
.

Edit Distance between Unrooted Trees
in Cubic Time

Bartłomiej Dudek

Praca magisterska
napisana pod kierunkiem
dr. Pawła Gawrychowskiego

Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

Wrocław 2017

.

.

Streszczenie

Odległość edycyjna pomiędzy drzewami jest naturalnym uogólnieniem klasycznego problemu
odległości edycyjnej pomiędzy słowami. Znajduje ona zastosowanie przede wszystkim w biologii
obliczeniowej, a dokładniej w porównywaniu struktur RNA, a także w innych dziedzinach, na
przykład w przetwarzaniu obrazu. Efektywne obliczanie odległości edycyjnej pomiędzy słowami
jest prostym ćwiczeniem z algorytmów, ale dla drzew staje się to dużo trudniejsze. Demaine et al.
[ACM Trans. on Algorithms, 6(1), 2009] skonstruowali algorytm znajdujący odległość edycyjną
pomiędzy ukorzenionymi drzewami na n wierzchołkach w czasie Opn3q. Uogólnienie ich podej-
ścia dla drzew nieukorzenionych wydaje się jednak dość problematyczne, i najlepszym znanym
rozwiązaniem dla tej wersji pozostaje dużo wcześniejszy algorytm Kleina [ESA 1998] o wyższej
złożoności Opn3 log nq. Jako że drzewa nieukorzenione wydają się dużo bardziej skomplikowane
niż ukorzenione, można by podejrzewać, że złożoność problemu dla tych pierwszych po prostu
musi być większa. W tej pracy pokazujemy, że wcale tak nie jest, bowiem odległość edycyjna
pomiędzy drzewami nieukorzenionymi na n wierzchołkach może być wyliczona w czasie Opn3q.
Bringmann et al. [arXiv:1703.08940, 2017] pokazali, że istnienie algorytmu o złożoności Opn3´εq
dla drzew ukorzenionych nie jest możliwe zakładając jedną z popularnych hipotez używanych do
pokazywania tego typu stwierdzeń. Ich wynik łatwo przenieść na drzewa nieukorzenione, więc
istnienie algorytmu istotnie szybszego niż Opn3q jest mało prawdopodobne.

Uzyskanie złożoności Opn3q wymaga wielu nowych pomysłów w porównaniu do poprzedniego
algorytmu działającego w takim czasie dla drzew ukorzenionych. Podobnie jak Demaine et
al., zaczynamy od podziału obu drzew na ciężkie i lekkie ścieżki, jednak przedstawiamy ich
podejście w inny, łatwiejszy do uogólnienia sposób. Początkowo, jedno z drzew dzielimy na
górną i dolną część i każdą z nich przetwarzamy w inny sposób, przy czym dla każdej ścieżki
w górnej części stosujemy nową technikę dziel i zwyciężaj. Uważna analiza tych pomysłów już
wystarcza do rozwiązania o złożoności Opn3 log log nq. Aby je usprawnić, uzależniamy podział
drzewa na części od rozważanej ciężkiej ścieżki w drugim z drzew, a także zmieniamy podejście
dziel i zwyciężaj, by brało pod uwagę rozmiary poddrzew przyczepionych do rozważanej ścieżki,
a nie tylko jej długość. Na koniec trzeba dokładnie przeanalizować sumaryczny czas działania
całego algorytmu.

Pokazujemy także jak zmodyfikować nasz algorytm tak, aby działał w czasie Opnm2p1 `
log n

mqq dla dwóch drzew nieukorzenionych o rozmiarach m i n. Demaine et el. udowodnili, że
taka złożoność jest optymalna dla drzew ukorzenionych jeśli ograniczymy się do dość ogólnej
klasy algorytmów dekompozycji. Dodatkowo pokazujemy, że cały algorytm można zaimplemen-
tować w pamięci Opnmq.

.

.

Abstract

Edit distance between trees is a natural generalization of the classical edit distance between
strings. Its prime applications include computational biology, more specifically comparing RNA
secondary structures, and (less obviously) computer vision. While computing the edit distance
between strings is a basic undergraduate exercise in algorithms, designing an efficient algorithm
for trees is more challenging. After a series of improvements, Demaine et al. [ACM Trans. on
Algorithms, 6(1), 2009] showed how to compute the edit distance between rooted trees on n nodes
in Opn3q time. However, generalizing their method to unrooted trees seems quite problematic,
for which the most efficient known solution remains to be the previous Opn3 log nq time algorithm
by Klein [ESA 1998]. Due to the lack of progress on improving this complexity, it might appear
that unrooted trees are simply more difficult than rooted trees. We show that this is, in fact,
not the case, and edit distance between unrooted trees on n nodes can be computed in Opn3q
time. A significantly faster solution is unlikely to exist, as Bringmann et al. [arXiv:1703.08940,
2017] proved that the complexity of computing the edit distance between rooted trees cannot be
decreased to Opn3´εq unless some popular conjecture fails, and the lower bound easily extends
to unrooted trees.

Achieving Opn3q time for unrooted trees requires a number of new ideas compared to the
previous algorithm with the same complexity for rooted trees. The starting point is heavy
path decomposition of both trees as used by Demaine et al., but we provide a slightly different
formulation of their method, which seems more convenient for further improvements. Then, we
additionally separate one of the trees in a bottom and top part, which are processed differently.
For the top part, we develop a new divide and conquer procedure that is applied on every path
separately. This is already enough to achieve Opn3 log lognq complexity. To further improve on
that, we make the partition into bottom and top part dependent on the currently considered
heavy path of the other tree, and additionally change the divide and conquer procedure as to
be more sensitive to the sizes of the subtrees attached to the heavy path instead of the length
of the path. This needs to be then carefully analyzed over all the heavy paths.

We also show that for two unrooted trees of size m and n, where m ď n, our algorithm
can be modified to run in Opnm2p1 ` log n

mqq. This, again, matches the complexity achieved
by Demaine et al. for rooted trees, who also showed that this is optimal if we restrict ourselves
to the so-called decomposition algorithms. Additionally, we show that our algorithm can be
implemented in only Opnmq space.

Contents

1 Introduction 2

2 Preliminaries 4
2.1 Naming convention . 4
2.2 Dynamic programming . 5

3 Edit distance between rooted trees 6
3.1 Klein’s Opn3 log nq algorithm . 6
3.2 Intermediate Opn3 log lognq algorithm . 8
3.3 Demaine et al.’s Opn3q algorithm . 9
3.4 Bottom-up perspective . 11

4 Back to unrooted case 12
4.1 Slight modifications . 13

5 Opn3 log lognq algorithm for unrooted case 16
5.1 Single heavy path T2 . 17
5.2 Arbitrary tree T2 . 21
5.3 Final analysis . 22
5.4 Encoding . 22

6 Optimal Opn3q algorithm for unrooted case 23
6.1 Full binary tree and single heavy path . 24
6.2 Arbitrary tree and single heavy path . 27
6.3 Both trees arbitrary . 29

7 Implementation details 32
7.1 Preprocessing . 33
7.2 Computations in limited space . 34
7.3 Total memory on recursion stack . 37

8 Lower bound 38
8.1 Unrooted case is also hard . 38

1

1 Introduction

Computing the edit distance between two strings [27] is probably the most well-known example
of dynamic programming. Even though it has many real-life applications, in some cases we want
to operate on more complicated structures than strings. A natural generalization is computing
the edit distance between two trees introduced by Tai [26].

The edit distance between ordered trees is defined as the minimum total cost of a sequence of
elementary operations that transform one tree into the other. The exact definition depends on
whether the trees are rooted or unrooted. For unrooted trees, which are the focus of this paper,
the trees are edge-labeled, and we have three elementary operations: contraction, uncontraction
and relabeling of an edge. We think that the trees are embedded in the plane, i.e., there is a
cyclic order on the neighbors of every node that is preserved by the contraction/uncontraction.
See Figure 1. The cost of an operation depends on the label(s) of the edge(s): cdelpτq, cinspτq,
cmatchpτ1, τ2q, respectively. We assume that every operation has the same cost as its reverse
counterpart: cdelpτq “ cinspτq, cmatchpτ1, τ2q “ cmatchpτ2, τ1q, and each edge participates in at
most one elementary operation. If the trees are rooted, it is more natural to consider node-
labeled trees. The operations are then defined similarly, except that the cost now depends on
the label of the participating node. While for rooted trees working with node- or edge-labeled
trees is just a matter of preference, for unrooted trees, it is not so clear what does it mean to
contract or uncontract a node. Therefore, we will work with edge-labeled trees only.

To see that the above definition is a natural generalization of the standard edit distance
between strings, convert a string of length n into a rooted path on n` 1 nodes, where the label
of the edge connecting the i-th and pi ` 1q-th node is the same as the i-th character of the
original string.

Computing the edit distance between trees is used as a measure of similarity between trees
in multiple contexts. The most obvious, given that some biological structures resemble trees, is
computational biology [23]. Others include comparing XML data [9, 10, 14], programming lan-
guages [15]. Others, less obvious, include computer vision [4,17,19,22], character recognition [21],
automatic grading [2], and answer extraction [28]. See also the survey by Bille [6].

Tai [26] introduced the edit distance between rooted node-labeled trees on n nodes and
designed an Opn6q time algorithm based on dynamic programming. Shasha and Zhang [24]
presented a faster Opn4q time algorithm for the same problem. Then, Klein [18] considered the
more general problem of computing the edit distance between unrooted edge-labeled trees and
further improved the complexity to Opn3 log nq. The improved algorithm and the solution given
by Shasha and Zhang are both based on a recursive formula, which reduces computing the edit
distance between two trees to computing the edit distance between two smaller trees. This needs
to be done carefully as to restrict the number of different trees that will appear during the whole
process, and the gist of Klein’s improvement is a nice application of the heavy path decomposition

a

c

d

e

x

b

a

c

d

e

b

contract edge x

uncontract edge x

Figure 1: Contraction and uncontraction of the edge with label x costs cdelpxq “ cinspxq.

2

to do so. This high-level idea of using the recursive formula can be formalized using the notion
of decomposition strategy algorithms as done by Dulucq and Touzet [13]. Finally, Demaine et
al. [12] further improved the complexity for rooted node-labeled trees to Opn3q and showed that
this is optimal among all decomposition strategies. Their idea, again at a high level, was to
apply the heavy path decomposition to both trees. This requires some care, as switching from
being guided by the heavy path decomposition of the first tree to the second tree cannot be
done too often. However, they were not able to generalize their algorithm to unrooted trees.

Although Demaine et al. [12] showed that their algorithm is optimal among all decomposition
strategies, it is not clear that any algorithm for computing the edit distance must be based on
such a strategy. Nevertheless, there has been no progress on beating the best known Opn3q time
worst-case bound for exact tree edit distance. Pawlik and Augsten [20] present an experimental
comparison of the known algorithms. Aratsu et al. [3], Akutsu et al. [1], and Ivkin [16] design
approximation algorithms. Only very recently a convincing explanation for the lack of progress
on improving this worst-case complexity has been found by Bringmann et al. [8], who showed that
significantly improving the cubic time complexity for rooted node-labeled trees is not possible
under some popular conjectures.

While computing the edit distance between rooted trees seems well understood by now, the
best solution for unrooted trees is still Opn3 log nq. While, by a simple reduction (see Section 8),
unrooted trees are at least as difficult as rooted trees, we do not know if they are strictly more
difficult. However, a straightforward modification of the algorithm by Demaine et al. [12] to
unrooted trees results in a much higher time complexity. Even the seemingly easier instance,
in which one of the trees is a full binary tree, and the other is a caterpillar already cannot be
solved by Demaine et al.’s approach efficiently. See Figure 2 for illustration of this case.

T1 : T2 :

Figure 2: Full binary tree and a caterpillar.

Our contribution. We present a new algorithm for computing the edit distance between
unrooted trees which runs in Opn3q time and Opn2q space. For the case of trees of possibly
different sizes n and m where m ď n, it runs in Opnm2p1 ` log n

mqq time and Opnmq space. It
matches the complexity of Demaine et al.’s algorithm for the rooted case and improves Klein’s
algorithm for the unrooted case. As all the rooted lower bounds also apply to the unrooted case,
our algorithm is optimal among all decomposition algorithms, and it is unlikely that there exists
a significantly faster approach, unless some popular conjecture fails. Additionally, we provide a
new description and analysis of the Demaine et al.’s algorithm.

Our approach for the unrooted case is based on both Klein’s and Demaine et al.’s algorithms
but requires some additional techniques. We start with heavy path decomposition of one of the
trees, and for each of its heavy paths, we process the other tree differently. It reminisces the
approach of [7, 11], in which some nodes are more important than the others. On top of that,
we use divide and conquer approach with an additional telescoping trick.

Roadmap. In Section 2 we introduce the recursive formula and the naming convention we use.
In Section 3 we present some of the known algorithms for the rooted case. Next, in Section 4 we

3

return to the unrooted case, introduce new notation and transform both the input trees adding
some auxiliary edges.

Then, in Section 5 we present our new Opn3 log log nq algorithm for the unrooted case which
already improves the Klein’s algorithm and is essential for understanding our main Opn3q algo-
rithm described in Section 6. Both of the new algorithms are first described for the case when
one of the trees is a single heavy path and then generalized. Later, in Section 7 we focus on
implementation details, how to preprocess the trees and limit the space to Opnmq. Finally, in
Section 8 we apply all the known lower bounds for the rooted case to the unrooted one.

2 Preliminaries

We are given two unrooted trees T1, T2 with every edge labeled by an element of Σ and a cyclic
order on the neighbors of every node. For every label α P Σ, we know the cost cdelpαq “ cinspαq
of contracting/uncontracting an edge labeled with α. For every α, β P Σ, we know the cost
cmatchpα, βq “ cmatchpβ, αq of changing the label of an edge from α to β. All costs are non-
negative and each edge can participate in at most one operation. Edit distance between T1 and
T2 is defined as the minimum total cost of a sequence of elementary operations transforming T1
to T2, where an elementary operation is contracting/uncontracting an edge or changing a label
of an edge.

There are two versions of the tree edit distance problem (TED). One is the rooted case, in
which both trees are rooted, and every node has its children ordered left-to-right. The second
is unrooted, in which each node has its neighbors cyclically ordered, and we can think that the
trees are embedded in the plane, as they are unrooted.

