper-right vertical edge (if exists) is shaded
black.

(b3) G contains no forbidden paths of length 2

labelled by (c,d) € F.
We define two subsets of instances of OGTP:

(a2)

(bl)
(b2)

A = {I € I|there exists a proper shading of some
finite square grid }.

4We would prefer to use the term “coloring” instead, but
we already have colors, red and green, and they shouldn’t be
confused with shades.

SWe think of (0,0) as the bottom-left corner of a square
grid. By ’right’ we mean a direction of the increase of the first
coordinate and by "up’ we mean a direction of increase of the
second coordinate.

(0.4) (4,4)
‘A
(0,0) (4,0)

Figure 1. Finite square grid.

B = {I € ZI|there is no proper shading of any
square grid }.

By standard argument, using Lemma 2, one can
show that:

Lemma 6. Sets A and B of instances of OGTP are
recursively inseparable.

In Section VI we will construct a function R
(R like PReduction) from Z (instances of OGTP)
to instances of QPD-FRPQ that will satisfy the
following:

Lemma 7. For any instance I = (S, F) of OGTP
and for (0, Qo) = R(I):

(i) If I € A then Q does not finitely determine
Qo.
(ii) If I € B then Q determines Q.

That will be enough to prove Theorem I.1.
Imagine, for the sake of contradiction, that we
have an algorithm ALG deciding determinacy (in
either finite or unrestricted case). Then, in both
cases, algorithm ALG o R would separate .4 and
B, which contradicts recursive inseparability of A
and B (Lemma 6).

VI. THE FUNCTION R
Now we define a function R, as specified in

Section V, from OGTP to the QDP-RPQ. Suppose
an instance (S,F) of OGTP is given. We will
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construct an instance (Q, Qo) = R((S,F)) of
QDP-RPQ.

The edge alphabet (signature) will be
2 ={a%, ", 2% 2", 4, 4", $% $" Wl U,

where g = {A,B} x {H,V} x {W,C} xS. We
think of H and V' as orientations — Horizontal and
Vertical. W and C' stand for warm and cold. It is
worth reminding at this point that relations from ¥
will — apart from shade, orientation and temperature
— have also a color, red or green.

Notation VL.1. We use the following notation for

elements of X
(spg) = (p7q7 T, 3) € z:0

Symbol e and empty space are to be understood as
wildcards. This means, for example, that ( A )
denotes the set {(,AW),(,A%)} and (,o%) de-
notes {(, AL ), (B )}

Symbols from (") and {a™, 2™ yW $W1
will be called warm and symbols from (o) and
{a%, 2¢,9yC,$} will be called cold.

Now we define Q and Qy. Let Q404 be a set of
15 languages:

1) w

2) a€ +aWv

3) 2@ + W

4) y© +y"

5) $¢ +§W

6) (BY) + (BY)

Yy
14) 2% +2¢ + 29(A)(BY)
15) " + 89 + (AG)(BY)y©

Let Qpqq be a set of languages:

D aVaW( eWV) (.0} )yWw for each forbidden
pair
{(d,c),(d',c)) € F.

2) "W (}0aeBY)$" w for each shade € S\
{black}.

Finally, let Q, g, be a set of languages:

1) ¢St (eW)nSty
2) aVEst(e“) xSy

where ©54 = |J!_, o,

i=1

We write Q!0 Qpaa> Qlgry, to denote the i-th
language of the corresponding group. Now we can
define

Q= ngod U Qpaa U ngly

The sense of the construction will (hopefully) be-
come clear later. The regular constraints (Q;go 2D
and (Q}1,,)* are of the form “for vertices x,y, »
and edges e;1(x,y) and ex(y, z) of some color in
the current structure, create a new y’ and add edges
e} (z,y’) and e5(y’, z) of the opposite color” where
the pair (e1, e3) comes from some small finite set

of possible choices.

On the other hand, each language in QqqUQuy g1y
contains words with some bad or ugly pattern. For
L € Qpaq U Qugiy requests generated by L are of
the form “if you have a short path in the current
structure, green or red, between some vertices x
and y, containing such pattern, then add a new path
from z to y, of the opposite color, also containing
the same pattern”.

A small difference between languages in Qpqq
and in Q4 is that languages in Q,q, do not
depend on the constraints from the instance of Our
Grid Tiling Problem while ones in Qp,q encode
this instance. One important difference between
languages in Qgo0q U Qugiy and Qpqq is that only
the last do mention shades.

