
Finite Satisfiability of Some Extensions
of the Unary Negation Fragment

(Skończona spełnialność pewnych rozszerzeń logiki z unarną negacją)

Daniel Danielski

Praca magisterska

Promotor: dr hab. Emanuel Kieroński

Uniwersytet Wrocławski
Wydział Matematyki i Informatyki

Instytut Informatyki

17 sierpnia 2018

Abstract

We consider two extensions of the unary negation fragment of first-order logic. For
the first, in which arbitrarily many binary symbols may be required to be inter-
preted as equivalence relations, we show the finite model property. More specifically,
we prove that every satisfiable formula has a model of at most doubly exponen-
tial size. We argue that the finite satisfiability (= satisfiability) problem for this
logic is 2-ExpTime-complete. For the second, the unary negation fragment with
arbitrary number of transitive relations, we show that its finite satisfiability prob-
lem is 2-ExpTime-complete and that every finitely satisfiable formula has a triply-
exponential model. Our result actually holds for a more general setting in which one
can require that some binary symbols are interpreted as arbitrary transitive rela-
tions, some are interpreted as partial orders and some as equivalences. Additionally
we consider finite satisfiability of two extensions of both primary logics. The first is
a restricted variant of the guarded negation fragment with equivalence or transitive
relations. In the second we add inclusions of binary relations.

Rozważamy dwa rozszerzenia logiki z unarną negacją. W pierwszym możemy
żądać, aby dowolnie wiele relacji binarnych było interpretowanych jako równoważ-
ności. Pokazujemy własność modelu skończonego. Co więcej, dowodzimy, że każda
spełnialna formuła ma model wielkości podwójnie wykładniczej. Argumentujemy, że
problem skończonej spełnialności, tożsamy w tym wypadku z problemem spełnial-
ności, jest 2-ExpTime-zupełny. W przypadku drugiego rozszerzenia, logiki z unarną
negacją i dowolną liczbą relacji przechodnich, pokazujemy, że problem skończonej
spełnialności jest 2-ExpTime-zupełny, a każda skończenie spełnialna formuła ma
model potrójnie wykładniczej wielkości. Okazuje się, że nasz wynik jest również praw-
dziwy w nieco ogólniejszym scenariuszu, w którym możemy wymagać, żeby pewne
symbole były interpretowane jako dowolne relacje przechodnie, pewne jako porządki
częściowe, a pewne jako równoważności. Dodatkowo rozważamy dwa rozszerzenia
powyższych logik: do pewnego ograniczonego fragmentu logiki ze strzeżoną negacją
oraz o zawierania relacji binarnych.

Contents

1 Introduction 7

2 Preliminaries 13

2.1 Logics, structures, types and functions 13

2.2 Normal form, witnesses and basic facts 14

2.3 Plan of small model constructions . 15

3 Tree-like models 19

3.1 Declarations . 20

3.2 Shortening transitive paths . 23

3.3 Regular tree-like models . 25

4 Small model theorem for UNFO+EQ 27

4.1 Pattern components . 29

4.2 Joining the components . 31

4.3 Correctness of the construction . 32

4.4 Size of models and complexity . 36

5 Small model theorem for UNFO+TR 39

5.1 Pattern components . 41

5.2 Joining the components . 44

5.3 Correctness of the construction . 44

5.4 Size of models and complexity . 49

6 Extensions 53

5

6 CONTENTS

6.1 1-dimensional guarded negation fragment 53

6.2 Inclusions of binary relations . 55

6.3 Combining the two decidable extensions 56

Bibliography 59

Chapter 1

Introduction

Searching for attractive fragments of first-order logic is an important theme in theo-
retical computer science. Here, by an ‘attractive fragment’ we mean a fragment with
reasonably simple and elegant definition, sufficient expressive power and which, at
the same time, has decidable satisfiability (a problem of deciding whether a formula
has a model). Such properties make a fragment potentially suitable for use in various
automated reasoning tasks.

Several seminal decidable fragments of first-order logic were identified. Proba-
bly two most important ones are the two-variable logic, FO2, [25], and the guarded
fragment, GF, [2]. The restriction of FO2 is that it uses only two variables and
thus can speak non-trivially about only relations of arity one or two. GF, on the
other hand, requires quantifiers to be appropriately relativized by atomic formulas,
called guards. Both FO2 and GF have decidable satisfiability problem. For FO2 it is
NExpTime-complete [13], for GF—2-ExpTime-complete and ExpTime-complete
when the number of variables or the arity of relations is bounded [12]. Both have the
finite model property, that is every satisfiable formula has a finite model, and GF has
a tree-like model property—every satisfiable formula has a model of tree-like shape.
What is also important, both FO2 and GF contain modal logic, a formalism whose
variations, including description logics, have been successfully applied in many areas
of computer science.

Recently another formalism extending modal logic, called the unary negation frag-
ment, UNFO, was proposed by ten Cate and Segoufin [27]. In this restriction of
first-order logic negation is allowed only in front of subformulas with at most one
free variable. UNFO turns out to have many good algorithmic and model theoretic
properties, including the finite model property, a tree-like model property and the
decidability of the satisfiability problem. The satisfiability problem is 2-ExpTime-
complete, this time even if the number of variables is bounded (already three vari-
ables suffice for 2-ExpTime-hardness). Moreover UNFO may be interesting for the
database community since it can express, e.g., unions of conjunctive queries, their
negations, and the so called frontier-one tuple generating dependencies [3]. This

7

8 CHAPTER 1. INTRODUCTION

allows us to solve some interesting instances of a classical problem from database
theory, called (finite) open-world query answering, using (finite) satisfiability proce-
dures for UNFO.

A serious weakness of the expressive power of UNFO, shared with FO2 and GF,
is that it cannot express transitivity of a binary relation, nor related properties, like
being an equivalence, a partial order or a linear order. This is a severe limitation,
since for example transitive relations can be used in database applications (consider
relations like greater-than or part-of) and equivalences play some role in modal and
epistemic logics as well as in XML reasoning [5, 6]. Thus it is natural to think about
extensions of FO2, GF or UNFO, in which some distinguished binary symbols may be
explicitly required to be interpreted as transitive (or equivalence) relations. It turns
out that such extensions for both FO2 and GF are undecidable. Moreover, even the
intersection of FO2 and GF becomes undecidable, already in the presence of just
two transitive relations [19, 18] or three equivalence relations [22, 18]. Some positive
results were obtained for FO2 and GF only with one transitive relation [24, 19] or
two equivalences [21] or when the transitive (equivalence) relations are allowed only
as guards [26, 19, 23]

UNFO turns out to be an exception here, since its satisfiability problem remains
decidable in the presence of arbitrarily many equivalence or transitive relations.
We show this by reducing the satisfiability problem for UNFO with equivalences,
UNFO+EQ, to the one for UNFO with transitive relations, UNFO+TR. The latter
embeds into both the guarded negation fragment, GNFO, with transitive relations re-
stricted to non-guard positions (for more about this logic see Chapter 6) and UNFO
with regular path expressions. The satisfiability problem for the last two logics was
shown decidable and 2-ExpTime-complete, see [1] and [17], respectively.