Note that the edit distance between unrooted trees is a minimum over edit distance between
all possible rootings of T1 and T2, where a rooting is uniquely determined by choice of the root
of the tree and the leftmost edge from the root. Thus there are 2pn´ 1q possible rootings of an
unrooted tree with n nodes. Since costs of contraction and uncontraction of an edge are equal,
we can only consider the case in which only contractions and relabelings are allowed. Then we
transform both T1 and T2 to a common tree, and from an optimal sequence of operations in this
problem, we can easily obtain an optimal sequence of operations transforming T1 into T2 and
vice versa.

We first suppose, that both trees are of equal size n “ |T1| “ |T2|, but in the end, we will
also address the problem, when one of the trees is significantly larger than the other. In the
beginning, we focus only on the case of rooted trees which is essential for understanding our
algorithm for the unrooted case.

There is also another version of TED problem, in which labels are on nodes instead of edges.
In the rooted case, the operation of deletion of a (non-root) node is defined as merging it with
its parent. Those versions are easily reducible to each other in the rooted case, however, in the
unrooted case, the result of deletion of a node is ambiguous, as it depends on a rooting, which
is missing. Thus, later on, we can focus only on the case with labels on edges.

2.1 Naming convention

Recall, that we start with the case when both trees are rooted. We use a similar naming
convention as in [12]. We call main left and right edges of a tree respectively the leftmost and
rightmost edge from the root. For a given rooted tree T with at least 2 nodes, let rT denote the
right main edge of T and RT denote the rooted subtree of T that is under (not including) rT . By
T ´ rT we denote a tree obtained from T by contracting edge rT and by T ´RT a tree obtained
from T by contracting edge rT and all edges from its subtree RT . Thus the tree T consists of

4

RT , the edge rT and edges pT ´ RT q. lT and LT are defined similarly except that we consider
the left main edge of T . T v denotes subtree of T rooted in node v. See Figure 3.

rF

RF

F −RF

F : F − rF :

RF

Figure 3: Tree F with its right main edge contracted (right) and both rF and RG contracted
(left).

Given a rooted tree T , by ET we denote the Euler tour of T , that is a sequence of edges
obtained during DFS traversal of T started from the root of T and visiting nodes in left-to-right
order. Every edge of T appears exactly twice in ET . One occurrence corresponds to traversing
the edge down the tree and the other to traversing it up the tree.

We define a pruned subtree of a tree T to be a tree obtained from T by a sequence of
contractions of the left or right main edge of T . Next, an interval is any contiguous subsequence
of ET . Consider an interval W and observe, that after removing from W all edges that appear
exactly once in it, it becomes exactly ET 1 for some T 1, a pruned subtree of T . Conversely,
for every pruned subtree T 1 of T , there is at least one interval WT 1 of ET , which is ET 1 with
possibly some other edges appearing exactly once in it. Thus, later on, we will identify every
pruned subtree T 1 of T with the shortest interval on ET corresponding to T 1, which is a unique
representation.

Observe that for a pruned subtree T 1, the first edge appearing twice in ET 1 is the left main
edge of T 1, and the last one is the right main one. Consequently, we can also think that a
non-empty pruned subtree is represented by its left and right main edge.

To conclude, there are two equivalent representations of a pruned subtree T 1 of T : either as
an interval on ET or as its left and right main edges. In both cases, we can completely represent
a pruned subtree in Op1q space. We can preprocess all the Opn2q pruned subtrees T 1 of a tree
T to be able to obtain trees RT 1 , LT 1 , T

1 ´ lT 1 , T
1 ´ rT 1 and edges rT 1 , lT 1 in Op1q time.

2.2 Dynamic programming

Shasha and Zhang [24] introduced the following dynamic programming approach for computing
the edit distance between two rooted trees:

Lemma 2.1. Let δpF,Gq be the edit distance between two pruned subtrees F and G of respectively
T1 and T2. Then:

• δpH,Hq “ 0

• δpF,Gq “ min

$

’

&

’

%

δpF ´ rF , Gq ` cdelprF q if F ‰ H
δpF,G´ rGq ` cdelprGq if G ‰ H
δpRF , RGq ` δpF ´RF , G´RGq ` cmatchprF , rGq if F,G ‰ H

The above recurrence also holds if we contract or match the left main edge.

5

It tries contracting the right main edge in only one of the two trees or matching the right
main edges of the two trees. In the latter case, we get two independent subproblems pRF , RGq

and pF ´RF , G´RGq that must be transformed to equal trees. See Figure 4 for an illustration
of this case.

A B

a b

C D

c d

+
AB CD

a c

+cmatch(b, d)

F : G : RF : RG : F −RF G−RG

Figure 4: In the case when both right main edges are not contracted, we obtain two independent
problems.

To estimate time complexity of the algorithm, we only count different pairs pF,Gq for which
δpF,Gq is computed because the formula from Lemma 2.1 can be evaluated in constant time.
Some values of δpF,Gq might be retrieved multiple times, but using memoization we can assure
that every δpF,Gq is computed at most once. How to memoize it efficiently is a secondary
concern and will be addressed separately in Section 7.1.

Note that in every call of δpF,Gq, F is a pruned subtree of T1, thus it corresponds to an
interval on ET1 . As |ET1 | “ Opnq, there are Opn2q different possible pruned subtrees of T1.
Similarly arguing for T2 we conclude that there are at most Opn4q different subproblems visited
by Shasha and Zhang’s algorithm.

3 Edit distance between rooted trees

In the above algorithm, in every recursive call, we always contract or relabel the right main
edge. However, a more deliberate choice of direction (whether to choose the left or right main
edge) will lead to a different behavior of the algorithm which in turn might result in a smaller
total number of subproblems considered. Such a family of algorithms is called decomposition
algorithms:

Definition 3.1. ([12]) A decomposition algorithm for computing edit distance between rooted
trees T1 and T2 is an algorithm based on the recurrence from Lemma 2.1 using an arbitrary
strategy.

The first improvement of Shasha and Zhang’s algorithm was made by Klein, with Opn3 log nq
algorithm [18]. This algorithm is also capable of solving the unrooted case in the same time,
which is currently the fastest known approach for unrooted TED. Demaine et al. [12] presented
algorithm running in Opn3q time for equal-sized rooted trees and Opnm2p1 ` log n

mqq for trees
of size n,m where m ď n and proved that it is optimal among all decomposition algorithms.

Based on the two approaches we develop an intermediate, Opn3 log log nq algorithm, which
is not optimal but will be useful for understanding our algorithm for the unrooted case.

3.1 Klein’s Opn3 log nq algorithm

Suppose that F and G are pruned subtrees of respectively T1 and T2. Klein [18] uses the following
strategy to compute δpF,Gq: if |LF | ă |RF | then choose left direction, otherwise right. Note
that the choice does not depend on G.

6

To upper bound the number of subproblems visited by Klein’s algorithm, we bound the
number of visited pruned subtrees (call them relevant intervals) of T1 and T2 separately. Then
the total number of visited subproblems will be bounded by product of the two numbers. Clearly,
as argued for Shasha and Zhang’s algorithm, there are Opn2q relevant intervals of T2.

To upper bound the number of relevant intervals of T1 we use heavy path decomposition [25]
of T1. In this technique, we call the root of the tree light and every node chooses its child with
the largest subtree (and the leftmost in case of ties) and calls it heavy and all other children
light. We say that an edge is heavy if it leads to the heavy child. Note that heavy edges induce
a decomposition of a tree into paths, every heavy path starts in a light node and ends in a leaf
of the tree and all nodes apart from the top one on a heavy path are heavy. See Figure 5.

Figure 5: Decomposition of a tree into heavy paths. Heavy edges are marked with solid lines
and heavy nodes with full circles. Light edges are dotted and light nodes are empty.

Observe that contracting or relabeling the main edge not leading to the heavy child of the
root of a pruned subtree T , does not change the heavy child of the root of T , as its subtree is
still the largest. We define that strategy “avoiding the heavy child” chooses the direction in such
a way that the edge leading to the heavy child of the root is contracted or relabeled as late as
possible. If there is a choice, when the strategy can choose both the left and right main edge
(as none of them leads to the heavy child), then we define that the strategy chooses the left
one. Similarly, when there is no choice, and there is only one child from the root, as for now, we
define that strategy chooses the left direction. This strategy will be used in all our algorithms.

Now we show that using the strategy in T1, no relevant interval can be obtained only by a
recursive call of the form F ´ LF or F ´RF , as each of them is also obtained by a sequence of
contractions of an edge according to the strategy.

Lemma 3.2. Consider an arbitrary tree T . Suppose that strategy avoiding the heavy child in T
says L for a pruned subtree F . Then F ´ LF is also obtained by a sequence of contractions of
the main edge according to the strategy.

Proof. There are two cases to consider. First, if there is only one edge outgoing from the root
of F , then left and right main edges overlap and F ´ LF “ H, so clearly the lemma holds.
Otherwise, if there are at least two main edges in F , then contracting the edge not leading to
the heavy child of F does not change the heavy child in F . Thus, the strategy will repeatedly
say L, until all the edges from LF are contracted, so finally F ´ LF is also obtained, and the
lemma holds.

The lemma implies that to count the relevant intervals of T1 we can only consider the trees
obtained by contraction of the left or right main edge (according to the strategy avoiding the
heavy child) and trees of the form LF and RF .

7

Observation 3.3. Consider an arbitrary tree T and one of its heavy paths H with top node u.
Then for every node v on H, T v is obtained from T u by a sequence of contractions of a main
edge according to strategy avoiding the heavy child.

We denote apexpF q as the top node of the heavy path containing the lowest common ancestor
of all endpoints of edges of F . In other words, apexpF q is the lowest light ancestor of all edges
of F . Intuitively we can say that apexpF q is the top node of the heavy path containing the root
of F , but we need the definition with edges because it is unclear, which node is the result of
contraction of an edge. In the following lemma we show that grouping by apex-es the pruned
subtrees visited while applying the strategy leads to

ř

v: light node in T1
|T v

1 | bound on their total
number:

Lemma 3.4. For an arbitrary tree T , there is
ř

v: light node in T |T
v| pruned subtrees of T visited

while applying strategy avoiding the heavy child of T .

Proof. Consider a visited pruned subtree F with apexpF q “ v, where v is a light node. From
Lemma 3.2 and Observation 3.3 we conclude, that F is obtained by a (possibly empty) sequence
of contractions of a main edge according to the strategy. As there are |T v| contractions of a
main edge until the tree becomes empty, the lemma holds.

Finally, we need to bound the sum of sizes of subtrees rooted in light nodes of T1. For that
purpose, we denote light-depth ldepthpuq of a node u as the number of light nodes that are
ancestors of u (node is also an ancestor of itself). Note that size of subtree rooted in node u is
at most n{2ldepthpuq´1, because if a node v is light, then 2 ¨ |T v| ă |Tw|, where w is the parent of
v. Thus ldepthpuq ď logpnq ` 1 and:

ÿ

v: light node in T1

|T v
1 | “

ÿ

v: node in T1

ldepthpvq P Opn log nq (1)

Recalling that there are Opn2q relevant intervals of T2 we conclude that Klein’s algorithm visits
Opn3 log nq subproblems, so runs in Opn3 log nq time.

3.2 Intermediate Opn3 log log nq algorithm

In this section, we present an algorithm running in Opn3 log log nq time for the rooted case.
It is not optimal (as Demaine et al.’s run in Opn3q), but will be useful to understand our
Opn3 log lognq algorithm for the unrooted case. We slightly modify Klein’s algorithm to first
avoid the heavy child in the pruned subtree of T1 and when the subtree is small enough, then
we switch to avoiding the heavy child in the pruned subtree of T2. More precisely, we fix a value
b and during the computation of δpF,Gq use the strategy avoiding the heavy child either of F
or G, where the choice depends on F and b. Let r be the root of F and H be the heavy path in
T1 containing r. Now we test size of the subtree rooted in the top node h of H. If the subtree
rooted in h contains more than n{b nodes, then avoid the heavy child of F , otherwise of G. See
Figure 6. In other words, we test size of the subtree rooted in the lowest light ancestor of r. As
every node is also its own ancestor, we have apexphq “ h for every light node h in T1. Using
the apex notation we have that apexpF q “ apexpT r

1 q “ h. Observe that we avoid the heavy
child of F if F is big enough or F was obtained by a sequence of contractions from a “big” T h

1

according to strategy avoiding the heavy child. Notice that we allow switching strategy to the
other subtree only in the last case of the dynamic program in Lemma 2.1, in the recursive call
of δpRF , RGq or δpLF , LGq, because it is the only moment when apexpF q can change.

To bound the number of subproblems visited, we separately consider the case when the
strategy avoids heavy child of F and G. Note that when the strategy avoids heavy child of G,

8

F :

h

r

Th
1 :

Figure 6: Let empty circles denote light nodes end full ones heavy and h “ apexpF q. Then the
strategy avoids the heavy child of F if |T h

1 | ą n{b.

then the size of F is not larger than n{b. Consequently, there are at most Opn2{bq relevant
intervals of T1, because they correspond to intervals of length at most n{b on Euler tour ET1 ,
which is of length Opnq. From the analysis of Klein’s algorithm, there are at most Opn log nq
visited relevant intervals of T2, so in total there are Opn3 lognb q subproblems visited while avoiding
the heavy child of G.

While avoiding the heavy child of F , all pruned subtrees of T2 can be visited, so there
can be Opn2q of them. However, now we visit fewer subtrees of T1 than in Klein’s algorithm.
Again, visited pruned subtrees are grouped by their apexes, but these nodes must be of ldepth
smaller than log b` 1 to have its subtree greater than n{b. Consequently, in that case, there are
Opn3 log bq subproblems visited.

To conclude, the algorithm visits Opn3 log b ` n3 lognb q subproblems, which is minimized for
b “ log n and results in overall complexity Opn3 log log nq.

3.3 Demaine et al.’s Opn3q algorithm

A natural improvement of Klein’s algorithm is to alternate between trees T1 and T2 while avoiding
the heavy child. However, the main difficulty is to simultaneously alternate between the trees
and control the number of visited subproblems. On a high level, Demaine et al. [12] avoid the
heavy child in currently larger of the two considered pruned subtrees, however once decided to
avoid the heavy child in on of the trees (say T1), then they avoid the heavy child in this tree
until it becomes empty. As in the Opn3 log log nq algorithm, they allow switching strategy to
the other subtree is in the last case of the dynamic program in Lemma 2.1, in the recursive call
of δpRF , RGq or δpLF , LGq.