Finally, define Qstart =
ozC:rC(gmyAg)(Bg)ycw, and let:
QO = Qsta’rt + @ L + @ L
LeEQugiy LEQbpad

Qstart may look like a single word language, but
it is not: do not forget that (BY)) is a set of symbols
(which however all look almost the same, the only
difference is the shades).

VII. THE STRUCTURE OF THE PROOF OF
LEMMA 7

The rest of the paper will be devoted to the proof
of Lemma 7 (restated here for convenience):
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Lemma 7. For any instance I = (S, F) of OGTP
and for (Q, Qo) = R(1):

(i) If I € A then Q does not finitely determine
Qo-
(ii) If I € B then Q determines Q).

Proof of claim (i) — which will be presented in
the end of Section XV — will be straightforward
once the Reader grasps the (slightly complicated)
constructions that will emerge in the proof of claim
(ii).

For the proof of claim (i) we will employ
Lemma 2, showing that if the instance (S,F)
has no proper shading then the Crocodile does
have a winning strategy in the Escape(Q, Qo)
(where (Q, Qo) = R((S,F))). As we remember
from Section IV-B, in such a game Fugitive will
first choose, as the initial position of the game, a
structure Dy = w]a, b] for some w € G(Qp). Then,
in each step, Crocodile will pick a request in the
current structure (current position of the game) D
and Fugitive will satisfy this request, creating a new
(slightly bigger) current D. Fugitive will win if he
will be able to play forever (by which me mean w?
steps), or until all requests are satisfied, without
satisfying (in the constructed structure) the query
(R(Qo))(a,b). While talking about the strategy of
Fugitive we will use the words “must not” and
“must” as shorthands for “or otherwise he will
quickly lose the game”. The expression “Fugitive
is forced to” will also have this meaning.

Analysing a two-player game (in order to prove
that certain player has a winning strategy) sounds
like a complicated task: there is this (infinite) alter-
nating tree of positions, whose structure somehow
needs to be translated into a system of lemmas. In
order to prune this game tree our plan is first to
notice that in his strategy Fugitive must obey the
following principles:

(D) The structure Dy resulting from his initial move
must be (G(w))[a, b] for some w € Qsiqrt-

(I) He must not allow any green edge with warm
label and any red edge with cold label to appear in
D.

(IIT) He must never allow any path labelled by
G(Qbad) U R(Qugiy) to occur between vertices a
and b.

Then we will assume that Fugitive’s play indeed

follows the three principles and we will present
a strategy for Crocodile which will be winning
against such Fugitive. From the point of view
of Crocodile’s operational objectives this strategy
comprises of three stages.

In each of these stages the Crocodile’s oper-
ational goal will be to force Fugitive to build
some specified structure (where, of course all the
specified structures will be superstructures of D).
In the first stage Fugitive will be forced to build
a structure called P; (defined in Section X). In
the second stage the specified structures will be
called P,, and P,  (each defined in Section X)
and in the third stage Fugitive will be forced to
construct one of the structures G,,, or L%, (defined
in Section XIII)

During the three stages of his play Crocodile
will only pick requests from the languages in
Qgood- These languages, as we said before, are
shade-insensitive, so we can imagine Crocodile
playing in a sort of shade-filtering glasses. Of
course Fugitive, when responding to Crocodile’s
requests, will need to commit on the shades of the
symbols he will use, but Crocodile’s actions will
not depend on these shades.

They shades will however play their part after the
end of the third stage . Assuming that the original
instance of OGTP has no proper shading, we will
get that, at this moment, R(Qp.q)(a,b) already
holds true in the structure Fugitive was forced to
construct. This will end the proof of (ii).

VIII. PRINCIPLE I : Dy

The rules of the game of Escape are such that
Fugitive loses when he builds a path (from a to
b) labelled with w € R(Qp). So — when trying
to encode something — one can think of words in
Qo as of some sort of forbidden patterns. And thus
one can think of @y as of a tool detecting that
Fugitive is cheating and not really building a valid
computation of the computing device we encode.
Having this in mind the Reader can imagine why
the words from languages from the groups Qp.q
and Q,41,, Which clearly are all about suspiciously
looking patterns, are all in Qg

But another rule of the game is that at the
beginning Fugitive picks his initial position Dy as a
path (from a to b) labelled with some w € G(Qo),
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so it would be nice to think of Qg as of initial
configurations of this computing device. The fact
that the same object is playing the set of forbidden
patterns and, at the same time, the set of initial
configurations is a problem, and this problem is
solved by having languages from Q,, 1, UQ4qq both
in @ and in Qg:

Lemma 1 (Principle I). Fugitive must choose to
start the Escape game from Dy = G(q)[a,b] for
some q € Qstart~

Notice that, from the point of view of the shades-
blind Crocodile the words in Qg4 are indistin-
guishable and thus Fugitive only has one possible
choice of Dyg.