Both the above mentioned decidability results are obtained by employing tree-
like model properties of the logics and then using some automata techniques. Since
tree-like unravelings of models are infinite, such approach works only for general
satisfiability, and gives little insight into the decidability/complexity of the problem
of determining satisfiability of formulas over finite models, the finite satisfiability
problem. In computer science, the importance of decision procedures for finite satis-
fiability arises from the fact that most objects about which we may want to reason
using logic, e.g., databases and programs, are finite. Thus the ability of solving only
the general satisfiability problem may not be fully satisfactory.

In this thesis we show two main results. We prove that UNFO+EQ has the finite
model property. It follows that the finite satisfiability and the general satisfiability
problems for the considered logic coincide, and, due to the above mentioned re-
duction to general satisfiability of UNFO+TR, can be solved in 2-ExpTime. The
corresponding lower bound can be obtained even for the two-variable version of
the logic, in the presence of just two equivalence relations. Furthermore we con-
sider finite satisfiability problem for UNFO+TR. Note that UNFO+TR does not

9

have the finite model property—just look at the following formula with transitive T ,
∀x∃yT (x, y) ∧ ∀x¬T (x, x), satisfiable only in infinite models. However, we extend
some ideas used to obtain the previous result and apply them to show 2-ExpTime-
completeness of this problem. En route to this we obtain a triply exponential bound
on the size of minimal models of finitely satisfiable UNFO+TR formulas. Actually,
our results hold for a more general setting, in which some relations may be required
to be equivalences, some as partial orders, and some other just as arbitrary transi-
tive relations. Returning to our database motivation, we get the decidability of the
finite open-world query answering for unions of conjunctive queries against frontier-
one TGDs with equivalences, partial orders and arbitrary transitive relations. For
more details about query answering with transitive data see [1].

To get a glimpse of what problems we encounter in the case of extensions of
UNFO, let us compare UNFO+EQ with GF2+EG—another logic that is decidable
in the presence of arbitrarily many equivalence relations. The decidability of the
satisfiability problem for both GF2+EG and UNFO+EQ can be shown relatively
easily, by exploiting tree-based model properties for both logics. The analysis of the
corresponding finite satisfiability problems is more challenging. It turns out that
the difficulties arising when considering GF2+EG and UNFO+EQ are of different
nature. The main problem in the case of GF2+EG is that it allows to restrict some
types of elements to appear at most once in every abstraction class. However, one
can always construct models in which every pair of elements is connected by at most
one equivalence. On the other hand, inequalities in UNFO+EQ trivialize and we do
not have any problem with duplicating any elements, but UNFO+EQ allows for a
non-trivial interaction among equivalences and this seems to be the main source of
obstacles. Differences similar in spirit also appear in the case of transitive relations.

Our solutions employ a novel (up to our knowledge) inductive approach to
build finite models, starting from some particular models. In the base of induction
we construct some initial fragments in which none of the equivalences (transitive
relations) play an important role. Such fragments are then joined into bigger and
bigger structures, in which more and more equivalences (transitive relations) become
significant.

We further transfer both our main results to the intersection of GNFO, [4],
with equivalence relations (transitive relations) on non-guard positions and the one-
dimensional fragment [14], BGNFO1+EQ (BGNFO1+TR). A formula is one-dimen-
sional if its every maximal block of quantifiers leaves at most one variable free.
Moving from UNFO to this restricted variant of GNFO significantly increases the
expressive power.

Motivated mainly by examples from description logics we also try to strengthen
our results by considering some extensions of UNFO+EQ and UNFO+TR covering
a combination of role hierarchies and inverse roles (see, e.g. [15, 10]). In addition to
an input formula ϕ we are given a set of inclusions of relations H of the form B1 ⊆

10 CHAPTER 1. INTRODUCTION

B2, where B1 and B2 are arbitrary (inverses of), possibly equivalence (transitive),
binary relations. We argue that the problems of verifying if ϕ has a finite model
respecting H are decidable and remain 2-ExpTime-complete. (The corresponding
general satisfiability problems are decidable as well, in the same complexity class, by
much simpler arguments.)

In the world of description logics a lot of formalisms involving transitivity were in-
vestigated. The basic description logic allowing one to express transitivity is the logic
S. The research on description logics led to the identification of several expressive
examples with decidable satisfiability and finite satisfiability. However, description
logics are essentially two-variable logics and speak about at most binary relations.
Closer to our setting is the problem of (finite) ontology mediated query answering
(F)OMQA, which is a counterpart of (finite) open-world query answering in the
world of description logics. In this problem we are given a (multi-variable) conjunc-
tive query (or a union of conjunctive queries) and a knowledge base specified in a DL.
We need to answer whether the query holds in every model of the knowledge base.
Not much is known, however, about the finite version of this problem. In particular,
for DLs with transitive roles (S) the only positive results we are aware of are the
ones obtained recently in [11], where the decidability and 2-ExpTime-completeness
of FOMQA for the logics SOI, SIF and SOF is shown. This is orthogonal to our
results, since UNFO+TR does not capture neither nominals (O) nor functional roles
(F). On the other hand, we are able to express any positive boolean combinations of
roles, including their intersection (u). This allows us to embed the logic SHIu (see,
e.g., [10]), which equips S with role hierarchies, inverse roles and role conjunctions,
in the obtained formalism equipping UNFO+TR with inclusions of relations. The
(finite) satisfiability problem for SHIu is known to be 2-ExpTime-complete [9], ex-
actly as for our logic. As a corollary, we obtain that FOMQA for SHIu is decidable
and 2-ExpTime-complete. Up to out knowledge, this is the first decidability result
for FOMQA in the case of a DL equipped with both transitive roles and role hierar-
chies. However, extending UNFO with possibly the simplest realization of the idea
of capturing logics like SHIQ or SHOIQ (see, e.g., [28, 16]), that is adding count-
ing quantifiers, immediately gives undecidability. Actually, even weaker functional
restrictions suffice. This is implicit in [27].