Now we describe in detail the algorithm of Demaine et al. Our presentation is different
from the original, is based on the above Opn3 log log nq approach and adapted to the case of
TED with labels on edges instead of nodes. Again, the algorithm uses the dynamic program
from Lemma 2.1 and to compute δpF,Gq needs to choose a direction, either left or right, for
further computations. The strategy is avoiding the heavy child of X, where X is either F or G.
However, now the condition is slightly more involved: if either of F or G is empty, then X is
the non-empty of the two, otherwise if |T apexpF q

1 | ą |T
apexpGq
2 | then X is F , else G. Recall that

apexpF q is the top node of the heavy path containing the lowest common ancestor of all edges
in F , as in Figure 6.

9

Algorithm 1 Our presentation of Demaine et al.’s algorithm [12] for rooted TED.
1: function δpF,Gq
2: if F “ G “ H then return 0

3: if G “ H or (F ‰ H and |T
apexpF q
1 | ą |T

apexpGq
2 |) then

4: X :“ F
5: else
6: X :“ G
7: if right child of the root of X is not the heavy one then

8: return min

$

’

&

’

%

δpF ´ rF , Gq ` cdelprF q if F ‰ H
δpF,G´ rGq ` cdelprGq if G ‰ H
δpRF , RGq ` δpF ´RF , G´RGq ` cmatchprF , rGq if F,G ‰ H

9: else

10: return min

$

’

&

’

%

δpF ´ lF , Gq ` cdelplF q if F ‰ H
δpF,G´ lGq ` cdelplGq if G ‰ H
δpLF , LGq ` δpF ´ LF , G´ LGq ` cmatchplF , lGq if F,G ‰ H

Now we assume that both trees are of size n, X “ F and analyze the complexity of the
strategy avoiding the heavy child in X. Clearly, |F |, |G| ď |T

apexpXq
1 |. Observe that F was

obtained from T
apexpF q
1 by a sequence of successive contractions according to the strategy. Next,

F ´RF is the tree F with the right main edge contracted many times. Thus, both F ´ rF and
F ´ RF are also obtained from T

apexpF q
1 by a sequence of successive contractions according to

the strategy and apexpF ´ rF q “ apexpF ´RF q “ apexpF q. Then, the only subsequent recursive
call δpF 1, G1q in which apexpF 1q ‰ apexpF q is due to the recursive call δpRF , RGq or δpLF , LGq.
It may also hold that apexpRF q “ apexpF q when F has only one child, and the strategy chooses
the edge leading to the heavy child of the root.

We say, that a subproblem δpF,Gq is charged to the node apexpXq. Consider a node v in
T1. Suppose that v is light because otherwise nothing is charged to it. If v is heavy, then there
is no subproblem charged to v, so now suppose that v is light. From all the above observations
we have, that among all subproblems pF,Gq charged to v, there are Op|T v

1 |q different pruned
subtrees F of T1. Next, all pruned subtrees G of T2 are not bigger than |T v

1 | and each of
them corresponds to an interval of Euler tour of length n. Thus, there are Opn|T v

1 |q different
pruned subtrees of T2 among subproblems charged to node v and in total there are Opn|T v

1 |
2q

subproblems charged to a light node v of T1.
Now summing it over all light nodes of T1, we obtain that there areOpn

ř

v: light node in T1
|T v

1 |
2q

subproblems visited when X “ F . Because a symmetric argument holds for X “ G, it remains
to upper bound tpnq :“

ř

v: light node in T |T
v|2 where T is a tree of size n. Denoting by ni the

total size of the i-th subtree connected to the heavy path containing the root of T , we obtain the
following bound: tpnq ď n2 `

ř

tpniq. It holds that ni ď pn´ 1q{2 as the i-th subtree is rooted
in a light node and

ř

i ni ď n´ 1 as the subtrees connected to the heavy path are disjoint. Now
we prove by induction that tpnq ď 2n2.

Using the inequality: a2 ` b2 ď pa ´ 1q2 ` pb ` 1q2 for a ď b we can upper bound the sum
ř

i n
2
i with 2 ¨ pn{2q2 iteratively choosing distinct indices i, j such that 0 ă ni ď nj ă pn´ 1q{2,

decreasing ni and increasing nj by 1. Combining it with the recurrence relation and the induction
hypothesis we get:

tpnq “
ÿ

v: light node in T

|T v|2 “ n2 `
ÿ

i

tpniq ď n2 ` 2 ¨
ÿ

i

n2i ď n2 ` 2 ¨ 2 ¨ pn{2q2 “ 2n2

We conclude that there are ntpnq “ Opn3q subproblems visited when X “ F and similarly for

10

X “ G. The algorithm can be also proved to run in Opnm2p1` log n
mqq time for trees of unequal

sizes m ď n, separately considering light nodes (apexes) u such that |T u| ď m and |T u| ą m.

3.4 Bottom-up perspective

In this section, we rephrase all the above algorithms so that the computation is done in the
bottom-up order. The aim of all the algorithms is to compute δpT1, T2q knowing only δpH, ¨q
and δp¨,Hq, as the costs of contraction of an arbitrary tree are memorized. For that purpose
they compute and memoize δpT u

1 , T
v
2 q for all nodes u P T1 and v P T2 in a table ∆, where

∆ru, vs :“ δpT u
1 , T

v
2 q.

The main subroutine of these algorithms is to compute δpT x
1 , ¨q from δpT y

1 , ¨q where x is
the parent of y and ¨ denotes all pruned subtrees of T2. In this subroutine, we iteratively
“uncontract” an edge using the recursive formula from Lemma 2.1. Formally, given a pruned
subtree F and δpF´rF , ¨q we would like to compute δpF, ¨q. However, to use the recursive formula
for computing δpF,Gq for a pruned subtree G of T2, we also need the values of δpRF , RGq and
δpF ´RF , G´RGq. Let T

xpiq
1 be the tree obtained from T x

1 after i contractions of a main edge
avoiding the heavy child. See Algorithm 2 for the case when y is either the leftmost or rightmost
child of x. In the other cases, we need to first uncontract the edges “to the left” of y and then
“to the right” of y.

Algorithm 2 Obtains δpT x
1 , ¨q from δpT y

1 , ¨q, x is y’s parent and ¨ are all pruned subtrees of T2.
1: function ComputeFrom(δpT x

1 , ¨q, δpT
y
1 , ¨q)

2: if y is the leftmost child of x then
3: let k satisfy T xpkq

1 “ T y
1

4: for i “ k ´ 1 . . . 0 do
5: for each pruned subtree G of T2 do Ź in the order of increasing sizes of G

6: δpT
xpiq
1 , Gq “ min

$

’

’

&

’

’

%

δpT
xpi`1q
1 , Gq ` cdelprTxpiq

1
q

δpT
xpiq
1 , G´ rGq ` cdelprGq

δpR
T

xpiq
1

, RGq ` δpT
xpiq
1 ´R

T
xpiq
1

, G´RGq ` cmatchprTxpiq
1

, rGq

7: else
8: analogously for left contractions

Observe, that processing the pruned subtrees in this order we have that T xpiq
1 ´ R

T
xpiq
1

P

tH, T
xpjq
1 u for some value j ą i, so we have already computed δpT xpjq

1 , ¨q. Finally, the algorithms
ensure that δpR

T
xpiq
1

, RGq is already computed by processing heavy paths in an appropriate order.
Note that there exist nodes a, b such that ∆ra, bs “ δpR

T
xpiq
1

, RGq.

Klein’s algorithm. Recall that Klein’s algorithm avoids the heavy child in T1 and possibly
visits every pruned subtree of T2. Consider a heavy path H in T1 with top node u. From
Lemma 3.2 we know that every subproblem δpF,Gq obtained during computing ∆rw, vs for
w P H and v P T2 is either of the two types:

(i) δpT x
1 , T

y
2 q for a light node x attached to H and y P T2, or

(ii) F is one of the pruned subtrees obtained by a sequence of contractions according to the
strategy avoiding the heavy child from T u

1 .

11

To avoid recursive calls we need to ensure that all the mentioned subproblems are already
computed and memorized. First, we process subproblems of the second type (ii) in the order
of increasing size of F and memoize all the intermediate results. In other words, if vi are the
nodes on H, then for i “ p|H| ´ 1q..1 we run ComputeFrompδpT vi

1 , ¨q, δpT
vi`1

1 , ¨qq. We know
δpT

v|H|
1 , ¨q, because the tree T v|H|

1 is empty, so it is the cost of contraction of all the edges in the
pruned subtree of T2.

Finally, we need an order of processing heavy paths of T1 to make sure that subproblems of
type (i) have been already processed and stored in ∆. Note that it is enough to consider them
in the order of decreasing light-depths of their top nodes or in other words, of increasing sizes
of subtrees rooted in top nodes of them.

To conclude, by processing the heavy paths in such an order we make sure that there is no
need to use recursive calls, provided that we memoize ∆ and the intermediate results for every
heavy path.

Intermediate Opn3 log log nq algorithm. In this algorithm we first compute ∆ru, vs for all
u satisfying |T apexpuq

1 | ď n{b and v P T2. In this phase, we can process heavy paths of T2 in the
order as above, but now considering only subtrees of T1 of size not exceeding n{b.

Then, we use the values computed in the first phase to fill all the remaining fields of ∆. We
only have to process the heavy paths of T1 of light-depth smaller than log b and use the same
order as earlier.

Demaine et al.’s algorithm. The algorithm of Demaine et al. also processes heavy paths
in the order of decreasing light-depths, but now we consider heavy paths both from T1 and T2
simultaneously. Suppose it considers a heavy path H of T1 with top node u. Then it computes
∆rw, vs for all nodes w P H and v P T2 such that |T v

2 | ď |T
u
1 |.

4 Back to unrooted case

Recall that edit distance between two unrooted trees T1 and T2 is a minimum edit distance
between T1 and T2 over all possible rootings of them, where rooting is determined by the root of
the tree and its the left main edge. We start by showing that not all pairs of possible rootings
need to be considered. Klein [18] mentioned, that it is intuitively evident and has been formally
proved by Srikanta Tirthapura in personal communication.

Lemma 4.1. For every rooting of T1 there is at least one rooting of T2 such that edit distance
between these two rooted trees admits minimum edit distance among all possible rootings of T1
and T2.

Proof. Let T ‹ denote the common tree, to which both trees are transformed into in the optimal
setting and observe that nodes in T ‹ correspond to subtrees of T1 and T2 merged to a single
node. See Figure 7. Consider an arbitrary rooting of T1 with r being the root and e being the
left main edge from r in T1 and let r‹ be the node in T ‹ to which r is mapped.

If T ‹ is empty, then every rooting of T2 admits the minimum edit distance. Otherwise,
observe that there is a natural, induced by T1 left-to-right ordering of edges incident to r‹ in T ‹.
Then let e‹ denote the leftmost edge from r‹ in that ordering. Note that not necessarily it is
the edge e from T1, which is mapped to e‹ because e might be contracted in the optimal setting.
Next, there is an edge e1 from T2 which is mapped to e‹. Finally, observe that the rooting of T2
with e1 being the leftmost edge from the root together with the considered rooting of T1 admit
the minimum edit distance among all possible rootings of T1 and T2.

12

T ? :T1 :
r

r?

e

e′

T2 :

e?

Figure 7: The common tree T ‹, to which both trees T1 and T2 are transformed, consists of
subtrees merged to single nodes. Node r is mapped to r‹ in T ‹, edge e‹ is the leftmost from r‹

with respect to the ordering induced by T1 and e1 is the edge from T2 that is mapped to e‹.

The lemma guarantees that it is enough to choose an arbitrary rooting in one of the trees
and try all possible rootings of the other to find an optimal setting. Thus every algorithm for
the rooted case can be naively used Opnq times to find the edit distance between unrooted trees.
Both Klein’s and our approach start with an arbitrary rooting of T1 and then efficiently try all
possible rootings of T2.

Consider an arbitrary rooting of T2 and an Euler tour ET2 on it. As ET2 is an Euler tour,
then its every cyclic shift is also an Euler tour, but starting from a different edge. Moreover,
every rooting of T2 corresponds to a cyclic shift of ET2 . See Figure 8. Thus we can use Euler
tour ET2 of an arbitrary rooting of T2 and treat it as a cyclic string. Then every possible pruned
subtree (in any rooting) of T2 is an interval of ET2 and there are still Opn2q possible intervals.

a b

abbcddca bbcddcaa

b
c

c

a

d

a

aabbcddc

b
c

dd

Figure 8: Euler tours of different routings are intervals of any Euler tour treated as a cyclic
string, for example: abbcddca|abbcddca. The left main edge that determines the rooting is the
thick one.

All the above observations show, that Klein’s algorithm that chooses the direction based
only on T1 can check all possible rootings of T2 in Opn3 log nq time, the same as for the rooted
case. It is currently the fastest algorithm for the unrooted case.

4.1 Slight modifications

Apart from treating Euler tours ET1 and ET2 as cyclic strings, we need to introduce new defi-
nitions to handle the unrooted case. Recall, that even in the unrooted case, we first arbitrarily
root both trees and the initial rooting remains unchanged throughout the algorithm, and all
further definitions are according to this rooting.

13

Darts. For a fixed rooting of a tree, there are two possible directions of traversing an edge e:
either from the root (eÓ) or towards the root (eÒ). To distinguish between these cases, later on
we think that instead of one undirected edge e “ tu, vu there are two directed edges (darts):
eÓ “ pu, vq and eÒ “ pv, uq (or oppositely, if v is closer to the root than u). We define subtree
subtreepdq of a dart d “ pu, vq to be the subtree rooted in node v of the initial tree, when u is
the parent of v. See Figure 9. To locate subtreepeÓq as an interval of Euler tour, observe that it
starts right after eÓ and ends right before eÒ on the cyclic Euler tour and also can be empty.

subtree(e↑)

subtree(e↓)

e↓e↑

Figure 9: Note that eÒ and eÓ belong neither to subtreepeÒq nor to subtreepeÓq.

We still can use the notion of pruned subtrees – no matter how the tree is rooted, every
subtree corresponds to an interval of ET2 and contracting the left or the right main edge results
in changing one of the ends of the interval. Thus, every pruned subtree also corresponds to an
interval of ET2 , so – even in the unrooted case – there are Opn2q of them. Similarly, still every
pruned subtree can be represented by its left and right main edges. If there are more than one
edge from the root, then the representation is unique, see Figure 10. However, if there is only
one edge from the root, then one also needs to specify “direction” of the tree whether it is “up”
or “down” the edge, see Figure 11. Equivalently, in this situation it is enough to provide a dart
instead of edge with direction.

x y

z

t

a

b

a b

b a

t y

x

Figure 10: If a pruned subtree has more than one edge from the root, then it is uniquely
represented by its left and right main edges.