Proof. If Dy = G(q)]a, b] for ¢ € Qo \ Qstart then
Dy = G(L)(a,b) for some L € Qugy U Qpad-
Then in the next step Crocodile can pick request
{a,b,G(L) — R(L)). After Fugitive satisfies this
request, a structure Dy is created such that Dy |=
R(L)(a,b) and Crocodile wins. O

From now on we assume that Fugitive obeys
Principle 1. This implies that Dy as demanded by
Principle I will always be a substructure of any
current structure D.

IX. PRINCIPLES II AND III

In this section we will formalise the intuition
considering languages from Q,q, as forbidden
patterns.

We start with an observation that will simplify
our reasoning in the proof of Principle II.

Observation IX.1. For vertices x,y in the current
structure D if there is a green (red) edge between
them then Crocodile can force Fugitive to draw a
red (green) edge between x and y.

Proof. 1t is possible due to languages 1 — 9 in
ngod' O

Definition 2. A P2-ready® structure D is a structure
satisfying the following:

o g is a substructure of D,
o All edges incident to a are {a,a’) with label
G(a®) and (a,a’) with label R(a™)),

%Meaning “ready for Principle 1I”.

o All edges labeled with a¢ and o' are be-
tween a and o/,

o All edges incident to b are (b',b) with label
G(w) and (V',b) with label R(w)),

o All edges labeled with w are between b' and
b,

o For each v € D\ {a,b} there is a directed
path in D, of length at most 4 from a' to v
and there is a directed path in D, of length at
most 4 from v to b'.

Lemma 3 (Principle II). Suppose that, after Fugi-
tive’s move, the current structure D is a P2-ready
structure. Then neither a green edge with label from
(") nor a red edge with label from (o) may
appear in D.

Proof. First suppose that there is such a green edge
e = (z,y) with label (") in structure . Let us
denote by P a path from a’ to b’ through e. Observe
that if some of the edges of P are red then from
Observation IX.1 in at most 8 moves Crocodile can
force Fugitive to create path P’ which goes through
the same vertices as P (and also through e) but
consists only of green edges. Because of this path
there is a request generated by Q. g1y Detween a and
b so in the next step Crocodile can force Fugitive to
create a red path connecting a and b labelled with
a word from thly, which results in Crocodile’s
victory.

In the second case assume there is a red edge
e = (z,y) with label (%) in structure . Let us
denote by P a path from a’ to b’ through e. Observe
that if some of the edges of P are green then from
Observation IX.1 in at most 8 moves Crocodile
can force Fugitive to create path P’ which goes
through the same vertices as P but consists only
of red edges. Because of this path P’ there is a red
path connecting a and b labelled with a word from

12Lgly' 0
Lemma 4 (Principle III). Fugitive must not allow
any path labelled with a word from R(Qpqq) U
G(Qpad) to occur in the current structure D be-
tween vertices a and b.

Proof. First consider a case where D |
R(Qpaa)(a,b). Then Fugitive has already lost as
Qbaa C Qo-
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The second case is when D | G(Qpqa)(a,b)
and D [~ R(Qpad)(a,b). Then Crocodile can pick
request {(a,b, Qi) (for some i) for Fugitive to
satisfy. In both cases after at most one move
Fugitive loses. O

X. THE PATHS P,, AND 5P,

Definition 1. (See’ Figure 2 and Figure 3 ) P,,,
for m € Ny, is a directed graph (V, E) where
V = {a,d,V,b} U{v, : i € [0,2m]} and the
edges E are labelled with symbols from ¥\ X or
with symbols of the form (py,), where — like before
-pe{A,B}, qe {H,V} and r € {W,C}. Each
label has to also be either red or green. Notice
that there is no s € S here: the labels we now use
are sets of symbols from ¥ like in Notation VI.1:
we watch the play in Crocodile’s shade filtering
glasses.