Finally, we consider both types of extensions together in the cases of UNFO+EQ
and UNFO+TR. Interestingly, one can express in BGNFO1+EQ (BGNFO1+TR)
inclusions of the form B1 ⊆ B2, where B1 is not an equivalence (transitive) relation,
and our constructions additionally respect the inclusions of the form B1 ⊆ B2 for
both B1 and B2 being equivalence (transitive) relations. We show that both the
extensions of BGNFO1+EQ and BGNFO1+TR by inclusions of the form T ⊆ B for
equivalence (transitive) T and a non-equivalence (non-transitive) B become unde-
cidable.

The thesis is organized as follows. Chapter 2 contains definitions, basic facts and
high-level description of both of the main proofs. In Chapter 3 we work with tree-

11

like models. These chapters are common for both the part of this paper involving
equivalences and the one involving transitive relations. In Chapters 4 and 5 we
build ‘small’ finite models for UNFO+EQ and UNFO+TR respectively. Chapter
4 is carried out in more sketchy way to familiarize the reader with the idea, while
Chapter 5, containing a proof similar to the one in Chapter 4, but expanded to cover
a more complicated case, contains more details. (In fact, the fragments concerning
the finite model property for UNFO+EQ could have been removed and covered by
a slight modification of the statements—not the proof methods—of some of the
remaining theorems and lemmas; however allowing this kind of description is not
a purpose of this thesis.) Finally, in Chapter 6 we consider the above mentioned
further extensions of UNFO.

The thesis is largely based on two papers coauthored by the author (of this
thesis) and the advisor, The Unary Negation Fragment with Equivalence Has the
Finite Model Property, which was accepted for LICS 2018, and Finite Satisfiability
of Unary Negation Fragment with Transitivity, which has just been submitted to a
conference, each of them containing one of the two main results of this thesis. The
material presented here consists of those (slightly rewritten towards a better and
more unified presentation) parts of the above mentioned papers to which the author
had non-trivial contribution. (According to the advisor ‘The role of the author
in deriving these results was dominant. This concerns, on the one hand, some
conceptual work and devising appropriate technical tools, and, on the other hand,
writing up the proofs.’) In particular, the fragment of the first paper concerning
the two-variable version of the logic, which was written mainly by the advisor, was
omitted here (even though, according to the advisor, ‘the ideas of the author were
crucial also in this fragment’). The results are presented from a viewpoint slightly
leaning towards the one of the author.

Chapter 2

Preliminaries

2.1. Logics, structures, types and functions

We employ standard terminology and notation from model theory. In particular,
we refer to structures using Fraktur capital letters, and their domains using the
corresponding Roman capitals. For a structure A and A′ ⊆ A we use A ⇁A

′ or A′ to
denote the restriction of A to A′.

The unary negation fragment of first-order logic, UNFO is defined by the following
grammar [27]:

ϕ = B(x̄) | x = y | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xϕ | ¬ϕ(x)

where, in the first clause, B represents any relational symbol, and, in the last clause,
ϕ has no free variables besides (at most) x. An example formula not expressible in
UNFO is x 6= y. We formally do not have universal quantification. However we allow
ourselves to use ∀x̄¬ϕ as an abbreviation for ¬∃x̄ϕ, for an UNFO formula ϕ. Note
that ∀xy¬P (x, y) is in UNFO but ∀xyP (x, y) is not.

We work with purely relational signatures σ = σbase∪σdist∪σaux where σbase is the
base signature, σdist is the distinguished signature, and σaux is the auxiliary signature.
Assume that σdist = {E1, . . . , Ek} and σaux is empty. The unary negation fragment
with equivalences, UNFO+EQ, is defined by the same grammar as UNFO. When
satisfiability of its formulas is considered, we restrict the class of admissible models
to those that interpret all symbols from σdist as equivalence relations.
Now assume that σdist = {T1, . . . , Tk}, and σaux = {T−1

1 , . . . , T−1
k , E1, . . . , Ek}; all

symbols in σdist ∪ σaux are binary. The unary negation fragment with transitive re-
lations, UNFO+TR, is defined by the same grammar as UNFO, however when sat-
isfiability of its formulas is considered, we restrict the class of admissible models to
those that interpret all symbols from σdist as transitive relations, each T−1

u as the
inverse of Tu (T−1

u ab holds iff Tuba holds), and each Eu as the equivalence relation
induced by Tu (Euab holds iff a = b or Tuab ∧ Tuba holds). The intended role of
the symbols from σaux is to simplify the presentation of our constructions, however

13

14 CHAPTER 2. PRELIMINARIES

admitting them in formulas is not harmful since they can be easily, just by applying
their definition, replaced by formulas using only σdist symbols so that the resulting
formula is still in UNFO+TR. This way we can now have equivalence relations
(just use some Eu without using corresponding Tu nor T−1

u) and UNFO+EQ may
be treated as a fragment of UNFO+TR. For simplicity of arguments and, in fact,
without loss of expressive power, we consider for the rest of this thesis only formulas
not using σaux symbols. For convenience we jointly enumerate all the symbols Tu and
T−1
u as T 1, . . . , T 2k assuming that T 2u−1 = Tu and T 2u = T−1

u . In our constructions
we sometimes consider some auxiliary structures in which symbols from σdist are not
necessarily interpreted as transitive relations. Then, when we transitively close such
relations we always assume that we take care of the proper interpretation of the
symbols from σaux as well.

An atomic 1-type (or, shortly, a 1-type) over a signature σ is a maximal satisfiable
set of literals (atoms and negated atoms) over σ with just one variable x. We
sometimes identify a 1-type with the conjunction of its elements. Given a σ-structure
A and and an element a ∈ A we denote by atpA(a) the atomic 1-type realized by a,
that is the unique 1-type α(x) such that A |= α(a).

We use various functions in this thesis. Given a function f : A→ B we denote by
Rngf its range, by Domf its domain, and by f ⇁A0 the restriction of f to A0 ⊆ A.

2.2. Normal form, witnesses and basic facts

We say that an UNFO+EQ (resp. UNFO+TR) formula is in Scott-normal form if it
is of the shape

∀x1, . . . , xt¬ϕ0(x̄) ∧
m∧
i=1

∀x∃ȳϕi(x, ȳ) (2.1)

where each ϕi is an UNFO+EQ (resp. UNFO+TR) quantifier-free formula and ϕ0

is in negation normal form (NNF). A similar normal form for UNFO was introduced
in the bachelor’s thesis [8].