Auxiliary edges for rootings. As our main goal is to compute the edit distance between two
unrooted trees, we will compute δpT1, T q for all T being different rootings of T2. We observed
that every rooting of T2 corresponds to a subrange of any Euler tour ET2 , but later it will be
convenient to represent every rooting as a subtree of a dart. For this purpose, we add new edges

14

x y

z

t

a

b

z

b t

z

y

x

t

Figure 11: If a pruned subtree has exactly one edge from the root, then one also needs to specify
“direction” of the tree.

labeled with a fresh label # R Σ which will be used only to denote a rooting. For every node
v we add new edges alternating with the original ones. See Figure 12. Thus in total, there are
2pn´1q edges added, exactly the number of possible rootings we check. Note that for every new
edge, there are two darts and subtree of one of them corresponds to the original tree rooted in
a particular way and subtree of the other dart is empty.

ba a a

b

bb

a

r1

r2 r3

r4

r2 r3 r4

ba

Figure 12: We added 4 edges: r1, .., r4 to the tree consisting of edges a and b. Each rooting of
the original tree corresponds to a dart from one of the new edges.

Observe that in the tree T1 we effectively use only one rooting, so we can add only one
new edge. In order to allow only contraction of those new edges, we set cdelp#q “ 0 and
cmatchp#, αq “ 8 for all α P ΣY t#u. Note that addition of the new edges does not change the
cost of the optimal solution, as all of them will be contracted with cost 0. Thus in the original
dynamic program of Lemma 2.1 we can treat the new edges exactly in the same way as the old
ones.

Finally, having an optimal sequence of operations for the modified trees, we should simply
discard all contractions of the new edges to obtain the optimal solution for transforming one
of the original trees to the other. Observe, that later on, we can forget about labels on edges
because they have no impact on the performance of any strategy used by the algorithm. Labels
matter only for the exact value of δp¨, ¨q, but our aim is to minimize the number of pairs pF,Gq,
for which δpF,Gq is computed.

Using the auxiliary edges for rootings we say that our algorithm for the edit distance between
unrooted trees needs to compute δpT1, subtreepr2qq 1 for all darts r2 representing rootings of T2.
For that purpose it will compute value of δpsubtreepT u

1 q, subtreepd2qq for all nodes u P T1 and
1To simplify notation, we write T1 instead of subtreepr1q, where r1 is the dart corresponding to the initial

rooting of T1.

15

all darts d2 in T2, both up and down T2. Again all these values will be stored in the table ∆,
but now the second index is a dart in T2: ∆ru, ds :“ δpT u

1 , subtreepdqq. Finally, when the whole
table ∆ is filled, it is possible to extract the edit distance between (unrooted) T1 and T2.

Auxiliary edges to make trees binary. Later it will be useful to have the trees binary,
which means that every node has at most two children. To achieve it, we add another set of
edges with label #, which costs 0 to contract and 8 to match with another edge. We need to
split nodes with more than two children in such a way, that the order of children is preserved
after contraction of the new edges. There are various ways of obtaining it, and one of them is
presented in Figure 13. Clearly, there are Opnq nodes and edges added, and after contraction of
the new edges (which costs 0), we obtain the original tree.

a

b c

d

a

b

c d

#

#

Figure 13: A possible way of making the tree binary from an arbitrary tree with a linear number
of additional edges.

All differences between rooted and unrooted case. To sum up, in comparison with the
rooted case, now we consider darts instead of undirected edges and treat Euler tour as a cyclic
string. We transformed the original trees introducing new edges that will be used to describe
rootings of the original tree as a subtree of a new dart and finally made the tree binary. In total,
we added Opnq new nodes and edges. Later on by T1 and T2 we denote the transformed trees
and their size by n. The aim of the following algorithms for the edit distance between unrooted
trees is to compute δpT1, subtreepr2qq for all darts r2 representing rootings of T2.

The cost of the optimal solution for the modified trees is the same as for the original ones
and having a sequence of operations for the modified trees, we can easily obtain an optimal
sequence for the original problem.

5 Opn3 log log nq algorithm for unrooted case

After initial modifications both trees are binary and the algorithm needs to fill the table ∆ where
∆ru, ds :“ δpT u

1 , subtreepdqq for all nodes u P T1 and darts d P T2. We first run Demaine et al.’s
algorithm for the rooted case from Section 3.3 which computes δpT u

1 , T
v
2 q for all nodes u P T1

and v P T2 in Opn3q time and stores them in ∆. Now we need to fill the remaining fields ∆ru, ds
for all darts d up the tree T2.

This is the main difficulty in the unrooted case, in which we need to handle many big subtrees
which are significantly different from each other. Our approach is to successively reduce different
subproblems to one, smaller subproblem to obtain fewer subproblems to consider in the next

16

step. We use divide and conquer paradigm, in which there is more and more sharing after every
phase.

In the beginning, we call each node of T1 and T2 light or heavy as in the Klein’s algorithm
and all the time the notion is with respect to the initial rootings. Recall that we denote apexpT q
as the top node on the heavy path containing the lowest common ancestor of all edges of T .
Similarly, as in the Opn3 log log nq algorithm for the rooted case, we first fix a global value b,
which will be determined exactly later. On a high level, from the top-down perspective, the
algorithm uses the following strategy to compute δpF,Gq:

• If |T apexpF q
1 | ą n{b, then avoid the heavy child in F .

• Otherwise apply a new strategy based only on G and T2.

Considering it bottom-up, the algorithm first fills values of ∆ru, ds for all nodes u such that
|T

apexpuq
1 | ď n{b and all darts in T2. For the remaining fields of ∆, it uses strategy avoiding the

heavy child in T1. As in the bottom-up description of the Klein’s algorithm, in this phase, the
algorithm needs to process heavy paths of T1 in the order of decreasing light-depths. Notice that
now we can use the analysis of the Opn3 log log nq algorithm for the rooted case from Section 3.2.
Using a similar reasoning we conclude that there are again Opn3 log bq subproblems visited in
total, because even if now T2 is unrooted, there are still Opn2q pruned subtrees there.

For the other phase we can also use the observation, that there are Opn2{bq relevant subtrees
in T1, but now we need to carefully design and analyze the new strategy for T2. It will be easier
to think, that in this phase the algorithm needs to compute ∆ru, ds for all darts d in T2 and
all nodes u P T1 such that |T u

1 | ď n{b, call them interesting. Clearly, all subproblems in which
there is a switch to the strategy based on T2 are of this form.

Recall that now the second tree T2 is arbitrarily rooted and nodes are called light or heavy
according to this rooting. The notion of going up or down the tree remains unchanged, according
to this rooting.

We will describe the algorithm only from the bottom-up perspective to be able to state
which subproblems are computed in every step precisely. As the strategy now is more complex
than earlier, we first describe it for the case when T2 is a heavy path with possibly single nodes
connected to it. This example is already difficult in the unrooted case and will require divide
and conquer approach to handle all the possible rootings of T2 at once. Next, we will slightly
modify the approach for a single heavy path to handle arbitrary trees T2.

5.1 Single heavy path T2

Now we are considering the case when T2 is a heavy path H with possibly single nodes connected
to it. Let hi denote (heavy) edges on H, h0 be the edge denoting the initial rooting of T2 and
(if exists) li be the light edge connected to the i-th node on H. See Figure 14 for an example.

In the first step we compute values of δp˚, subtreephÒi qq for all heavy edges hi, where ˚ denotes
all pruned subtrees of T1 of size at most n{b. The strategy is to avoid the parent, that is to
contract the edge leading to the parent as late as possible. See Figure 15.

17

h1

h2

h3

h4

h5

l1

l2

l3

l4

l5

r2

Figure 14: A heavy path H with single connected nodes, where full circles denote heavy nodes
and empty circles light nodes. Solid edges are heavy and dotted ones are light. There is also an
edge r2 (dotted) denoting the rooting of T2.

hi
li

hi−1
subtree(h↑i)

subtree(h↑i−1)

Figure 15: To compute δp˚, subtreephÒi qq we use δp˚, subtreephÒi´1qq and uncontract first the edge
li (if exists).

More precisely, in the beginning we already know δp˚, subtreephÒ0qq, because it is the cost of
contraction of the whole pruned subtree of T1 (which we can retrieve in a constant time), as h0 “
r2 and subtreephÒ0q “ H. Then, having values of δp˚, subtreephÒi´1qq we compute δp˚, subtreephÒi qq
by uncontracting appropriate edges. It is an extension of the ComputeFrom subroutine, but
now we do not have subtrees T x and T y, where x is the parent of y, but have two edges hi
and hi´1 with a common endpoint. Now it is crucial that the strategy in a single step always
chooses the same direction. Usually while avoiding the parent or the heavy child there is no
choice, but when there is only one edge from the root of the considered pruned subtree, then we
define that the strategy chooses the same direction as in other moves in this step. For example,
if we compute δp˚, T u

2 q from δp˚, T v
2 q where v is the left child of u, then the strategy avoiding

the heavy child in T2 always chooses right direction. Then, for the subtree with only one edge
from the root (leading to v), we define that the strategy also chooses right direction. It does not
make any difference for pruned subtrees visited from T2, but from T1 it does and will matter
later.

There are Opnq pruned subtrees of T2 obtained by uncontractions of the main edge according
to the strategy, starting from an empty subtree. Now we need to ensure that the algorithm did

18

not consider any other pruned subtree of T2. Suppose it uncontracted the left main edge. Then
G ´ LG P tH, G ´ lGu, depending on whether lG was the heavy edge leading to the parent or
not. Also LG P tH, G ´ lGu, so in both cases, all the obtained pruned subtrees are among the
Opnq described above. Finally, as there are Opn2{bq pruned subtrees of T1, in total we computed
and stored the edit distance of Opn3{bq subproblems. Now, using the computed values we fill
∆ru, hÒi s for all interesting nodes u P T1 and heavy edges hi P T2. Thus, later on, we do not have
to consider the pruned subtrees of the form δpLF , LGq or δpRF , RGq as their values are already
stored in ∆, because they are of the form δpT v

1 , subtreepdhqq for an interesting node u P T1 and
a dart dh from a heavy edge in T2. We only have not computed values ∆ru, lÒs for darts from
light edges up the tree, but in this phase of the algorithm, they never appear in δpLF , LGq or
δpRF , RGq subproblem. As we need these values because they correspond to some rootings of
T2, we will consider them in the following paragraph.

Darts up tree from light nodes. First, we define mergedRHpA,Bq as the pruned subtree
obtained by contraction of edges between the A-th and B-the node on H to the right of H:

Definition 5.1. Let H be a heavy path and A and B (A ď B) denote indices of two nodes
on H. Then mergedRHpA,Bq is a tree with the left main edge hA´1 and the right main edge hB.
mergedLHpA,Bq is a tree with the left main edge hB and the right main edge hA´1.

In other words, mergedRHpA,Bq is the tree in which there are contracted “all edges between vA and
vB” on H and to the right of H. See Figure 16. Note that subtreeplÒAq is either mergedRHpA,Aq
or mergedLHpA,Aq, depending on which side of H is li.

h1

h2

h3

h4

h5

l1

l2

l3

l4

l5

h1

h2

h5

l1

l2

mergedRH(3, 5) :

l3

l5

left main

right main

right main

left main

l4
≡

Figure 16: Pruned subtree mergedRHp3, 5q has the left main edge h2 and the right h5.

On a high level, we start with computing δp˚,mergedLHp1, |H|qq and δp˚,mergedRHp1, |H|qq,
then compute δp˚,mergedLHp1, |H|{2qq and δp˚,mergedRHp1, |H|{2qq and recursively consider the
interval r1, |H|{2s. Similarly for the interval r|H|{2`1, |H|s and all the subsequently obtained in-
tervals. Eventually we reach interval rA,As for every value of A and then use δp˚,mergedLHpA,Aqq
or δp˚,mergedRHpA,Aqq to fill ∆ru, lÒAs for all interesting nodes u.

More precisely, we develop a subroutine which, considering an interval rA,Bs of indices on
H, calls itself recursively for intervals rA,M s and rM ` 1, Bs where M “ tA`B2 u. As an in-
put it takes “extreme” values of δp˚, subtreephÒA´1qq, δp˚, subtreeph

Ó

Bqq, δp˚,mergedLHpA,Bqq and
δp˚,mergedRHpA,Bqq, which we later on we denote as DatapA,Bq. Then we compute the interme-
diate ones for subtreephÓM q,subtreeph

Ò

M q, mergedLHpA,Mq, mergedRHpA,Mq, mergedLHpM ` 1, Bq

19

and mergedRHpM ` 1, Bq and call the function recursively. When we reach the case when A “ B
then can stop and fill some values of ∆. See Algorithm 3.

Algorithm 3 Fills ∆ru, lÒi s for all light edges li connected to the heavy path H with i P rA,Bs.
1: function GroupH(A,B,DatapA,Bq)
2: if A “ B then
3: if there is a light edge lA connected to H then
4: fill ∆ru, lÒAs for interesting nodes u P T1
5: return
6: M :“ tpA`Bq{2qu
7: for i “ pB ´ 1q..M do
8: ComputeFrompδp˚, subtreephÓi qq, δp˚, subtreeph

Ó

i`1qqq Ź avoiding the heavy child

9: ComputeFrompδp˚,mergedRHpA,Mqq, tδp˚,mergedRHpA,Bqq; δp˚, subtreeph
Ò

A´1qquq

Ź uncontracting the right main edge
10: ComputeFrompδp˚,mergedLHpA,Mqq, tδp˚,mergedLHpA,Bqq; δp˚, subtreeph

Ò

A´1qquq

Ź uncontracting the left main edge
11: call GroupHpA,M,DatapA,Mqq

12: similar computations for interval rM ` 1, Bs
13: call GroupHpM ` 1, B,DatapM ` 1, Bqq

Before we describe in detail the procedure, we show how to compute the initial arguments
Datap1, |H|q for the call of GroupHp1, |H|,Datap1, |H|qq. First, subtreephÓ

|H|q “ subtreephÒ0q “
H, so again we use the precomputed cost of contraction of the whole pruned subtree. Then we
compute δp˚,mergedLHp1, |H|qq and δp˚,mergedRHp1, |H|qq from δp˚, subtreephÒ0qq by constantly
uncontracting respectively the right and left main edge. Thus we have all the input values and
can call GroupHp1, |H|,Datap1, |H|qq which will eventually compute ∆ru, lÒi s for all light edges
li to the right of H. See Algorithm 4.