The edges of P,,are as follows:

o Vertex a' is a successor of a and vertex b is
a successor of b'. For each i € [0,2m] the
successors of v; are vy (if it exists) and b
and the predecessors of v; are v;_1 (if it exists)
and a'. From each node there are two edges to
each of its successors, one red and one green,
and there are no other edges.

e Each Cold edge (labelled with a symbol in
(e9)) is green.

e Each Warm edge (labelled with a symbol in
(")) is red.

o Each edge (va;,vaiq1) is from (Ap).

o Each edge (voiy1,v2i42) is from (By,).

o Each edge (da',v;) is labelled by either € or
zW,

o Each edge (v;,V') is labelled by either y© or
y".

o Edges (a,a’) with label G(a©) and (a,a’)
with label R(a"V) are in E.

o Edges (V',b) with albel G(w) and (V/,b) R(w)

are in E.

Definition 2. P, for m € N, is P,, with two
additional edges:

o (Vo V') € E with label G($°),
o (Vo V') € E with label R($™)).

One may notice that Dy is a substructure of both
P,, and *P, , and that:

TPlease use a color printer if you can.

C C
:Y{ ]y_:

W', N S w
AW el BV

Vo V2

Figure 2. P;.

Vo V2 Vg Ve

Figure 3. $IP’3.

Exercise X.3. The only requests generated by

Qi]imd in 8P, are those generated by Qégod and

good*

Exercise X.4. Each ;. and each $IE",C is a P2-ready
structure.

XI. STAGE I

Recall that till the end of Section XIV we watch,
and analyse, Fugitive’s and Crocodile’s play in
shade filtering glasses. And we (of course) assume
that Fugitive obeys Principle I, II and III.

Definition 1 (Crocodile’s strategy). Sequence of
languages S = (l1,1a,...,1,), for some n € N,
defines a strategy for Crocodile as follows:

o If S = () H S then Crocodile demands
Fugitive to satisfy requests generated by | one
by one (in any order) until (it can take in-
finitely many steps) there are no more requests
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generated by 1 in the current structure. Then®
Crocodile proceeds with strategy S’.

Now we define a set of strategies for Crocodile.
All languages that will appear in these strategies are
from Q04 so instead of writing Q¢ ,,, we will just
write 7. Let:

. Scolor = (3747576:77879)a
. Scycle = (15714) _H'Scolm' %(127 13) +
+ Scolora

o Sstart = (1, 2) + Scycle~

Recall that Dy is the Fugitive’s initial structure
(consisting of green edges only), as demanded by
Principle 1.

Lemma 2. Crocodile’s strategy (1,2) applied to
the current structure Dy forces Fugitive to add

R(a")[a,a’'] and R(w)[b', b).

Proof. Consider these languages one by one:

1 = w: This language generates only one request
(V',0,Qo0q) (one because edge (b',b) with label
G(w) is the only one in Dy labelled with w), which
has to be satisfied with R(w)[b’,b] as language
Qéood consists of only one word.

2 = a® + o' There is a green edge labelled
with o€ in Dy and thus this language generates
a request (a,da’, 5210_>od> (and no other requests).
This request can be satisfied by Fugitive either
by adding the edge R(a®)[a,a’] or by adding
the edge R(a")[a,a’]. Suppose that Fugitive sat-
isfies this request with R(a)[a,a’]. Notice that
Crocodile can now require Fugitive to satisfy re-
quests Regs = { (a’,v0, Q30 4), (v2,0, Q500 1),
<UO,U1,Q23¢1>, (Ul,vg,ngod>} which will force
the Fugitive to build a red path from a’ to &’. Each
of these request has to be satisfied with a red edge
with some label em warm (with the upper index
W) or cold (with C).

Consider what happens if one of these requests is
satisfied with a warm letter. Then we have that D |=
R(Q},41,)(a,b) and Fugitive loses. It means that
each request from Regs must be satisfied with a red
edge labelled with a cold letter. But then notice that

D | R(Qstart)(a,b) and Fugitive also loses. [

8In order for this "then" to make sense we need the total
number of moves of the game to be w? rather than w.

A careful Reader could ask here: “Why did we
need to work so hard to prove that the newly added
red edge must be warm. Don’t we have Principle 11
which says that red edges must always be warm and
green must be cold?”. But we cannot use Principle
IT here — the structure is not P2-ready yet. Read the
proof of Principle II again to notice that this red
a" between a and o’ is crucial there. And this is
actually, what Stage I is all about: it is here where
Crocodile forces Fugitive to construct a structure
which is P2-ready. From now on all the current
structures will be P2-ready and Fugitive will indeed
be a slave of Principle II.

uuu!