Lemma 2.1. For every UNFO+EQ (resp. UNFO+TR) formula ϕ one can compute
in polynomial time a normal form UNFO+EQ (resp. UNFO+TR) formula ϕ′ over
signature extended by some fresh unary symbols, such that any model of ϕ′ is a
model of ϕ and any model of ϕ can be expanded to a model of ϕ′ by an appropriate
interpretation of the additional unary symbols.

Lemma 2.1 allows us, when dealing with decidability and complexity issues for
UNFO+EQ or UNFO+TR, or when considering the size of minimal finite models of
formulas, to restrict attention to normal form formulas.

Given a structure A, a normal form formula ϕ as in (2.1) and elements a, b̄ of A
such that A |= ϕi(a, b̄) we say that the elements of b̄ are witnesses for a and ϕi and

2.3. PLAN OF SMALL MODEL CONSTRUCTIONS 15

that A ⇁{a, b̄} is a witness structure for a and ϕi. For an element a and every conjunct
ϕi choose a witness structure Wi. Then the structure W = A ⇁{W1 ∪ . . . ∪Wm} is
called a ϕ-witness structure for a.

In Chapters 3, 4 and 5 we present a construction which given some model of a
normal form UNFO+EQ or UNFO+TR formula ϕ builds a finite model of ϕ of a
bounded size. The construction has several stages. To argue that after some stages
we still have a model of ϕ we use the following basic observation. The result below
can be also used to prove inexpressibility of equivalence and transitive relations in
pure UNFO. We leave it as a simple exercise for the reader.

Lemma 2.2. Let A be a model of a normal form UNFO+EQ or UNFO+TR formula
ϕ. Let A′ be a structure in which all symbols from σdist ∪ σaux are interpreted as
required, such that

(h1) for every a′ ∈ A′ there is a ϕ-witness structure for a′ in A′,

(h2) for every tuple a′1, . . . , a
′
t (recall that t is the number of variables of the ∀-

conjunct of ϕ) of elements of A′ there is a homomorphism h : A′ ⇁{a′1, . . . , a′t} →
A which preserves 1-types of elements.

Then A′ |= ϕ.

Proof. Due to (h1) all elements of A′ have the required witness structures for
all ∀∃-conjuncts. It remains to see that the ∀-conjunct is not violated. But since
A |= ¬ϕ0(h(a1), . . . , h(at)) and ϕ0 is a quantifier-free formula in which only unary
atoms may be negated, it is straightforward, using (h2).

2.3. Plan of small model constructions

Now we explain the general ideas behind both of the constructions. To prove the
finite model property for UNFO+EQ, we show that the following are equivalent.

1. ϕ has a model

2. ϕ has a tree-like model

3. ϕ has a regular tree-like model with doubly exponentially many subtrees (up
to isomorphism)

4. ϕ has a finite (doubly exponential) model

When considering the finite satisfiability of UNFO+TR, we show that the following
are equivalent

1. ϕ has a finite model

2. ϕ has a tree-like model with paths of at most doubly exponential rank (to be
defined later)

16 CHAPTER 2. PRELIMINARIES

3. ϕ has a model as above that is regular with doubly exponentially many subtrees
(up to isomorphism)

4. ϕ has a finite, triply exponential, model

The proofs of the implications (1)⇒ (2)⇒ (3) may be used to devise a 2-ExpTime
algorithm checking whether the second condition holds. The following part may
appear very informal or too high-level, however in the opinion of the author, it
covers the essence of all the methods in the whole paper. In both proofs of (3) ⇒
(4) we are going to use Lemma 2.2. The implications (1) ⇒ (2) ⇒ (3) may be
treated as a preparation for such a usage, that is they create good pattern models,
and mainly consist in cut-and-rearrange arguments. The proofs of the implications
(3) ⇒ (4) build structures that have a simple arrangement of paths (each of them
locally resembles a tree) and the pattern structures should have lots of (partial)
automorphisms, since this allows us to manipulate with some homomorphisms (by
codomain switching) to join them into bigger and bigger ones. Therefore a natural
candidate for a pattern model is a regular tree. The focal points of the whole paper
are Claim 4.3 and its counterpart Claim 5.4. Such a division of the proofs also allows
for simpler, modular arguments. Now we give some more details. We outline the
latter construction and compare it with the former.

We are going to show that given an arbitrary finite model A of a normal form
UNFO+TR formula ϕ one can construct a model A′ of size bounded triply exponen-
tially in the size of ϕ. The construction has several stages.

Stage 1: tree-like models. In this first step we simply unravel A into an (infinite)
tree-like model A1. (See Lemma 3.1.)

Stage 2: bounded transitive paths.We introduce a measure associating with transitive
paths in tree-like structures their ranks. A T u-path is a branch of a tree whose
consecutive nodes are joined by T u (and possibly by its inverse). Its T u-rank is the
number of its one-way T u-edges. We show that, performing some surgery on A1

we can build a tree-like model A2 in which every transitive path has rank bounded
doubly exponentially in |ϕ|. (See Lemma 3.5.) Note that a T u-path with a bounded
T u-rank can still be arbitrarily long, as its two-way edges do not count to the rank.

Stage 3: regular trees.We then build another tree-like model A3 which in addition
to the properties of A2 has only at most doubly exponentially many non-isomorphic
subtrees. (See Lemma 3.8.)

Stage 4: building finite model.Finally, in this most complicated step, we extract from
A3 some components (their construction is inductive), and arrange some number of
their copies to eventually form A′.

First of all, if a given formula ϕ belongs to UNFO+EQ then we can start our con-
structions leading to a finite model of ϕ from its arbitrary model, while if ϕ is in
UNFO+TR we start from a finite model of ϕ. A very simple Stage 1 in both argu-

2.3. PLAN OF SMALL MODEL CONSTRUCTIONS 17

ments is, essentially, identical. The counterpart of Stage 3 in the case of equivalences
is slightly simpler, but the main differences lie in Stage 2 and Stage 4. Stage 2, clearly,
is not present at all in the construction for UNFO+EQ. While the general idea in
this step is quite standard, as we just use a kind of tree pruning, the details are rather
delicate due to possible interactions among different transitive relations—when de-
creasing the T u-rank of some path we often need to avoid increasing accidentally its
T v-rank for some v 6= u. Regarding Stage 4, in the main part of the construction
for UNFO+EQ we build bigger and bigger substructures in which some equivalence
relations are total. The induction goes, roughly speaking, by the number of non-total
equivalences in the substructure. In the construction for UNFO+TR we extend this
approach to handle one-way transitive connections. Its single inductive step has two
phases: building the so-called components and then arranging them into a bigger
structure. It is this first phase in which we have now to work harder in the construc-
tion for UNFO+TR than in one for UNFO+EQ. Having components prepared, the
scheme of joining them is similar in both constructions.