Algorithm 4 Computes input tables needed for processing a heavy path H

1: function ProcessHeavyPathH(δp˚, subtreephÒ0qq)
2: for i “ 1..|H| do
3: ComputeFrompδp˚, subtreephÒi qq, δp˚, subtreeph

Ò

i´1qqq Ź avoiding the parent
4: fill ∆ru, hÒi s for all interesting nodes u
5: ComputeFrompδp˚,mergedRHp1, |H|qq, δp˚, subtreeph

Ò
0qqq Ź uncontracting the left main

edge
6: ComputeFrompδp˚,mergedLHp1, |H|qq, δp˚, subtreeph

Ò
0qqq Ź uncontracting the right

main edge
7: call GroupHp1, |H|,Datap1, |H|qq

Now we need to describe the GroupH procedure more precisely. First, in the loop in line 7
the strategy is to avoid the heavy child, the same as in the rooted algorithms in Section 3.4. As
in every step, the procedure considers a constant number of pruned subtrees from T2, during
the whole loop there are OpM ´Aq visited pruned subtrees of T2.

The call in line 9 needs more input data than the call in line 7, even though the strategy is
always uncontracting the right main edge. Recall that it focuses only on the edges to the right of
H. If the dynamic program only tries contracting the right main edge, then it would be possible

20

to compute δp˚,mergedRHpA,Mqq only from δp˚,mergedRHpA,Bqq. However, it is not the case
when the algorithm matches right main edges of the two trees. Note that for every considered
pruned subtree G of T2, RG is eitherH or subtreeprÓGq. In the first case G´RG “ G´rG, so this
pruned subtree is already processed. Although, if rG “ hX then RG “ subtreeprÓGq, then G´RG

is a pruned subtree, which has not been considered yet. More precisely, its left main edge is
hA´1 and all edges hA, hA`1, hA`2, . . . , hX´1 were contracted and all edges li for i P rA,Xs to
the left of H are connected to the root of the tree. See Figure 17.

hA−1

lAlA+5

lX left main

right main

Figure 17: The subtree G ´ RG can be of this form, with some remaining edges with indices
from rA,Xs, to the left of the heavy path H.

Note that the largest possible value of X in this step is X “ B ´ 1. Observe that all
subtrees of this form are obtained by a sequence of uncontractions of the right main edge from
subtreephÒA´1q and that is why we also need δp˚, subtreephÒA´1qq in this step and denote it as a
set of two input tables. To summarize, in the step in line 9 we need to consider OpB´Aq pruned
subtrees obtained by uncontraction of right main edge from mergedHpA,Bq and subtreephÒA´1q.
All obtained pruned subtrees will be among them. A similar reasoning applies to the edges to
the left of H, in line 10. We prove it precisely in Lemma 5.2. Finally, the steps for the interval
rM ` 1, Bs are symmetric.

To sum up, one call of GroupHpA,Bq (not including recursive calls) visits OpB´Aq pruned
subtrees of T2. As we start from an interval of length |H| and in every recursive call its length
is roughly halved, the procedure considers in total Op|H| log |H|q “ Opn log nq pruned subtrees
of T2.

5.2 Arbitrary tree T2

Now we need to consider an arbitrary tree T2, in which there can be arbitrary subtrees connected
to the main heavy path. We describe in detail, how to modify Algorithm 4 to process not only
a single heavy path, but an arbitrary tree T2.

In the beginning, the algorithm calls ProcessHeavyPathH0pδp˚,Hqq, where H0 is the
heavy path of T2 containing the root of T2. Note that for an arbitrary heavy path H, the proce-
dure only needs to know δp˚, subtreephÒ0qq to be able to compute all the input parameters for calls
of GroupHp1, |H|,Datap1, |H|qq: δp˚, subtreeph

Ò
0qq, δp˚, subtreeph

Ó

|H|qq, δp˚,mergedLHp1, |H|qq and

δp˚,mergedRHp1, |H|qq. Observe that for every heavy path H subtreephÓ
|H|q “ H, so we have

δp˚, subtreephÓ
|H|qq precomputed. The only place we need to change inside the GroupH pro-

cedure to handle arbitrary trees T2 is to not only fill ∆ru, lÒAs in line 4 of Algorithm 3, but
also recursively call ProcessHeavyPathH 1pδp˚, subtreepl

Ò

Aqqq where H
1 is the heavy path con-

nected to the A-th node of path H. As we pointed earlier, subtreeplÒAq is either mergedRHpA,Aq
or mergedLHpA,Aq, depending on which side of H is li. Now we need to show that all possibly
obtained pruned subtrees are considered:

21

Lemma 5.2. In the modified GroupH procedure, during the call of ComputeFrom subroutine
in line 9 of Algorithm 3, all the intermediate pruned subtrees of T2 are obtained by a sequence of
uncontractions of the right main edge from the root either from mergedRHpA,Bq or subtreeph

Ò

A´1q.
A similar property holds for the other three calls of ComputeFrom in lines 10 and 12.

Proof. In line 9 of Algorithm 3 we call ComputeFrompδp˚,mergedRHpA,Mqq, tδp˚,mergedRHpA,Bqq;
δp˚, subtreephÒA´1qquq and suppose the algorithm processes subproblem δpF,Gq. We need to an-
alyze the three subtrees of T2 : G ´ rG, G ´ RG, RG which are obtained using the recursive
formula.

Notice that the subtree RG appears only in the call δpRF , RGq, the value of which we
can retrieve from the ∆ table. Let S “ G0, G1, . . . , Gk be the sequence of subtrees obtained
by uncontraction of the right main edge starting from mergedRHpA,Mq, up to mergedRHpA,Bq.
Formally, G0 “ mergedRHpA,Mq, Gk “ mergedRHpA,Bq and Gi “ Gi`1´ rGi`1 . Thus, for every
i ą 0 holds that Gi´ rGi P S. Now we need to consider subtrees Gi´RGi which also appear in
the recursive formula and possibly are not in S.

There are two cases two consider. First, if the right main edge of Gi is not heavy, then
Gi ´ RGi belongs to S. Otherwise, Gi ´ RGi R S. Let S1 be the set of subtrees obtained by
a sequence of uncontractions of the right main edge from subtreephÒA´1q. Observe, that in this
situation Gi´RGi belongs to S1. Furthermore, for all subtrees G1 P S1 holds that G1´R1G P S

1,
which ends the proof for line 9 of Algorithm 3. For computations in the remaining lines, the
analysis is symmetric.

What changes in the analysis of the procedure is that now there are not Op|H| log |H|q pruned
subtrees of T2 but Op|T v

2 | log |H|q, where v is the top node of H. More precisely, the heavy path
H itself might be relatively small, but there might be big subtrees connected to it. However,
every subtree connected to H is completely contracted (edge-by-edge) a constant number of
times on every level of GroupH recursion and thus the bound Op|T v

1 | log |H|q “ Op|T v
1 | log nq.

Recall that top node of every heavy path is light, so using equation (1) we compute the
overall number of subtrees of T2 considered during this part of the algorithm:

ÿ

v: light node in T2

|T v
2 | ¨ log n “

ÿ

v: light node in T2

|T v
2 | ¨ log n P Opn log2 nq

5.3 Final analysis

We have just showed an algorithm computing ∆ru, eÒs for all nodes u P T1 such that |T u
1 | ď n{b

and all darts up the tree T2, which considers Opn log2 nq pruned subtrees of T2 and Opn2{bq
of T1. At the beginning of Section 5 we described the second phase of the algorithm, which
avoids the heavy child in T1 and fills the remaining fields of ∆. It considers Opn log bq pruned
subtrees of T1 and Opn2q of T2. Thus, during the two phases, the whole algorithm visited
Opn3 log

2 n
b ` n3 log bq subproblems. Now we can choose the value of b “ log2 n to minimize the

above expression, which results in the overall complexity Opn3 log lognq. This approach already
improves state-of-the-art Klein’s Opn3 log nq algorithm and will be crucial for the understanding
of our Opn3q algorithm.

5.4 Encoding

Here we describe how to implement this algorithm in Opn3 log lognq space. As we proved, it
visits only this number of subproblems, but we need to have a constant-time access to each of
them. There are Opn4q all possible subproblems, and we cannot store their values in one array of

22

this size. Note that all the computations using the recursive formula from Lemma 2.1 take place
in two situations: either while avoiding parent or the heavy child or inside the ComputeFrom
procedure. As the reasoning is similar, we describe only the ComputeFrom procedure.

First, the input of the procedure consists of Opn2q entries, so we can pass them directly.
Then, there is a number of subproblems considered, where each of them consists of a pruned
subtree of T1 and T2. Let C1 and C2 be the set of pruned subtrees involved in the computations
from respectively T1 and T2. At the beginning of the procedure, we can enumerate all elements
of the sets C1 and C2 and create a local array of size |C1| ¨ |C2|. Next, for every pruned subtree
F from C1 we should store what is “the index” of LF , F ´LF , F ´ lF , RF , F ´RF , F ´ rF in C1

(provided it belongs to C1). Similarly for C2. Then in the dynamic program, we can look up all
the subsequent subproblems in Op1q time.

Recall, that in the analysis of the algorithm we estimated, that there are Op|C1| ¨ |C2|q

subproblems in this phase, so the bound on memory matches the bound on running time. Thus,
the memory used by the algorithm is also Opn3 log lognq. In Section 7 we will use a similar
technique to show, that it can be implemented even in Opn2q space.

6 Optimal Opn3q algorithm for unrooted case

We start with transforming both trees as in the Opn3 log log nq algorithm, that is we add auxiliary
edges for rootings, root them arbitrarily and finally make them binary. Let T1 and T2 denote the
transformed trees. From now on we assume that |T1| ď |T2| (otherwise we swap the trees) and
let m “ |T1|, n “ |T2|. In this section, we present an algorithm that computes the edit distance
between unrooted trees in Opnm2p1` log n

mqq time.
Again, the algorithm aims to fill the table ∆ru, ds :“ δpT u

1 , subtreepdqq from which it computes
the answer to the original problem. In the beginning we run Demaine et al.’s algorithm [12]
which computes δpT u

1 , T
v
2 q for all pairs of nodes u P T1 and v P T2 in Opnm2p1 ` log n

mqq time.
Now it remains to compute ∆rv, eÒs for all nodes v P T1 and all darts up the tree T2.

The algorithm first decomposes both trees into heavy paths. Then it processes heavy paths
in T1 in an arbitrary order. The order can be arbitrary, because all the “knowledge” about
different paths, that is values of δpT u

1 , T
v
2 q are already computed by Demaine et al.’s algorithm.

To avoid confusion, a heavy path of T1 we denote by P and of T2 by H For every heavy path P
in T1 the algorithm fills ∆rv, eÒs for all nodes v P P and darts up the tree T2. Now there is no
global parameter b, but instead of that, the algorithm uses mP , the size of the subtree rooted
in the top node of P . See Algorithm 5.

Algorithm 5 Computes the answer in phases.
1: for each P : heavy path in T1 do
2: u :“ top node of P
3: global mP :“ |T u

1 |

4: fill ∆rT v
1 , e

Òs for all v P P and all darts up the tree T2

We call all the computations for one heavy path a phase. In the following, we describe in
detail a single phase. As the presentation is involved, we break it into pieces and gradually
handle more and more difficult cases.

Roadmap. In the beginning, similarly as in the Opn3 log lognq algorithm, we first focus on the
case when T2 is a heavy path with single connected nodes, as in Figure 14. It already highlights
the difficulties that we will encounter while obtaining Opnm2p1` log n

mqq complexity. First, we

23

also assume that T1 is a full binary tree, which simplifies the analysis, because there are roughly
2k heavy paths with size m{2k.

In the next subsection, we relax the assumption on T1 and consider an arbitrary tree T1.
The change does not affect the algorithm at all (it still runs in phases for every heavy path of
T1), but now we know less about sizes of the heavy paths. In a technical lemma we show that,
even in this case, the algorithm also runs in Opnm2p1` log n

mqq time.
Next, we adapt the algorithm to handle arbitrary trees T2, as in the Opn3 log lognq approach.

The direct generalization runs in Opnm2p1 ` log2 n
mqq time, which is already Opn3q, but still

slower than Demaine et al.’s algorithm. The next step is to change the way of dividing the
interval in the divide and conquer phase and take into consideration, that subtrees connected to
one single heavy path have different sizes. This improvement finally leads to Opnm2p1` log n

mqq

running time, which we believe to be optimal.
In the next section we describe how to implement this algorithm in Opnmq space, but as for

now, we use Opn3q space.

6.1 Full binary tree and single heavy path

We first describe the phase for a single heavy path P of T1 for the case when T1 is a full binary
tree and T2 is a single heavy path. Recall that u is the top node of P , we defined mP “ |T

u
1 |

and let H be the single heavy path of T2.
In the beginning, the algorithm behaves similarly as in the ProcessHeavyPathH subrou-

tine of Opn3 log log nq approach: it first fills ∆ru, hÒi s, but now considers all pruned subtrees of
T u
1 , which we denote by ¨ in δp¨, subtreephÒi qq. The main difference is that it stops the divide and

conquer procedure GroupH earlier when the length of the considered interval B ´A is smaller
than mP . See Algorithm 6.

Algorithm 6 A slight change in the divide and conquer approach.
1: function GroupH(A,B,DatapA,Bq)
2: if B ´A ă mP then
3: InsideGroupHpA,B, . . .q
4: return
5: M :“ tpA`Bq{2qu
6: compute intermediate values and call recursively as in Algorithm 3

At this stage, the algorithm has already computed δp¨, subtreephÒA´1qq, δp¨, subtreeph
Ó

Bqq,
δp¨,mergedLHpA,Bqq and δp¨,mergedRHpA,Bqq but this is not sufficient to fill all the missing fields
of ∆, as B ą A. To prepare for further computations, the algorithm computes δp¨, subtreephÓBqY
thBuq from δp¨, subtreephÓBqq and δp¨, subtreeph

Ò

A´1q Y thA´1uq from δp¨, subtreephÒA´1qq. Before
we describe in detail the InsideGroupH procedure, we introduce some auxiliary notation.

Auxiliary notation. Let I be the set of edges in T2 that are “between” hA´1 and hB, formally:
I “ subtreephÓA´1qzsubtreeph

Ó

BqzthBu. See Figure 18 for an example.
Let D be the set of the “distinguished” edges: D “ thA´1, hBu and T2D be a set of four trees

with both main edges in D: T2D “ tG1, G2, psubtreeph
Ò

A´1q Y thA´1uq, psubtreeph
Ó

Bq Y thBuqu
where lG1 “ hA´1, rG1 “ hB and lG2 “ hB, rG2 “ hA´1. Notice that there are in total 6
possible trees with both main edges in D, but we disregard the trees psubtreephÒBq Y thBuq and
psubtreephÒA´1q Y thA´1uq.