The following Lemma explains the role of S¢.0r
and is a first cousin of Observation IX.1:

Lemma 3 (Scolor). Strategy Scoior applied to a
P2-ready D forces Fugitive to create a P2-ready
D' such that:

o Sets of vertices of D and I are equal.

o There are no requests generated by Q;;ogd
in IV, which means that each edge has its
counterpart (incident to the same vertices) of
the opposite color and temperature.

Proof. The proof is an easy consequence of Princi-
ple II and the fact that all words from Q;gogd have
length one (which means that when satisfying the
requests Fugitive only creates new edges, but no
new vertices are added) and that these languages

contain all symbols from X. O

Lemma 4. Strategy Ssiart applied to Dy forces
Fugitive to build P;.

Proof. Consider languages from Ss¢,.+ one by one:

e 1 = w: By Lemma 2 this language forces
Fugitive to add R(w)[V’, b].

¢ 2 =%+ o": By Lemma 2 this language
forces the Fugitive to add R(a")[a, a’].

e 15 =y"+$9+(A%)(B$)y“: This language
generates only one request (vg,b’,Qy07%)
since neither 4" nor $¢ occurs in the current
structure. This request has to be satisfied with
R(y"™)[vo,b'] by Principle Il. We can use
Principle II since after strategy (1,2) was
applied the structure is P2-ready.

o 14 a4+ ¢ + 29(AG)(BY): This
language generates only two requests
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(a',v9,Qut0) and (a’,vo, Qid%). The first
request has to be satisfied with R(z"")[a’, vo]
and the second with R(xz")[a’,v5], both due

to Principle II.

Now Crocodile uses strategy Scoor to add miss-
ing edges of opposite colors (and, by Principle II,
of opposite temperatures).

e 12 =2 ((Af) + (Bf) + (A7) + (BY))+

¢ 4+ 2W: This language generates only
one request: (a’,v1,Q o). It is because

there are no requests generated by nei-
ther 2 nor z" in Q}2, by Lemma 3.
There are also no other requests generated
by o€ ((AG) + (BG) + (AY) + (BY)) in
Qiopq as the only path labeled with a
word from this language is a’ — vg —
vi. (a/,v1,Qp2,) has to be satisfied with
R(z")[a’,v1] by Principle II.
. 13= ((AG) + (Bf) + (AY) + (BY)) v« +
y® + y": This language generates one re-
quest (v, b/, Q13). Tt has to be satisfied with
R(y"™)[v1,b'] by Principle II.
Finally Crocodile uses strategy Scoior to add
two missing edges (a’,v;) with label G(z¢) and
{v1,b') with label G(y©) to build P;.

O

XII. STAGE I1

Now we imagine that P; has already been cre-
ated and we proceed with the analysis to the later
stage of the Escape game where either P, ; or
$IP’k for some k£ < m will be created.

Let us define {S;} inductively for £ € Ny in
the following fashion:

. Sl = Sstarh
o S =85,_1H Scycle for k > 1,

Lemma 1. For all m € Ny strategy S, applied
to Dy forces Fugitive to build, depending on his
choice, either P, | or $]P’k for some k < m.

Proof. Notice that by, Lemma 4, this is already
proven for m = 1. Now assume that Crocodile,
using strategy S,,—_1, forced Fugitive to build P,,
or $Pk, for some k < m — 1. If Fugitive built $Pk
already as the result of Crocodile’s strategy Sy,—1
then we are done, and notice that the last S¢yee
will not change the current structure any more —

this is because, due to Exercise ??? there are no
requests from languages Q;;ogd and Qﬁ;dw in the
current structure at this point.

So we only need to consider the case where PP,
was built. Now Crocodile uses strategy Scycie t0
force Fugitive to build P, ., or Sp,,. Consider
languages from S.,.;. one by one:

e 15 = yW + 89 + (AG)(BY)yC. The
only request generated by this language is

(vam, V', Qp3%5), resulting from the red edge
labelled with yW connecting va,,, and b’.
This is since there is no $¢ anywhere in the
current structure, and since for each £ < m
there are already both a red edge labelled with
y" from vy, to b’ and a green paths labelled
with (AG)(B$)y® between these vertices.
This only request can be possibly satisfied in
two different ways (it follows from Principle
ID): either by G((A)(B$)y)[vam, V'] or by
G (89 )[v2m, b']. The case when this request is
satisfied with G($%)[va.m, b'] will be consid-
ered in the last paragraph of the proof. So
now we assume that this request is satisfied
with G((A$)(B$)y ) [vam, b']. Let us name
the two new vertices as vo,,4+1 and vo,+2.

e 14 = 2W + 2¢ + 2¢(AG)(BY): the
only request generated by this language is
(a’ 7v2m+2,Q%jd> resulting from the (par-
tially) newly created green path from a’ to
Vom+2, Vid Van, and von,y1, labelled with
2 (AG)(BE)yC.