The whole construction may appear quite complex. It may be not a bad idea to
look first at some simpler scenarios. A reader who wants such a warm-up is advised
to consult paper [7] in which we explain how to construct finite models for satisfiable
UNFO+EQ formulas with a simplification that only two variables are present. It
may be helpful to look at this simplified fragment to get used to our idea of building
finite models in an inductive way.

Chapter 3

Tree-like models

The arguments in this chapter are similar for both main problems considered in this
thesis and can be carried out simultaneously. We will mark the differences, which
exist mostly due to some issues with one-directional transitive connections. In this
chapter we assume, for uniformity, that the distinguished signature, σdist, consists of
the symbols T1, . . . , Tk, even in the case of UNFO+EQ formulas.

We use a standard notion of a (finite or infinite) rooted tree and related termi-
nology. Additionally, any set consisting of a node and all its children is called a
family. Any node b, except for the root and the leaves, belongs to two families: the
one containing its parent is called the upward family of b and the one containing its
children—the downward family of b.

We say that A is a tree-like structure (of degree bounded by d) if its nodes can
be arranged into a tree (of degree bounded by d) in such a way that if A |= B(ā)

for some relation symbol B and ā ⊆ A then either ā is contained in a family, or B
is a transitive relation and B(ā) follows from transitively closing the B-connections
inside some families. Given a tree-like structure A and a ∈ A we denote by Aa the
set of all nodes in the subtree rooted at a and by Aa the corresponding substructure.

Given an arbitrary model A of a normal form UNFO+EQ or UNFO+TR formula
ϕ we can simply construct its tree-like model of degree bounded by |ϕ|. We define
a ϕ-tree-like unraveling A′ of A and a function h : A′ → A in the following way.
A′ is divided into levels L0, L1, Choose an arbitrary element a ∈ A and put to
level L0 of A′ an element a′ such that atpA

′
(a′) = atpA(a); set h(a′) = a. This only

element of L0 will become the root of A′. Having defined Li repeat the following for
every a′ ∈ Li. Choose in A a ϕ-witness structure for h(a′). Assume it consists of
h(a′), a1, . . . , as. Add a fresh copy a′j of every aj to Li+1, make A′ ⇁{a′, a′1, . . . , a′s}
isomorphic to A ⇁{h(a′), a1, . . . , as} and set h(a′j) = aj . Complete the definition of A′

transitively closing all relations from σdist.

Lemma 3.1. Let A be a model of a normal form UNFO+EQ or UNFO+TR formula
ϕ. Let A′ be a ϕ-tree-like unraveling of A. Then A′ |= ϕ and A′ is a tree-like structure

19

20 CHAPTER 3. TREE-LIKE MODELS

of degree bounded by |ϕ|.

Proof. It is readily verified that A′ meets the properties required by Lemma 2.2.
In particular h is the required homomorphism. That A′ is tree-like and has an
appropriately bounded degree is also straightforward.

We often work with tree-like models A of normal form ϕ in which the downward
family of every element a forms a ϕ-witness structure. In such case we call this
downward family the ϕ-witness structure for a even if some other ϕ-witness structures
for a exist in A.

3.1. Declarations

We now introduce an apparatus of declarations that allows us to perform some
surgery on tree-like models of normal form formulas. Its main purpose is dealing
with their universal conjuncts ∀x̄¬ϕ0(x̄).

For a normal form ϕ, a ϕ-declaration is a description of some patterns of con-
nections taking into account the literals of ϕ0 (and, for technical reasons, some
additional transitive atoms, equalities and inequalities). In particular, it may de-
scribe some dangerous patterns, leading to a violation of ϕ0. Let us give a formal
definition.

Definition 3.2. Let ϕ be a normal form UNFO+EQ or UNFO+TR formula.
Recalling that ϕ0 = ϕ0(x1, . . . , xt) is in NNF, and that k is the number of σdist

relations, let R be the set consisting of all non-transitive literals (atoms or negated
atoms) that appear in ϕ0 (recall that only atoms which have at most one variable
may be negated), T = {1, . . . , k} × {1, . . . , t}2 and Q = {1, . . . , t}. A ϕ-declaration
is a set consisting of some triples (R, T,Q) such that R ⊆ R, T ⊆ T and Q ⊆ Q.

A triple d = (R, T,Q) may be alternatively viewed as a formula describing a pat-
tern of connections on a tuple consisting of t+ 1 (not necessarily distinct) elements:
ψd(x1, . . . , xt, y) =

∧
r∈R r(x̄) ∧

∧
(u,j,j′)∈T Tuxjxj′ ∧

∧
i∈Q xi = y ∧

∧
i∈Q\Q xi 6= y.

Clearly, the notions of formulas and triples are equivalent and we use them inter-
changeably.

Let A be a tree-like structure and a ∈ A. We say that a respects a ϕ-declaration
d if for each ψ ∈ d we have Aa |= ¬∃x̄ψ(x̄, a). Given an element a in A, we denote
by decAϕ(a) the (unique) maximal declaration respected by a. Note that if a0 is the
root of A then, knowing decAϕ(a0), we can determine if A |= ∀x̄¬ϕ0(x̄).

Let us now give some intuitions and describe how we are going to use declara-
tions. We work with tree-like structures with ϕ-declarations assigned to all its nodes.
Assigning d to a node a of a structure A may be treated as a promise that none of
the patterns described by d appear in Aa. Note that we do not require that d equals

3.1. DECLARATIONS 21

decAϕ(a). Given a system of declarations assigned to all nodes of A we formulate some
natural local conditions such that their violation at a node a breaks the promise of a
(i.e., some forbidden pattern occurs), and, the other way round, they are sufficient to
guarantee that for every node a the declaration d assigned to a is a subset of decAϕ(a),
which means that a respects d, that is, fulfills its promise. This allows us to proceed
as follows: Take a tree-like model A |= ϕ, perform on it some surgery, obtaining a
new tree-like structure A′. Assign to the nodes of A′ a system of ϕ-declarations in
such a way that (i) the root of A′ gets the declaration decAϕ(a0) where a0 is the root
of A, and (ii) for a node a′ its downward family F ′ = {a′, a′1, . . . , a′s} gets the decla-
rations decAϕ(a), decAϕ(a1), . . . ,decAϕ(as), where F = {a, a1, . . . , as} is the downward
family of some node a from A, and the structures on F and F ′ are isomorphic. This
guarantees that the system of declarations satisfies the local conditions and thus that
its promises are fulfilled. Due to the declaration of the root we have that A′ satisfies
the universal conjunct of ϕ.