Observation 6.1. We have already stored values of δp¨, T q for all the four trees T P T2D.

24

hA−1

hB

I :

Figure 18: I is the set of edges “between” hA´1 and hB.

Later on, we are interested only in the pruned subtrees with both main edges in D Y I. In
some contexts, while specifying a subset of pruned subtrees with specified main edges we will
write only a condition on them, for example, rlG “ hBs means tG : lG “ hBu. For instance,
the trees from the observation can be written as rG P T2Ds, so using this notation, we can
rephrase the above observation by saying that we have already computed δp¨, rG P T2Dsq. Recall
that we use the notation that T upxq

1 denotes the tree T u
1 after x contractions according to the

strategy avoiding the heavy child and let T up˚q
1 denote all possible pruned subtrees of this form:

T
up˚q
1 “ tT

upiq
1 : i ď |T u

1 |u.

Algorithm. On a high-level, the algorithm works in two steps. First, having the values of
δp¨, rG P T2Dsq, it computes δp¨, Gq for treesG with only one main edge inD always uncontracting
an edge from the same side. In the second step, for all the subproblems with both main edges in I,
it uses strategy avoiding the heavy child in T1. In other words it computes then δpT up˚q

1 , rlG, rG P
Isq. What is crucial, is that when it encounters a tree with at least one main edge in D, then
the value of the considered subproblem is already computed, stored and can be returned in a
constant time. See Algorithm 7.

25

Algorithm 7 Fills ∆rv, eÒs for all edges e P I.

1: function InsideGroupH(A,B, δp¨, subtreephÒA´1q Y thA´1uq, δp¨, subtreeph
Ó

Bq Y thBuq,

aaaaaaaaaaaaa δp¨,mergedRHpA,Bqq, δp¨,mergedLHpA,Bqq)
2: ComputeFrompδp¨, rlG “ hA´1sq, tδp¨,mergedRHpA,Bqq, δp¨, subtreeph

Ò

A´1qquq Ź right
3: store δpT up˚q

1 , rlG “ hA´1sq

4: ComputeFrompδp¨, rrG “ hA´1sq, tδp¨,mergedLHpA,Bqq, δp¨, subtreeph
Ò

A´1qquq Ź left
5: store δpT up˚q

1 , rrG “ hA´1sq

6: ComputeFrompδp¨, rrG “ hBsq, tδp¨,mergedRHpA,Bqq, δp¨, subtreeph
Ó

Bqquq Ź left
7: store δpT up˚q

1 , rrG “ hBsq

8: ComputeFrompδp¨, rlG “ hBsq, tδp¨,mergedLHpA,Bqq, δp¨, subtreeph
Ó

Bqquq Ź right
9: store δpT up˚q

1 , rlG “ hBsq
10: for i “ p|T u

1 | ´ 1q..0 do
11: ComputeFrompδpT upiq

1 , rlG, rG P Isq, δpT
upi`1q
1 , rlG, rG P Isqq Ź avoiding the heavy

child
12: if exists v : T

upiq
1 “ T v

1 then
13: fill ∆rv, eÒs for all edges l P I

In lines 3, 5, 7 and 9 we highlight, which values will be later used by the algorithm, the other
can be discarded. More precisely, in the computations in line 11, if the algorithm considers a tree
with one of the main edges in D, then it can use the stored value instead of using the recursive
formula.

Observation 6.2. For every tree G with both main edges in I holds that G´ lG, G´ LG, LG

have both main edges in D Y I. A similar property holds for the right direction.

From Observation 6.2 we have that all the computations in line 11 consider only the trees
with both main edges in DYI and no other kind of tree can appear. So there are Opm2

P q pruned
subtrees of T2 considered, as |I| ď 2mP (recall that B ´ A ă mP). Next, while avoiding the
heavy child of T u

1 we only consider pruned subtrees of T up˚q
1 , so there are OpmP q of them. Thus,

during all the computations in the loop in line 10 there are Opm3
P q considered subproblems.

Similarly, in all the earlier computations of the InsideGroupH procedure, there are Opm2
P q

pruned subtrees of T u
1 and OpmP q of T2, so in total there Opm3

P q subproblems considered in the
InsideGroupH procedure. Notice that for every group size of set I is at least mP {2. The sets
are disjoint, so there are at most 2n{mP groups on the heavy path in total. Thus, there are
Opnm2

P q pruned subtrees considered in all calls of the InsideGroupH procedure.
Now we bound the complexity of the whole ProcessHeavyPathH procedure, similarly as

in the analysis of the Opn3 log log nq algorithm. First, there are Op1 ` log n
mP
q recursive calls,

because the length of the interval is halved until it gets smaller than mP . Again, every edge of
T2 contributes to Op1q pruned subtrees on every level of recursion, so there are Opnp1` log n

mP
qq

subtrees of T2. We consider all the Opm2
P q pruned subtrees of T u

1 , so all the computations during
recursive calls visit Opnm2

P p1 ` log n
mP
qq subproblems. Adding Opnm2

P q pruned subtrees from
the calls of the InsideGroupH procedure we conclude that in total, during the whole phase for
one heavy path P of T1, the algorithm considers Opnm2

P p1 ` log n
mP
qq subproblems. Now we

need to sum this over all heavy paths P in T1. As T1 is a full binary tree of size m, we can write:

26

ÿ

PPT1

nm2
P

ˆ

1` log
n

mP

˙

ď n

logm
ÿ

i“0

2i
´m

2i

¯2
ˆ

1` log
n

m{2i`1

˙

“ nm2
logm
ÿ

i“0

1

2i

´

2` i` log
n

m

¯

“ nm2

˜

logm
ÿ

i“0

2` i

2i
` log

n

m

logm
ÿ

i“0

1

2i

¸

P O
´

nm2
´

1` log
n

m

¯¯

To conclude, the algorithm for darts up the tree T2 visits in total Opnm2p1 ` log n
mqq sub-

problems. Recall that Demaine et al.’s algorithm and the strategy for all darts up T2 from heavy
nodes visit the same number of subproblems. To conclude, we obtain that, in total, the whole
algorithm for full binary tree T1 and a single heavy path T2 runs in Opnm2p1` log n

mqq time.

6.2 Arbitrary tree and single heavy path

For the case of an arbitrary tree T1, the algorithm is the same as above, but now we need a
different analysis of the overall running time. For this purpose we first analyze properties of
function fpxq “ x2p1 ` ln n

x q which appears in complexity of various parts of the algorithm.

Lemma 6.3. Let fpxq “ x2p1` ln n
x q. If x, y satisfy 1 ď x ď y ă pm´ 1q{2, then:

(i) fptq is non-decreasing in the range r1, n{2q,

(ii) fp1q ` fpxq ď fpx` 1q,

(iii) if x ą 1 then: fpxq ` fpyq ď fpx´ 1q ` fpy ` 1q.

Proof. We prove (i) directly by computing derivative of f :

Bfptq

Bt
“
Bpt2p1` ln n

t qq

Bt
“ t

´

1` 2 ln
n

t

¯

ě 1` 2 ln
n

n{2
ě 0

Similarly, (ii) follows from the definition and inequalities: lnpxq ě 1´1{x for x ą 0 and n ě x`1:

fpx` 1q ´ fpxq ´ fp1q “ px` 1q2
ˆ

1` ln
n

x` 1

˙

´ x2
´

1` ln
n

x

¯

´ 1´ lnn

“ x2 ln
x

x` 1
` 2x

ˆ

1` ln
n

x` 1

˙

` 1` ln
n

x` 1
´ 1´ lnn

“ x2 ln
x

x` 1
` 2x

ˆ

1` ln
n

x` 1

˙

` ln
1

x` 1

ě x2
ˆ

1´
x` 1

x

˙

` 2x` p1´ px` 1qq “ 0

To prove (iii) we first show it for x “ y, that is: if x ą 1 then holds 2fpxq ď fpx´ 1q` fpx` 1q.

27

Now we also need that n ě m ą 2x:

fpx` 1q ` fpx´ 1q ´ 2fpxq “ x2 ln
x2

x2 ´ 1
` 2x ln

x´ 1

x` 1
` 2` ln

n2

x2 ´ 1

ě x2 ln
x2

x2 ´ 1
` 2x ln

x´ 1

x` 1
` 2` ln

p2xq2

x2 ´ 1

ě x2
ˆ

1´
x2 ´ 1

x2

˙

` 2x

ˆ

1´
x` 1

x´ 1

˙

` 2` ln 4

“ 1´
4x

x´ 1
` 2` ln 4

“
´4

x´ 1
` ln 4´ 1 ě 0 for x ě 12

For x ă 12 we calculate the exact value of the expression in the second line which is non-negative.
As we proved that (iii) holds for x “ y, now it is enough to show that:

B

By
pfpy ` 1q ` fpx´ 1q ´ fpxq ´ fpyqq ě 0.

This can be done as follows:

B

By

`

fpy ` 1q ` fpx´ 1q ´ fpxq ´ fpyq
˘

“ p2y ` 2q ln
n

y ` 1
´ 2y ln

n

y
` 1

“ 2y ln
y

y ` 1
` 2 ln

n

y ` 1
` 1

ě 2y

ˆ

1´
y ` 1

y

˙

` 2 ln
n

y ` 1
` 1

“ 2 ln
n

y ` 1
´ 1

ě 2 ln 2´ 1 ě 0

Recall that we need to bound the sum n
ř

P : heavy path in T1

´

m2
P

´

1` log n
mP

¯¯

, but now we
have no assumptions on the tree T1. For this we will use the following lemma:

Lemma 6.4. Let m be size of a tree T and n be an arbitrary number such that n ě m. Then:

ÿ

P : heavy path in T

m2
P

ˆ

1` log
n

mP

˙

“ O
´

m2
´

1` log
n

m

¯¯

Proof. We start with changing the logarithm to natural to simplify the following calculations,
hiding the constant factor under O. Let tpmq :“

ř

P : heavy path in T m
2
P

´

1` ln n
mP

¯

be the above
sum for a tree T of size m. Denoting by mi the total size of the i-th subtree hanging off the
heavy path containing the root of T , we obtain the following bound:

tpmq ď m2
´

1` ln
n

m

¯

`
ÿ

i

tpmiq where mi ď
m´ 1

2
and

ÿ

i

mi ď m´ 1 (2)

where the sum is over all subtrees connected to the heavy path from the root of T .
Now we use the Lemma 6.3 to bound from above the sum

ř

i fpmiq, in which mi ď pm´1q{2
and

ř

imi ď m ´ 1 (from (2)). As long as there are three non-zero mis, two of them are less
than pm ´ 1q{2 and we choose distinct indices i, j such that 1 ď mi ď mj ă pm ´ 1q{2. Then,
depending whethermi equals 1 or not, we apply (ii) or (iii) to decreasemi and increasemj by one,

28

not changing sum of the values. Hence, in the end, there are at most two non-zeromi’s, and they
are less than or equal to m{2. Next we apply (i) and finally obtain that:

ř

i fpmiq ď 2fpm{2q.
Using the above bound, equation (2) and applying the master theorem we obtain that tpmq P

Opm2p1` ln n
mqq.

The lemma finishes the analysis of the algorithm for an arbitrary tree and a single heavy
path, which runs in Opnm2p1` log n

mqq time.

6.3 Both trees arbitrary

Now we consider the case when both trees are arbitrary. First, we generalize the algorithm for
a single heavy path to arbitrary trees, as in the Opn3 log lognq approach. We start with the
heavy path H0 containing the root of T2 and call ProcessHeavyPathH0 , but need to change
the GroupH subroutine slightly. Now we do not terminate if B ´ A is small enough because
possibly there are significantly more than mP edges between them. Instead, we break recursion
if there is less than mP edges “between” hA´1 and hB, as earlier and in Figure 18. We denote
betweenpA,Bq as this set of edges. Moreover, when we reach A “ B and there is a heavy path
H 1 connected to H in the A-th node, then we recursively call ProcessHeavyPathH 1 . See
Algorithm 8.

Algorithm 8 Divide and conquer approach which terminates if the interval is smaller than mP .
1: function GroupH(A,B,DatapA,Bq)
2: if |betweenpA,Bq| ă mP then
3: call InsideGroupHpA,B, . . .q
4: return
5: if A “ B then
6: call ProcessHeavyPathH 1pδp¨, subtreepl

Ò

Aqqq

7: return
8: M :“ tpA`Bq{2qu
9: compute intermediate values and call recursively as in Algorithm 3

Note that in line 6 we have δp¨, subtreeplÒAqq, because subtreeplÒAq is either mergedLHpA,Aq or
mergedRHpA,Aq, depending on which side of H is li. We need to notice, that during computations
in line 3 we do not have computed values ∆ru, eÒs for edges e on heavy paths connected to H.
However, all subproblems of this form have both main edges in betweenpA,Bq, so they are
considered by the InsideGroupH subroutine and the missing fields of ∆ are filled then.

Notice that the changes in the procedure for a single heavy path H of T2 do not affect the
complexity, which is still OpnHm2

P p1` log nH
mP
qq where nH is the size of the subtree of T2 rooted

in the top node of H. Thus all the computations for a single heavy path P run in time:
ÿ

H: heavy path in T2 s.t. nHěmP

nHm
2
P

ˆ

1` log
nH
mP

˙

P O

ˆ

nm2
P

ˆ

1` log2
n

mP

˙˙

because
ř

H nH “ Opnp1` log n
mP
qq as the algorithm considers only heavy paths H of T2 such

that nH ě mP . Now using Lemma 6.4 we obtain, that the overall complexity of the algorithm
for the general case of both trees arbitrary is:

ÿ

P : heavy path in T1

nm2
P

ˆ

1` log2
nH
mP

˙

P O
´

nm2
´

1` log2
n

m

¯¯

which is Opn3q, as desired.

29

To reduce the complexity and obtainOpnm2p1`log n
mqq time, we need to modify the GroupH

procedure slightly. Our approach reminisces the telescoping technique from [7] and [11] in which
some nodes are less important than the others. Intuitively, considering an interval rA,Bs on a
heavy path H, we would like to divide it in such a way, to ensure that the big subtrees connected
to H are contracted smaller number of times. For this purpose, we need to look at the tree from
a different perspective.

Big nodes. Let big nodes be the nodes of T2 with subtree containing at least mP edges. Then
the big nodes form a top part of T2 with some small nodes connected to it. See Figure 19. We
also define that a big light node is called special if it has no big light descendant.

special

special

Figure 19: Big nodes constitute the gray upper part of the tree and a big light node is called
special if it has no big light descendant.