This request has to be satisfied with
R(z")[a’, v2m 2] due to Principle II.

Now Crocodile uses strategy Scoor to add miss-
ing edges of opposite colors.

. 12= 2 ((AG) + (BG) + (AQ) + (BY))+
2¢+2": This language generates one request:
(a',vami1,Qponn)- It has to be satisfied with
R(z")[a’,2m + 1] by Principle II.

« 13=((Af) + (Bf) + (A}) + (BY)) y“ +
y© +y" : This language generates one request
(vami1, b, Qp3on). It has to be satisfied with
R(y"™)[2m + 1,b'] by Principle II.

Now Crocodile uses strategy Scoior (as Seycie =
(15: 14) +H- Scolo’r‘ +H (127 13) +H- Scolor)- We apply
Lemma 3 to conclude that Fugitive is forced to
build P, ., as what is left to create P, is
to only add some edges of opposite colors and
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temperatures.

Notice that during play, after application of each
language in Crocodile’s strategy, each of the con-
structed structures is P2-ready, as distances from
a’ and to b’ are smaller than 4.

Now we finally consider the case where Fugi-
tive satisfied the request generated by language
15 with G($9)[vm,b']. Notice that the only re-
quest generated by the remaining languages from
Seyete 181 (Vam, b, ng_;d), which will be satisfied
by R($")[vam, '] and the resulting structure will
be isomorphic to P, . This ends the proof of
Lemma 1. O

XIII. THE GRIDS G,, AND PARTIAL GRIDS L,

Definition 1. G, for m € N is a directed graph
(V, E) where:

V ={a,d,V,b} U{v,; : i,j € [0,m]} and the
edges E are labelled (as in P,,) with ¥\ Xy or
one of the symbols of the form (py), which means
that the shade-filtering glasses are still on.

The edges of G,,, are as follows:

o Vertex a' is a successor of a, b is a successor of
b'. All v, ; are successors of o' and the suc-
cessors of each v;; are v j,v; j+1 (When
they exist) and b'. From each node there are
two edges to each of its successors, one red
and one green, and there are no other edges.

e Each cold edge, labelled with a symbol in
(%), is green.

e Each warm edge, labelled with a symbol in
(o), is red.

o Each edge (v;j,vit1,;) is horizontal — its
label is from (@ ).

o Each edge (v; j,v; j+1) is vertical — its label
is from (e,).

o The label of each edge leaving v; j, with i +
j even, is from (A), the label of each edge
leaving v; ;, with i + j odd, is from (B),

o Each edge (a',v;) is labeled by either € or
2",

o Each edge (v;,b') is labeled by either y© or
y",

o Edges {(a,a’) with label G(a®) and (a,a’)
with label R(a™) are in E,

o Edges (I/,b) with label G(w) and (I, b) with
label R(w) are in E.

Definition 2. L:, = (V',E') for m € N4,k €
Ny, k < mis a subgraph of G,, = (V, E) induced
by the set of vertices V! C V,V' = {a,d’,V',b} U
{viji,j €[0,mlyi—j<kjj—i<k}

Definition 3. G, for m € N, is G,, with two
edges added:

o (Vm.m,b') with label G($°)
o (Vm.m,b') with label R($")

Definition 4. L% for m € N, k € N, U{0},k <
m is L, with two edges added:

o (Um.m,b') with label G($°)
o (Vm.m,b') with label R($")

Exercise XIIL.5. For all m:

o L7 is equal to G,,,

o SL™ is equal to 5G,,.

Exercise XIIL.6. For all m there are no requests
generated by languages from Qgooq 0 Qugry in

5G, .

XIV. STAGE III

Now we imagine that either P, or $]P’k for
some k < m was created as the current position in
a play of the game of Escape and we proceed with
the analysis to the later stage of the play, where
either G, or $Gk will be created.

Lemma 1. For any m € Ny Crocodile can force
Fugitive to build a structure isomorphic, depending
on Fugitive’s choice, to either G, or to $Gk Sfor
some k < m.

Notice that by Exercise XIII.5, in order to prove
Lemma 1 it is enough to prove that for any m € N
Crocodile can force the Fugitive to build a structure
isomorphic to either Lxﬁ or to $]L’1§ for some k <
m.