We are now ready for the details. Let F = {a, a1, . . . , as} be the downward family
of a node a. We say that a function f : {1, . . . , t} → {a, a1, A

−
a1 , . . . , as, A

−
as} is a fitting

(to F). We think that a fitting describes a distribution of elements of a t-element
tuple of nodes of Aa among the downward family of a and the subtrees rooted at the
children of a. With a fitting f we associate a function f̄ : {1, . . . , t} → {a, a1, . . . , as}
defined as follows: f̄(i) = a iff f(i) = a and f̄(i) = aj iff f(i) ∈ {aj , A−aj}. Let
b1, . . . , bt = b̄ ⊆ Aa. The fitting f induced by b̄ is defined naturally: f(i) = a iff
bi = a, f(i) = aj iff bi = aj and f(i) = A−aj iff bi ∈ Aaj \ {aj}.

Let f be a fitting, (R, T,Q) a tuple belonging to some declaration and F =

{a, a1, . . . , as} the downward family of some a. If r is a literal from R (resp. a
tuple (u, j, j′) ∈ T) then we denote by Varr the set of the indices of variables of r
(resp. the set {j, j′}). If r is a literal from R or a literal Tuxjxj′ then we say that r
is fully fitted (to F) if f(Varr) ⊆ F .

Now we define the local consistency conditions (LCCs) for a system of declara-
tions. Consider declarations d, d1, . . . , ds assigned to the elements of some family
F = {a, a1, . . . , as}. We say that they satisfy LCCs at a if for each fitting f and
ψ(R,T,Q) ∈ d at least one of the following conditions holds.

(l1) Some R-conjunct r ∈ R is not fully fitted, and a ∈ f(Varr) or aj , aj′ ∈ f(Varr)

for some j 6= j′.

(l2) Some R-conjunct r ∈ R is fully fitted but A |= ¬r(f(1), . . . , f(t)).

(l3) Some T -conjunct Tuxjxj′ is fully fitted but A |= ¬Tuf(j)f(j′).

(l4) For some Q-conjunct xi = a we have f(i) 6= a.

(l5) For some (Q\Q)-conjunct xi 6= a we have f(i) = a.

(l6) Some R-conjunct r ∈ R is not fully fitted and is ‘distributed over several
subtrees’, that is |̄f(Varr) ∩ {a1, . . . , as}| ≥ 2.

(l7) Two elements of two different subtrees cannot be transitively joined due to the

22 CHAPTER 3. TREE-LIKE MODELS

structure on F , that is for some T -conjunct Tuxjxj′ we have f̄(j) 6= f̄(j′) but
A |= ¬Tuf̄(j)̄f(j′).

(l8) All elements are fitted to a single subtree, that is for some i and all j we have
f̄(j) = ai, and the promise is propagated to this subtree: (R, T, f−1(ai)) ∈ di.

(l9) There exists i such that ai ∈ Rngf̄ and di contains (R′, T ′, Q′) defined as follows:
fix some h ∈ {1, . . . , t} \ f̄−1(ai) and (i) R′ := {r ∈ R : Varr ⊆ f̄−1(ai)}, (ii) T ′

is the minimal set such that for (u, j, j′) ∈ T if f̄(j) = f̄(j′) = ai then (u, j, j′) ∈
T ′ and if f̄(j) = ai (resp. f̄(j) 6= ai) and f̄(j′) 6= ai (resp. f̄(j′) = ai) then
(u, j, h) ∈ T ′ (resp. (u, h, j′) ∈ T ′), and (iii) Q′ = f−1(ai) ∪ {h} ∪ (Q \ f̄−1(ai)).

Note that the above conditions are of two sorts. Conditions (l1)–(l7) describe
situations in which we immediately, just looking at the structure on F , observe that
any tuple of elements corresponding to the given fitting does not break the promise
of a. Conditions (l8)–(l9), on the other hand, describe situations in which, intuitively
speaking, we need to relegate such observation to one of the children of a. Conditions
(l1)–(l7) may appear a little redundant and partially cover each other. It follows from
a further, slightly informal, division: (l1)–(l5) describe a situation where the promise
is not broken just by looking only at the structure of F and (l6)–(l7) consider F in
the scope of the entire structure on the subtree rooted at a.

Given a structure A we say that a system of declarations (da)a∈A is locally consis-
tent if it satisfies LCCs at each a ∈ A and is globally consistent if da ⊆ decAϕ(a) for
each a ∈ A. Note that the global consistency means that the promises of all nodes
are fulfilled. Conditions (l1)–(l9) are tailored so that local and global consistency
play along in the following sense.

Lemma 3.3. Let A be a tree-like structure. Then (i) if a system of declarations
(da)a∈A is locally consistent then it is globally consistent (ii) the canonical system of
declarations (decAϕ(a))a∈A is locally consistent.

Proof. (i) A contrario. Suppose that there exist a ∈ A, ψ ∈ da and b̄ ⊆ Aa such
that Aa |= ψ(b̄, a). Take the fitting f to the downward family F = {a, a1, . . . , as} of
a induced by b̄. By the choice of b̄, none of (l1)–(l7) holds. Thus b̄ 6⊆ F and there
exist some ai ∈ F \ {a} and ψ′ ∈ dai such that Aai |= ψ′(b̄′, ai) where b̄′ = b′1, . . . , b

′
t

is defined as follows: b′j = bj if f̄(j) = ai, otherwise b′j = ai. Denote by depth(b̄) the
maximal level of A inhabited by an element of b̄. Obviously depth(b̄′) ≤ depth(b̄).
Thus after finitely many steps we get a∗, ψ∗ ∈ da∗ and b̄∗ contained in the downward
family F ∗ of a∗ such that Aa∗ |= ψ(b̄∗, a∗). But this cannot happen, since neither
(l8) nor (l9) can hold for the fitting to F ∗ induced by b̄∗.