Now, instead of counting the edges in betweenpA,Bq we count the special nodes inside sub-
trees connected to the A,A` 1, . . . , B-th node on H and we denote the value as specialHpA,Bq.
Only when this value is 0, we again focus on betweenpA,Bq. See Figure 20 for an example of
how these values are computed.

specialspecial

1

2

3

4

5

path H

Figure 20: There are two special nodes in the tree and holds: specialHp1, 3q “ 2, specialHp3, 5q “
1 and specialHp2, 2q “ 0.

Using the notion of special nodes we can describe the algorithm in detail. If for the considered
interval rA,Bs it holds that specialpA,Bq “ 0, then the pivot is chosen as earlier: M :“ tpA `

30

Bq{2qu. In the other case we choose M to be the smallest index such that 2 ¨ specialpA,Mq ě
specialpA,Bq.

Excluding pivot from recursion. Moreover, now we exclude the M -th node from the sub-
sequent recursive calls and run GroupHpA,M ´ 1q and GroupHpM ` 1, Bq. The intuition
behind it is that the subtree connected to the M -th node will be big (possibly containing much
more than mP edges), so it might be worth not contracting it too often. In addition, we have
that 2 ¨ specialpA,M ´ 1q ď specialpA,Bq and 2 ¨ specialpM ` 1, Bq ď specialpA,Bq, so in the
subsequent recursive calls the value of specialpq is decreased at least by a factor of two. See
Algorithm 9.

Algorithm 9 Divide and conquer approach which terminates if the interval is smaller than mP .
1: function GroupH(A,B,DatapA,Bq)
2: if A ą B then
3: return
4: if specialpA,Bq ą 0 then
5: if A “ B then
6: call ProcessHeavyPathH 1pδp¨, subtreepl

Ò

Aqqq

7: return
8: else
9: M :“ mintk : 2 ¨ specialpA, kq ą specialpA,Bqu

10: else
11: if B ´A ă mP then
12: call InsideGroupHpA,B, . . .q
13: return
14: else
15: M :“ tpA`Bq{2qu

16: compute arguments for subsequent recursive calls:
17: call GroupHpA,M ´ 1,DatapA,M ´ 1qq
18: call GroupHpM,M,DatapM,Mqq
19: call GroupHpM ` 1, B,DatapM ` 1, Bqq

In the pseudo-code we also call GroupHpM,M,DatapM,Mqq, but it is only in order to reach
one of the final lines 6 or 12. Recall, that all the subroutines ProcessHeavyPathH , InsideGroupH

and the intermediate computations ComputeFrom run in Ops ¨m2
P q time (not including sub-

sequent calls), where s “ |IHpA,Bq|, the number of edges currently considered. So now we need
to sum the number of edges considered in all recursive calls together.

Final analysis. Consider an edge e P T2. Note that all calls InsideGroup consider disjoint
sets of edges, so e can contribute to at most one of them. Now we count triples pH 1, A,Bq such
that e P IH 1pA,Bq, that is the edge e is considered in the recursive call GroupH 1pA,Bq. Let Xe

be the set of such triples. Observe, that there are at most Op1` log n
mP
qq heavy paths H 1 on the

path from e to the root of T2 because we consider only heavy paths of size mP . See Figure 21.
Thus we have an upper bound on the number of triples with A “ B in Xe.

Now we aggregately count triples pH 1, A,Bq P Xe such that A ‰ B. First, observe that there
is at most one heavy path H, such that e P IHpA,Bq and specialHpA,Bq “ 0 because all the
heavy paths “above” have at least one big heavy path connected to them that contains e. In

31

e
H1

H2H3

Figure 21: An edge e is considered by all big heavy paths “above” it: H1, H2, H3 and there are
Op1` log n

mP
qq of them.

this case, there are at most Op1` log n
mP
q recursive calls, as every time length of the interval is

roughly halved and cannot become smaller than mP .
Second, as we pointed earlier, every time specialHpA,Bq ‰ 0, in every subsequent recursive

call this value is at least halved. As all the special heavy paths are disjoint and contain at least
mP edges, so there are at most n

mP
of them. Thus, there are also Op1` log n

mP
q recursive calls

with specialHpA,Bq ‰ 0.
Finally, at the bottom of the recursion we call InsideGroup procedure. All calls are applied

on disjoint subsets of edges and each of them consists of at mostmP edges. Recall that if the size
of the considered set of edges is x then the complexity of the procedure is Opm2

P ¨ x`mP ¨ x
2q.

Hence, the total complexity of all these calls is Opnm2
P q.

To conclude, every edge is considered in at most Op1` log n
mP
q recursive calls, so the total

number of edges considered in all recursive calls during the phase for a heavy path P of T1
is Opnp1 ` log n

mP
qq. Thus, the whole phase for a heavy path P runs in Opnm2

P p1 ` log n
mP
qq

time. Finally we can use Lemma 6.4 to obtain that the whole algorithm computing edit distance
between unrooted trees runs in Opnm2p1` log n

mqq time.

7 Implementation details

Currently, the above algorithm runs in Opnm2p1 ` log n
mqq time and space. In this section, we

show how to implement it in Opnmq space in the same time. Clearly, the tree T2 is not smaller
than T1, so, later on, we can focus only on it. There will be three difficulties to face.

First, now we cannot preprocess all the pruned subtrees of T2 because Opn2q is already too
much for us. Thus, given a pruned subtree G of T2, we need to be able to retrieve in a constant
time subtrees G´ lG, G´LG, LG, . . . and the value of δpH, Gq (the cost of contraction of all the
edges from G). For that purpose, we will use the classic algorithm for Lowest Common Ancestor
[5] that runs in linear space and answers queries for the lowest common ancestor (LCA) of two
nodes in constant time.

Second, we need to show how to perform the ComputeFrom computations in Opnmq space,
which is an order of magnitude less than the number of subproblems considered in the subroutine:
Opnm2q. This step will be done similarly as in Demaine et al.’s algorithm, even though now we
consider the unrooted case.

Finally, we need to take into the consideration the depth of the recursion of GroupH proce-
dure and count how much data is kept on the stack. We will show, that on every level of recursion
there is Opm2q data stored. As we proved, there are Op1` log n

mq levels of recursion, so using the
fact that log x ď x we get that the total memory kept on the stack is Opm2p1`log n

mqq “ Opnmq.

32

7.1 Preprocessing

Recall that every pruned subtree tree G is represented by its left and right main edges (lG and
rG). If they overlap, then the tree is of the form subtreepdq for some dart of T2. There are
only Opnq trees of this form, so we can preprocess them all, that is for every pruned subtree
G “ subtreepdq we store δpH, Gq and the pruned subtrees: G ´ lG, G ´ LG, LG, Now we
focus on one rooting of T2 but do not have to decompose it into heavy paths. We first run the
preprocessing phase that will allow us later to find LCApa, bq of two arbitrary nodes a, b in a
constant time and overall linear space, see [5].

Intermediate subtrees. We first show, how to retrieve pruned subtrees lG, G´lG, LG, G´LG

of a pruned subtree G, for the right side it will be symmetric. Clearly, we already have lG,
because we store the pruned subtree G as its both main edges lG and rG. Similarly, LG is
simply subtreeplÒGq or subtreepl

Ó

Gq, depending where is rG with respect to lG.

T2 :

lG rG

e1

e2

e3

e4
S1

S2

S3

S4

S5x

y

z

Figure 22: A pruned subtree G with main edges lG and rG has all the dashed edges contracted
and to the tree belong edges ei and their subtrees Si for i “ 1 . . . 5.

Let x and y be respectively the first and last nodes on the path from lG to rG and z “
LCApx, yq be their lowest common ancestor. See Figure 22. To obtain G1 “ G ´ LG we only
need to find its the left main edge, because the right main one does not change (provided that
lG ‰ rG). There are two cases: either lG1 is connected to right of the path x..z or to the left
of the path z..y. In the first case it is enough to remember for every node the first edge that is
connected to the left and to the right to its path to the root of T2 and then we can check if the
edge is below the node z or not. Otherwise, let t be the leftmost leaf in the right subtree of z
(preprocessed, found by traversing down the tree going always left if possible, otherwise right).
In Figure 22 the node t is inside subtree S3. Then lG1 is the edge leading to the left child of
LCApt, yq. As for the subtree G ´ lG, if LG is empty, then G ´ lG “ G ´ LG, otherwise we
return the left main edge of subtreeplÓGq.

Cost of contraction. Now we show how to retrieve the value of δpH, Gq, the cost of contrac-
tion of all the edges from G. Note that it is the sum of costs of contraction of all edges “to the
right” of the path between lG and rG plus cdelplGq ` cdelprGq. For example, in Figure 22, we

33

need to contract lG and rG and all edges ei and their subtrees Si for i “ 1 . . . 5. Observe that
to contract all edges of G we need to contract all edges to the right of the path pz . . . xq and to
the left of pz . . . yq. Also notice that the path pz . . . xq is effectively the path proot . . . xq without
its prefix proot . . . zq. Thus we can use prefix sums and for every node store only the cost of
contraction of all edges to the left or right to the path from the root of T2 to the node.

Note that the above observations hold for all possible pruned subtrees of T2, for instance
also in the case for a subtree G1 such that lG1 “ rG and rG1 “ lG. To conclude, it is enough
to remember a constant number of values in every node to be able to retrieve all intermediate
pruned subtrees and compute the cost of contraction of all edges of a pruned subtree of T2 in a
constant time.

7.2 Computations in limited space

In this subsection, we describe how to implement the ComputeFrom procedure inOpnmq space.
Observe that each time we call ComputeFrom subroutine, there is a set of pruned subtrees
of one tree (either T1 or T2) and two pruned subtrees of the other: the initial and target. For
instance, when we call ComputeFrompδp¨, subtreephÒ6qq, δp¨, subtreeph

Ò
5qqq, then actually there

are considered all pruned subtrees “down” T1, subtreeph
Ò
5q is the initial tree and subtreephÒ6q is

target. By a pruned subtree “down” T1 we denote a pruned subtree obtained by a sequence of
contractions of a main edge from the root, starting from T1

2. Clearly in this example there are
considered Opm2q pruned subtrees of T1 and Opnq of T2. What is important, is that the target
tree is obtained from the initial one by a sequence of uncontractions of a main edge always in
the same direction. Later on, we assume, that in this step we always uncontract the left main
edge.

As in Section 5.4 we first enumerate all pruned subtrees that are considered during this
step to be able to retrieve subsequent trees in the dynamic program in constant time. Now the
difficulty lies in the fact that we cannot create the table of size Opnm2q and we overcome it
using an approach based on the one described by Demaine et al. [12]. On a high level, we fix a
right main edge of pruned subtree F of T1 and consider all possible left edges of F . Then there
are Opmq candidates for lF and Opnq candidates for pruned subtree G of T2. The key insight is
that while contracting the left main edge of a tree, its right main edge does not change unless it
overlaps with the left one (which is the case when there is only one edge from the root). Using
this observation, we can store only the Opnmq values at any time. However, we need to describe
the details carefully.

We first describe in detail implementation of the ComputeFrom subroutine for the case
when the strategy considers only pruned subtrees “down” T1, what is sufficient to implement all
the algorithms for tree edit distance between rooted trees in Opnmq space. Then we show how
to handle also pruned subtrees “up” T2, which is needed in our algorithms for tree edit distance
between unrooted trees.

Pruned subtrees “down” T1. It might be easier to think, that now we describe how to
implement ComputeFrompδp¨, subtreephÓ5qq, δp¨, subtreeph

Ó
6qq in Opnmq space. In the beginning,

we provide an equivalent definition of trees “down” T1 that will be useful to implement the
ComputeFrom subroutine, see Figure 23 and Lemma 7.1.

Lemma 7.1. For every non-empty pruned subtree F “down” T1 holds that either lF “ rF or lF
is strictly to the left of the path from the root to rF .

2Recall that by T1 in this context we again denote subtreepr1q, where r1 is the dart corresponding to the initial
rooting of T1.

34

T1 :

rF

Figure 23: Every pruned subtree F “down” T1 has its left main edge lF either equal to rF or
to the left of the path from root to rF . All the candidates for lF are marked with the dashed
edges.

Proof. It is enough to show that for every pruned subtree F with this property, F´lF and F´rF
also have this property. This holds from the analysis of three cases: when lF “ rF , lF ‰ rF and
subtree of the contracted edge is non-empty or lF ‰ rF and subtree of the contracted edge is
empty.

Let S2 be the set of all intermediate pruned subtrees of T2 obtained by a sequence of un-
contractions of the left main edge from the initial tree to target. Now the algorithm considers
candidates for the right main edge of the tree in T1 in bottom-up order. Then it computes edit
distance between all pruned subtrees “down” T1 with the specific right main edge and all trees
from S2. It also needs to store explicitly values of δpF,Gq for trees F of the form subtreeprÓqYtru
for r P T1 and G P S2, because the trees with both main edges overlapping need special attention.
See Algorithm 10 for details.

Algorithm 10 Divide and conquer approach which terminates if the interval is smaller thanmP .
1: function ComputeFrom(δp¨, targetq, δp¨, initialq)
2: S2 :“ set of all intermediate pruned subtrees of T2 between initial and target tree
3: create arrays C and D of size rmsrns
4: create array RESULT of size rm2s

5: for each edge r P T1 in bottom-up order do
6: S1 :“ tF : “down” T1 and rF “ ru
7: F 1 “ subtreeprÓq Y tru
8: compute CrF 1, Gs :“ δpF 1, Gq for all G P S2
9: RESULT rF 1s :“ CrF 1, targets

10: create array X of size rmsrns
11: compute XrF,Gs :“ δpF,Gq for all F P S1, G P S2
12: for each F P S1 do
13: RESULT rF s :“ XrF srtargets
14: u :“ the endpoint of r that is closer to the root of T1
15: for each G P S2 do
16: DrT u

1 , Gs :“ XrT u
1 , Gs

17: return RESULT

Clearly, this subroutine runs in Opnmq space. The arrays C and D are partially filled in
every step of the main loop: C stores edit distance between trees of T1 with one edge from the

35

root and in D there are trees T u
1 where u is the endpoint of r that is closer to the root. Finally,

we need to prove that all the required values during computations in lines 8 and 11 are available
in the local arrays that we store. In these lines, we process subtrees in the order of increasing
sizes. Recall that we assume that we always uncontract the left main edge.