As we said, we assume that Crocodile already
forced Fugitive to build a structure isomorphic to
either P, or to $]P’,C for some k£ < m. Rename
each v; in this P, (or $]P’k) as v; ;. If the structure
which was built is P,,,,; we will show a strategy
leading to ]in} and when $]P’k, was built, we will

show a strategy leading to $]L§.

Now we define a sequence of strategies Szkayer»
which, similarly to strategies for building °P,,
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o w

a“—a>a b b

Figure 4. G, (left). Smaller picture in the top-right corner explains how different line styles on the main picture map to o0

N
b b

w

Figure 5. $]Lg.

Figure 6. ]Lé.

consist only of languages from Qg,,q4, so instead
of writing @y ,,, we will just write ¢. Let: Lemma 2. For all k € N strategy Sllayer applied

o 5944 = (11) + Seotor + (12, 13) +H Seotors to .the$cu1rrent structure $Pk forces the Fugitive to
o SCVEN = (10) +H Scolor +H (127 13) + SCOlOT7 build Lk

.
Proof. Assume the current structure is $P,. Con-

. Hvk iftk=0 sider languages from Sllayer:

Shyer =S Skl 4594 if k odd

layer layer TH5° 1L o e 11 = (AG)(BY) + (AY)(BY): This lan-
Slayer H S, otherwise guage generates one request of the form

(Vi, Vig2, Qpoon) for every i € [0,2k — 2]},
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Each of these requests results from a green
path labeled with G((A%)(B$)) connecting
Vi and Vit+2-

Notice that there are no requests generated by

Qgosq- It is because neither (A7) nor (BJ)

occurs in $IP’k.

All generated requests have to be satisfied with
R((AY)(BY)) by Principle II. Notice that
when satisfying each request a new vertex is
created.

Secotor = (3,4,5,6,7,8,9): This sequence of
languages adds missing green edges G(A$;)
and G(BY)) to the edges R(AY) and R(BY")
created by language 11.

12 = 2% ((Af) + (Bf) + (A7) + (BY))+
2% 4+ 2"': This language generates requests of
the form {(a’,t,Q;2.;) for all new vertices
t created by language 11. Each of these
requests results from a green path labeled
with o€ ((AG) + (BY) + (A) + (BF))
connecting a’ and t, for some vertex ¢ created
by language 11.

Notice that there are no other requests gener-
ated since by Lemma 3 after applying strategy
Seolor €ach edge labeled with G(z¢) has its
counterpart labeled with R(z").

All generated requests have to be satisfied with
R(z") by Principle II.

13 = ((AG) + (BG) + (A) + (BY)) yC +
y© + y"': This language generates requests
of the form {(t,b’,Q;57) for all new vertices
t created by language 11. Each of these
requests results from a green path labeled
with  ((AG)+ (Bf) + (A]) + (BY)) v
connecting ¢ and ', for some vertex ¢ created
by language 11.

Notice that there are no other requests gener-
ated since by Lemma 3 after applying strategy
Seolor ach edge labeled with G(y©) has its
counterpart labeled with R(y").

All these requests have to be satisfied with
R(y"™) by Principle II.

Secolor = (3,4,5,6,7,8,9): This sequence of
languages adds missing green edges G(z¢)
and G(y®) to edges added by languages 12
and 13.

O

Lemma 3. For all k,m € N, k < m strategy 5°%

(for k+1 odd) and S°’°" (for k+ 1 even) applied
to SILF forces the Fugitive to build SLE}",

Proof. Assume the Escape game starts from L%,

for odd k < m. The proof for the case where k is
even is analogous. Consider languages from S¢V¢":

« 10 = (BY)(AY) + (BY)(AY): generates
exactly
{(vig,visr 1, Quooidli — 3 = kyij €
[0,m — 1J}U {(vij, vis1,j41, Qgosa) i — 5 =
k,i,7 € [0,m — 1]}. All requests in the
first group result from paths labeled with
G((BY)(A%)) and all requests in the sec-
ond group result from paths labeled with
R((BI)(AY)).
All requests in the first group have to be
satisfied with R((B%)(AW)) (name the new
vertices v;+1,;) and all requests in the second
group have to be satisfied with G((B$)(A))
(name the new vertices v; ;+1). All happens by
Principle II.

o Scolor: adds missing edges of opposite colors
incident to newly created vertices by languahe

11.