(ii) Follows from a careful inspection of the definition of LCCs. Basically, if for
some a, f and ψ ∈ decAϕ(a) none of (l1)–(l9) holds then we can find b̄ ⊆ Aa such
that A |= ψ(b̄, a). Indeed, use non-satisfaction of (l8) and (l9) to find fragments of
b̄ belonging to the respective subtrees (b̄ ∩ Aai) (i.e., to find appropriate bj ∈ Aai

3.2. SHORTENING TRANSITIVE PATHS 23

for j ∈ f̄−1(ai)); non-satisfaction of (l1)–(l7) implies that they are connected so that
ψ(b̄, a) holds.

3.2. Shortening transitive paths

This section is featured only in the construction for UNFO+TR. The reader may
safely omit it if interested only in the case of UNFO+EQ. However some part of
the proof of Lemma 3.8, which is a part of the next section, refers to some part of
the proof of Lemma 3.5, which is contained in this section. We mark it using a gray
vertical line along the left side of the text.

Definition 3.4. Let A be a tree-like structure. A sequence of nodes a1, . . . , aN ∈ A
is a path in A if for each i ai+1 is a child of ai. A T u-path is a path such that for each
i we have that A |= T uaiai+1. The T u-rank of a T u-path ~a, ru(~a), is the cardinality
of the set {i : A |= ¬T uai+1ai}. The T u-rank of an element a ∈ A is defined as
ru(a) = sup{ru(~a) : ~a = a, a2, . . . , aN ;~a is a T u−path}. For an integer M , we say
that A has T u-paths bounded by M when for all a ∈ A we have ru(a) ≤M , and that
A has transitive paths bounded by M if it has T u-paths bounded by M for all u.

Lemma 3.5. If a normal form UNFO+TR formula ϕ has a finite model then it
has a tree-like model of degree bounded linearly and transitive paths bounded doubly
exponentially in |ϕ|.

Proof. Let A0 be a finite model of ϕ, A its ϕ-tree-like unraveling, and h : A →
A0 the function associated with this unraveling. By Lemma 3.1 A |= ϕ. It is
easy to see that A has transitive paths bounded by the size M0 of A0. Indeed, if
not, then there exist u, a T u-path (ai)

N
i=0 and indices i0, . . . , iM0 such that A |=

T uaijaij+1 ∧ ¬T uaij+1aij . Since h preserves the structure on downward families
we have A0 |= T uh(aij)h(aij+1) ∧ ¬T uh(aij+1)h(aij). By the pigeonhole principle
there exist x < x′ such that h(aix) = h(aix′). This gives, by transitivity, that
A0 |= T uh(aix+1)h(aix). Contradiction.

LetMϕ := |α| · |Dϕ|+2, where α is the set of atomic 1-types over the signature of
ϕ and Dϕ is the set of ϕ-declarations. Clearly, Mϕ is bounded doubly exponentially
in |ϕ|.

Consider a mapping: A 3 a 7→g (atpA(a), decAϕ(a)). Observe that |Rngg| ≤
Mϕ − 2. We construct a tree-like model A′ having levels L′0, L′1, During our
construction we maintain a function s : A′ → Sym({1, . . . , 2k}) whose purpose is to
define some order of shortening paths at a given node. Intuitively, for s(a) = σ, if
v < v′ then we prefer to shorten T σ(v) over T σ(v′).

Let L′0 consist of a′0—a copy of the root a0 of A (i.e. atpA
′
(a′0) = atpA(a0)).

Put p(a′0) = a0 and set s(a′0) arbitrarily. Suppose that we have defined L′i. For
each a′ ∈ L′i let {p(a′), a1, . . . , as} be the downward family of p(a′) in A and let

24 CHAPTER 3. TREE-LIKE MODELS

s(a′) = σ. Take fresh copies a′j of aj and make A′ ⇁{a′, a′1, . . . , a′s} isomorphic to
A ⇁{p(a′), a1, . . . , as}.

Presently we set the p(a′j) and s(a′j). Let Ka′j = K = {v : A |= ¬T σ(v)p(a
′)aj}

(the killed T σ(v)), S
a′j = S = {v : A |= T σ(v)p(a

′)aj ∧ T σ(v)ajp(a
′)} (the sustained

T σ(v)) and Da′j = D = {v : A |= T σ(v)p(a
′)aj ∧ ¬T σ(v)ajp(a

′)} (the diminished

T σ(v)). If D 6= ∅ then let v
a′j
D = vD = minD and take as p(a′j) a bj ∈ Aaj such that

(i) g(bj) = g(aj) (ii) for all v < vD, v ∈ S: rσ(v)(bj) ≤ rσ(v)(p(a
′)) (iii) rσ(vD)(bj) is

the lowest possible. Note that such an element exists and rσ(vD)(bj) < rσ(vD)(p(a
′)).

If D = ∅ then let p(a′j) = aj . If K 6= ∅ then let vK = minK and set s(a′j) := σ′

where σ′ is defined as follows: for v < vK let σ′(v) = σ(v), for vK ≤ v < 2k let
σ′(v) = σ(v + 1) and let σ′(2k) = σ(vK). Otherwise put s(a′j) = σ. To finish the
construction, transitively close all the appropriate relations in A′.

We claim that A′ constructed as above is a model of ϕ and has the desired proper-
ties.

∀∃-conjuncts are satisfied since for all a′ ∈ A′ the structure on the downward
family of a′ in A′ is isomorphic to the structure on the downward family of p(a′) in
A and the latter is the ϕ-witness structure for p(a′).

For the universal conjunct of ϕ consider the canonical system of declarations on A
transported by p to A′: (decAϕ(p(a′)))a′∈A′ . Note that in this system the declarations
on the downward family of any node a′ in A′ are copies of the declarations on the
downward family of p(a′) in A in the canonical system of declarations on A. This
canonical system on A is locally consistent by part (ii) of Lemma 3.3. This in turn
gives that the system we have defined on A′ is also locally consistent. By part (i) of
Lemma 3.3 this system is also globally consistent. In particular, since ϕ0 is equivalent
to ϕ1

0 ∨ . . . ∨ ϕs0 where the ϕj0 are conjunctions of some R and T formulas, for the
root a′0 of A′, for each j and Q ⊆ Q we have A′ = A′a′0

|= ¬∃x̄(ϕj0(x̄) ∧
∧
i∈Q xi =

a0 ∧
∧
i∈Q\Q xi 6= a0), so A′ |= ∀x̄¬ϕ0(x̄).