First consider the step in line 11. While computing δpF,Gq for F P S1, G P S2ztinitialu
where lF ‰ rF we need to retrieve value of 4 subproblems and we show that each time it is
available in one of the local arrays:

• δpF,G´ lGq “ XrF,G´ lGs, because G´ lG P S2,

• δpF ´ lF , Gq “ XrF ´ lF , Gs, because F ´ lF P S1,

• δpF ´ LF , G´ LGq “ δpF 1, G´ LGq “ CrF 1, G´ LGs, because G´ LG P S2,

• δpLF , LGq “ ∆rlÓF , l
Ó

Gs – possibly LG R S2, so we need to use the value from ∆ computed
in an earlier stage.

Similarly, to compute δpF 1, Gq for G P S2ztinitialu in line 8 we have the following subproblems
to consider:

• δpF 1, G´ lGq “ CrF 1, G´ lGs, because G´ lG P S2,

• δpF 1 ´ lF 1 , Gq “ δpLF 1 , Gq “ DrLF 1 , Gs which has already been computed, because we
consider edges r in bottom-up order,

• δpF ´ LF 1 , G ´ LGq “ δpH, G ´ LGq which we can retrieve in constant time after the
preprocessing described in Section 7.1,

• δpLF 1 , LGq “ ∆rlÓF 1 , l
Ó

Gs – as above.

In both variants, in the last case of δpLF , LGq and δpLF 1 , LGq we used the values from the
∆ table, which were computed by Demaine et al.’s algorithm in the very beginning. However,
we can also use the same implementation inside Demaine et al.’s algorithm, but then have to
carefully analyze, that indeed the used values have already been computed and stored in the
table.

Observe, that the very same implementation works for the case, when there are two input ta-
bles, for example ComputeFrompδp¨,mergedRHpA,Mqq, tδp¨,mergedRHpA,Bqq; δp¨, subtreeph

Ò

A´1qquq.
Note that in this case the set S2 also contains the trees obtained in the G ´ LG move and
the subsequent ones. It needs to be slightly larger, because we need to ensure that for every
G P S2ztinitialu both G´ lG and G´LG belong to S2, which is the case as proved in Lemma 5.2.
Similarly, note that it does not make any difference when we consider only pruned subtrees of
T1 of size bounded from above, i.e., smaller than n{b (in the case marked with ˚).

Pruned subtrees “down” and “up” T2. Now we need to slightly modify this approach,
because in the InsideGroup subroutine we consider also pruned subtrees “up” T2: in line 11 of
Algorithm 7 we call ComputeFrompδpT upiq

1 , rlG, rG P Isq, δpT
upi`1q
1 , rlG, rG P Isqq. In this case,

we need to consider all possible pruned subtrees of T2 defined by their two main edges from I.
We do it in two steps. First, is symmetric to the Algorithm 10 for all pruned subtrees “down”
T2, that is trees G with lG to the left of the path from root of T2 to rG (marked with dashed
lines in Figure 23) and the tree subtreeprÓGq Y trGu (with lG “ rG). The only difference is that
now the roles of T1 and T2 are switched.

36

The second step is for all the remaining pruned subtrees of T2, with the left main edge not
to the left of the path from the root to rG (marked with solid lines in Figure 23). By the tree
with lG “ rG we mean subtreeprÒGq Y trGu. It is done similarly, but now we need to consider
edges r in top-down order and store D1rF, subtreepeÒqs, to be able to handle also the case of
G1 “ subtreeprÒq Y tru. We also have to simultaneously fill the missing values of ∆ru, eÒs inside
the procedure, because these have been already filled only for edges from the heavy path H, not
those from the connected small subtrees. To conclude, with these two steps we can implement
the ComputeFrom subroutine in Opnmq space.

We also need to elaborate more on the InsideGroup procedure, in which there are consid-
ered pruned subtrees G such that lG, rG P I, but then the subsequent subtrees might have a
main edge inside I, in D. However, we have already computed and values of these subproblems
in lines 3,5,7 and 9 as mentioned in Observation 6.2, so can retrieve them in a constant time.
To sum up, also the InsideGroup and all computations inside GroupH procedure also fit in
the desired Opnmq space.

7.3 Total memory on recursion stack

In the previous subsection we showed how to implement all the intermediate computations inside
GroupH , InsideGroup and ComputeFrom in Opnmq space. Clearly, these computations are
disjoint, that is every time we run ComputeFrom we can use the one and very same tables
C,D of size Opnmq and we only need to store separately inputs and outputs to the procedure.

Recall that during all the computations in T2 we not always consider the whole tree T1 and
its all edges. All the computations take into consideration the heavy path P from T1 and only
the mP edges from the subtree T u

1 of its top node u. Then we have the following lemma about
the size of tables passed to and from the functions:

Lemma 7.2. For every call of function GroupH , InsideGroup or ComputeFrom, size of
input and returned tables is Opm2

P q.

Proof. The lemma clearly holds when we have a table of edit distance between a pruned subtree
from T2 and a set of pruned subtrees of T u

1 because there are Opm2
P q of them. The only

case when we consider many pruned subtrees of T2, is in the ComputeFrompδpT upiq
1 , rlG, rG P

Isq, δpT
upi`1q
1 , rlG, rG P Isqq call, but then there are also Opm2

P q of them, as the set I contains
at most mP elements.

Thus every recursive call pushes Opm2
P q values on the stack. From the analysis of Algorithm 9

we know that the depth of the recursion is Op1` log n
mP
q, so for the heavy path P there are in

total Opm2
P ¨ p1` log n

mP
qq values stored on the recursion stack. Using the inequality log x ď x,

we finally obtain that throughout the whole algorithm, there is OpnmP q values on the stack.
Adding the auxiliary tables of the overall size Opnmq which are shared among ComputeFrom
calls, table ∆ and all the space used by Demaine et al.’s algorithm, we conclude that the whole
algorithm computing edit distance between unrooted trees can be implemented in Opnmq space.

Theorem 7.3. The algorithm computing edit distance between unrooted trees runs in Opnm2p1`
log n

mqq time and Opnmq space.

37

8 Lower bound

In this section, we restate known lower bounds for the problem of the edit distance between
rooted trees (call it rooted TED) and prove that they also hold for unrooted trees. First,
Demaine et al. [12] proved the following lower bound for decomposition algorithms:

Theorem 8.1 ([12]). For every decomposition algorithm and n ě m, there exist trees F and G
of sizes Θpnq and Θpmq such that the number of relevant subproblems is Ωpm2np1` log n

mqq.

which matches the complexity of the algorithm they provided. Recently, Bringmann et al. [8]
proved, that a truly subcubic Opn3´εq algorithm for rooted TED trees with n nodes is unlikely:

Theorem 8.2 ([8]). A truly subcubic algorithm for tree edit distance on alphabet size |Σ| “ Ωpnq
implies a truly subcubic algorithm for APSP. A truly subcubic algorithm for tree edit distance
on sufficiently large alphabet size |Σ| “ Op1q implies an Opnkp1´εqq algorithm for Max-Weight
k-Clique.

which makes the following conjecture probable:

Conjecture 8.3 ([8]). For any ε ą 0 Tree Edit Distance on two n-node trees cannot be solved
in Opn3´εq time.

8.1 Unrooted case is also hard

Now we show a reduction from rooted TED to the same problem for unrooted trees (unrooted
TED). It increases the number of nodes of a tree and size of the alphabet by a constant number,
so the lower bounds from the rooted case will also apply for the unrooted case.

Given an instance I “ pT1, T2,Σq of rooted TED we want to construct an instance I 1 “
pT 11, T

1
2,Σ

1q of unrooted TED such that, given an optimal solution of I 1 it is possible to obtain
an optimal solution of I. Clearly, it is not enough to set I 1 “ I, because it might be possible to
change rooting of one of the trees (say T 12) to obtain a smaller edit distance than between rooted
T1 and T2. That is actually the point in the problem of unrooted TED.

We need a gadget which ensures, that even if we allow all possible rootings, from every
optimal rooting of T 11 and T 12 it is possible to obtain an optimal solution for T1 and T2. It is
enough to add two edges from the root as shown in Figure 24 and appropriately set costs of
contraction and relabeling of the fresh labels #i R Σ. They must satisfy that the new edges
cannot be contracted and must be matched only with the corresponding edge of the same label
in the other tree. More precisely, the costs are set as follows: cdelp#iq “ 8, cmatchp#i,#iq “ 0
and cmatchp#i, αq “ 8 for α ‰ #i.

Clearly, in every optimal solution OPT 1 of I 1, the new edges with labels #i are not contracted
and are matched with each other. Observe, that no matter how the trees are rooted in OPT 1,
we can rotate both trees simultaneously in such a way, that #1 is outgoing from the root as in
Figure 24. Informally, we can think of holding the trees by the edge with #1, with the edge
with #2 underneath and the original tree hanging down in the initial rooting.

To conclude, our reduction adds only 2 new nodes to every tree and 2 new fresh labels to the
alphabet and allows retrieving an optimal solution of I from an optimal solution of I 1. Thus,
all lower bounds from the rooted TED hold also for unrooted TED. Particularly, we proved
that every decomposition algorithm for unrooted TED runs in Ωpm2np1` log n

mqq time which
matches the complexity of our algorithm. Finally, it is unlikely that there exists a truly subcubic
Opn3´εq algorithm for unrooted TED.

38

#1

#2

T : T ′ :

Figure 24: A gadget changing an instance of rooted TED to unrooted TED.

References

[1] T. Akutsu, D. Fukagawa, and A. Takasu. Approximating tree edit distance through string
edit distance. Algorithmica, 57(2):325–348, Feb. 2010.

[2] R. Alur, L. D’Antoni, S. Gulwani, D. Kini, and M. Viswanathan. Automated grading of
dfa constructions. In IJCAI, pages 1976–1982, 2013.

[3] T. Aratsu, K. Hirata, and T. Kuboyama. Approximating tree edit distance through string
edit distance for binary tree codes. Fundam. Inf., 101(3):157–171, Aug. 2010.

[4] J. Bellando and R. Kothari. Region-based modeling and tree edit distance as a basis for
gesture recognition. In ICIAP, pages 698–703, 1999.

[5] M. A. Bender and M. Farach-Colton. The LCA problem revisited. In LATIN, pages 88–94,
2000.

[6] P. Bille. A survey on tree edit distance and related problems. Theor. Comput. Sci., 337(1-
3):217–239, June 2005.

[7] N. Blum and K. Mehlhorn. On the average number of rebalancing operations in weight-
balanced trees. Theor. Comput. Sci., 11(3):303 – 320, 1980.

[8] K. Bringmann, P. Gawrychowski, S. Mozes, and O. Weimann. Tree edit distance cannot be
computed in strongly subcubic time (unless APSP can). CoRR, abs/1703.08940, 2017.

[9] P. Buneman, M. Grohe, and C. Koch. Path queries on compressed xml. In VLDB, pages
141–152, 2003.

[10] S. S. Chawathe. Comparing hierarchical data in external memory. In VLDB, pages 90–101,
1999.

[11] R. Cole, L.-A. Gottlieb, and M. Lewenstein. Dictionary matching and indexing with errors
and don’t cares. In STOC, pages 91–100, 2004.

[12] E. D. Demaine, S. Mozes, B. Rossman, and O. Weimann. An optimal decomposition
algorithm for tree edit distance. ACM Trans. Algorithms, 6(1):2:1–2:19, Dec. 2009.

39

[13] S. Dulucq and H. Touzet. Decomposition algorithms for the tree edit distance problem. J.
Discrete Algorithms, 3(2-4):448–471, 2005.

[14] P. Ferragina, F. Luccio, G. Manzini, and S. Muthukrishnan. Compressing and indexing
labeled trees, with applications. J. ACM, 57(1):4:1–4:33, Nov. 2009.

[15] C. M. Hoffmann and M. J. O’Donnell. Pattern matching in trees. J. ACM, 29(1):68–95,
January 1982.

[16] E. Ivkin. Approximating tree edit distance through string edit distance for binary tree
codes. B.sc. thesis, Charles University in Prague, 2012.

[17] P. Klein, S. Tirthapura, D. Sharvit, and B. Kimia. A tree-edit-distance algorithm for
comparing simple, closed shapes. In SODA, pages 696–704, 2000.

[18] P. N. Klein. Computing the edit-distance between unrooted ordered trees. In ESA, pages
91–102, 1998.

[19] P. N. Klein, T. B. Sebastian, and B. B. Kimia. Shape matching using edit-distance: An
implementation. In SODA, pages 781–790, 2001.

[20] M. Pawlik and N. Augsten. Efficient computation of the tree edit distance. ACM Trans.
Database Syst., 40(1):3:1–3:40, Mar. 2015.

[21] J. R. Rico-Juan and L. Micó. Comparison of aesa and laesa search algorithms using string
and tree-edit-distances. Pattern Recogn. Lett., 24(9-10):1417–1426, June 2003.

[22] T. B. Sebastian, P. N. Klein, and B. B. Kimia. Recognition of shapes by editing their shock
graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5):550–571,
May 2004.

[23] B. A. Shapiro and K. Z. Zhang. Comparing multiple RNA secondary structures using tree
comparisons. Comput. Appl. Biosci., 6(4):309–318, Oct 1990.

[24] D. Shasha and K. Zhang. Fast algorithms for the unit cost editing distance between trees.
J. Algorithms, 11(4):581–621, Dec. 1990.

[25] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. Journal of Computer
and System Sciences, 26(3):362 – 391, 1983.

[26] K.-C. Tai. The tree-to-tree correction problem. J. ACM, 26(3):422–433, July 1979.

[27] R. A. Wagner and M. J. Fischer. The string-to-string correction problem. J. ACM,
21(1):168–173, Jan. 1974.

[28] X. Yao, B. Van Durme, C. Callison-Burch, and P. Clark. Answer extraction as sequence
tagging with tree edit distance. In NAACL-HLT, pages 858–867, 2013.

40

	Introduction
	Preliminaries
	Naming convention
	Dynamic programming

	Edit distance between rooted trees
	Klein's O(n3logn) algorithm
	Intermediate O(n3loglogn) algorithm
	Demaine et al.'s O(n3) algorithm
	Bottom-up perspective

	Back to unrooted case
	Slight modifications

	O(n3loglogn) algorithm for unrooted case
	Single heavy path T2
	Arbitrary tree T2
	Final analysis
	Encoding

	Optimal O(n3) algorithm for unrooted case
	Full binary tree and single heavy path
	Arbitrary tree and single heavy path
	Both trees arbitrary

	Implementation details
	Preprocessing
	Computations in limited space
	Total memory on recursion stack

	Lower bound
	Unrooted case is also hard