. 12 =29 ((Af) + (Bf) + (A7) + (BY))+
x¢ + W generates exactly
{(a'vi,Quecdli — 3 = k + 14,5 €
[0,ml} U {{d,vi, Quood)li — i =

k + 1,4,5 € [0,m]}. Each of these
requests results from a green path labeled
with o€ ((AG) + (BG) + (AF) + (BY))
connecting a’ and t, for some vertex ¢ created
by language 10.
Notice that there are no other requests gener-
ated since by Lemma 3 after applying strategy
Seolor €ach edge labeled with G(z) has its
counterpart labeled with R(z")
All generated requests have to be satisfied with
R(z") by Principle II.

« 13=((Af) + (Bf) + (AD) + (BY)) y+

yc + yW: generates exactly
({00, V. Quooa)li — J = K+ Lij €
[07 m]} U {<vi1ja b, go:d> ‘.7 - 1 =

k + 1,i,5 € [0,m]|}. Each of these
requests results from a green path labeled
with  ((AG) + (Bf) + (A]) + (BY)) v
connecting ¢ and V', for some vertex t created
by language 10.

Notice that there are no other requests gener-
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ated since by Lemma 3 after applying strategy
Seolor €ach edge labeled with G(y©) has its
counterpart labeled with R(y"")
All generated requests have to be satisfied with
R(y") by Principle II.

o Seolor: adds edges with labels G(z¢) and
G(y©) to edges added by languages 12 and
13.

O

Lemma 4. For all k,m € N,k < m strategy
Sllaye,. applied to P, forces the Fugitive to build
Li, strategy S°U (for k + 1 odd) and S°°" (for
k + 1 even) applied to 1K, forces the Fugitive to
build 1LF+1,

Proof. Similar analysis to that in Lemma 2 and
Lemma 3 can be applied here. Structures P,, and
$p,, differ by only two edges labeled with R($")
and G($°). Letters $¢ and $" occur only in
languages QZ;}fd and this languages didn’t generate
any request in the process of building SL5+! from
Lk in the proof of Lemma 3 and building L.
from 5P, in the proof of Lemma 2. O

Lemma 5. For all m € N strategy S[Zyer forces
the Fugitive to build L7 from P, and L from
P,
Proof. That is an easy consequence of Lem-
mas 2,3,4 and the definition of S/ O

layer:

Observation XIV.6. By Exercise XIII.5 Lemma 5
proves Lemma 1.

XV. AND NOW WE FINALLY SEE THE SHADES
AGAIN

Now we are ready to finish the proof of Lemma
7.

First assume the original instance of Our Grid
Tilling Problem has no proper shading.

The following is straightforward from Konig’s
Lemma:

Lemma 1. If an instance I of OGTP has no proper
shading then there exist natural m such that for
any k > m a square grid of size k has no shading

9Please use a color printer if you can.

that satisfies conditions (al), (a2), (b1) and (b3) of
proper shading.

Let m be value from Lemma 1. By Lemma 1
the Crocodile can force the Fugitive to build a
structure isomorphic to either G,,,; or $(Gk, for
some k < m. Now suppose the play ended, in
some final position H isomorphic to one of these
structures. We take off our glasses, and not only we
still see this H, but now we also see the shades, with
each edge (apart from edges labeled with o, w,z
and y) having one of the shades from S. Now
concentrate on the red edges labeled with (™)
of H. They form a grid, with each vertical edge
labeled with V', each horizontal edge labeled with
H, and with each edge labeled with a shade from
S.

Now we consider two cases:

o If G,,,; was built then clearly condition (b3)
of Definition 5 is unsatisfied. But this implies
that a path labeled with a word from one of the
languages QQpqq occurs in H between a and b,
which is in breach with Principle III because
of language Q},,-

o If $Gk for k < m was built then clearly condi-
tion (b2) or (b3) of Definition 5 is unsatisfied.
This is because we assumed that there is no
proper shading. But this implies that a path
labeled with a word from one of the languages
Qpaq occurs in H between a and b, which is in
breach with Principle III because of language

Qllmd'
This ends the proof of Lemma 7 (ii).

For the proof of Lemma 7 (i) assume the original
instance (S, F) of Our Grid Tiling Problem has a
proper shading— a labeled grid of side length m.
Call this grid G.

Recall that %G, satisfies all regular constraints
from Q;]—;od and from Qg_;ly (Exercise XIIL.6).
Now copy the shades of the edges of G to the
respective edges of G, . Call this new structure
($Gm with shades added) M. It is easy to see that

M constitutes a counterexample, as in Lemma 1.
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