That the degree of nodes in A′ is bounded linearly in ϕ follows from the fact that
it was so bounded in A.

It remains to show that the transitive paths in A′ are doubly exponentially
bounded. Let us first make an auxiliary estimation.

Claim 3.6. Let v0 and a T u-path ~a = (ai)
N
i=1 in A′ be such that for all i, i′ and

v ≤ v0 we have s(ai)(v) = s(ai′)(v) (in this case, slightly abusing notation, we write
s(~a)(v) = s(ai)(v)) and s(~a)(v0) = u. Then ru(~a) ≤ (Mϕ+1)(

∑
v<v0 rs(~a)(v)(~a))+Mϕ.

Proof. Induction on v0 = 1, . . . , 2k. Assume to the contrary that there is a T u-path
~a in A meeting the required conditions such that ru(~a) > (Mϕ+1)(

∑
v<v0 rs(~a)(v)(~a))+

Mϕ. Then there are more thanMϕ(1+
∑
v<v0 rs(~a)(v)(~a)) indices i such that vaiD = v0.

So there exist indices i1, . . . , iMϕ such that for all j v
aij
D = v0 and for all i1 ≤ i ≤ iMϕ

3.3. REGULAR TREE-LIKE MODELS 25

and v < v0 we have v 6∈ Dai (and thus v ∈ Sai). It follows that for all v ≤ v0

the function i 7→ rs(~a)(v)(ai) is non-increasing and the function j 7→ rs(~a)(v0)(aij+1) is
strictly decreasing. By the pigeonhole principle there exist x < x′ < Mϕ satisfying
g(p(aix+1)) = g(p(aix′+1)). This contradicts the choice of p(aix+1).

The above claim allows us in particular to compute a (uniform) doubly exponential
bound on ru(~a) for all v0, u and ~a as in assumption. Denote this bound by Mϕ.

Consider now any T u-path ~a = (ai)
N
i=1 in A′. For each node ai from ~a let vu(ai)

be such that s(ai)(vu) = u. Due to the strategy that we use to define s the value
of vu is non-increasing along ~a. Indeed, when moving from ai to ai + 1 the value
of vu is either unchanged or decreases by 1; the only chance of increasing it would
be to change it to 2k but this happens only when T u is killed. Let us divide ~a
into fragments ~a1,~a2, . . . on which vu is constant. The number of such fragments is
obviously bounded by 2k. On each of such fragments ~ai for all v ≤ vu we have that
s(~ai)(v) is constant. So we can apply Claim 3.6 to bound ru(~ai) by Mϕ. This gives
the desired doubly exponential bound Mϕ = 2kMϕ on ru(ā). This finishes the proof
of Lemma 3.5.

3.3. Regular tree-like models

In this section we mark some parts of the text with solid (resp. dashed) vertical
lines to indicate that they belong only to the argument concerning the finite model
property for UNFO+EQ (resp. finite satisfiability of UNFO+TR). Additionally,
a text between parentheses beginning with ♣ concerns only finite satisfiability of
UNFO+TR.

We conclude this section by showing that for finitely satisfiable UNFO+TR for-
mulas and satisfiable UNFO+EQ formulas we can always construct regular tree-like
models (♣ with bounded transitive paths).

Let us introduce a tool, which allows us to verify the property of having bounded
transitive paths looking only at some local conditions.

Definition 3.7. Let A be a tree-like structure with root a0. Then a function
S : A → {0, . . . ,M} is a (T u,M)-stopwatch labeling if: S(a0) = 0; for every a ∈ A
and its child b: (i) if A |= T uab ∧ T uba then S(b) = S(a), (ii) if A |= T uab ∧ ¬T uba
then S(b) = S(a) + 1 (in particular S(a) < M) (iii) if A |= ¬T uab then S(b) = 0.

It is easy to see that (T u,M)-stopwatch labeling exists iff the structure has T u-
paths bounded by M .

Recall that by Lemma 3.1 a satisfiable UNFO+EQ formula has a tree-like model—
the unraveling of its model.

26 CHAPTER 3. TREE-LIKE MODELS

Lemma 3.8. If ϕ has a tree-like model (♣ with doubly exponentially bounded tran-
sitive paths) with linearly bounded degree then it has a regular model having linearly
bounded degree with doubly exponentially many non-isomorphic subtrees (♣ and tran-
sitive paths bounded doubly exponentially).

Proof.

Let A be a tree-like model of ϕ. Consider a mapping A 3 a 7→g (atpA(a), decAϕ(a)).
Let A be a model of ϕ with doubly exponentially bounded paths (denote the bound
Mϕ). For each T u take a (T u,Mϕ)-stopwatch labeling Su of A. Consider the
mapping A 3 a 7→g (atpA(a), decAϕ(a), (Su(a))2k

u=1).
Note that |Rngg| is bounded doubly exponentially in |ϕ|. We rebuild A into a regular
model A′.

For each p ∈ Rngg choose a representative c(p) ∈ g−1(p). Put to L′0 an element
a′0 such that atpA

′
(a′0) = atpA(a0), where a0 is the root of A, and let p(a′0) =

c(g(a0)). Having defined L′i, for i ≥ 0, repeat the following for all a′ ∈ L′i. Denoting
p(a′), a1, . . . , as the downward family of p(a′) in A, add a fresh copy a′i of each ai to
L′i+1 and make A′ ⇁{a′, a′1, . . . , a′s} isomorphic to A ⇁{p(a′), a1, . . . , as}. Set p(a′i) :=

c(g(ai)). Finally, transitively close all transitive relations in A′.

The proof that A′ |= ϕ is similar to the corresponding proof in Lemma 3.5, which is
marked with a vertical line along the left side of the text. We observe that all elements
have appropriate ϕ-witness structures copied from A and then use the apparatus
of declarations to argue that the ∀-conjunct of ϕ is respected. By construction
A′ is a regular tree-like model with the number of different subtrees bounded by
|Rngg|.
To see that A′ has paths bounded by Mϕ create stopwatch labelings for A′ just
by transferring them from A using p. It is not difficult to see that they meet the
conditions from the definition of stopwatch labelings.

Chapter 4

Small model theorem for UNFO+EQ

In this chapter we show the following small model theorem for UNFO+EQ.

Theorem 4.1. Every satisfiable UNFO+EQ formula ϕ has a finite model of size
bounded doubly exponentially in |ϕ|.

Let us fix a satisfiable normal form UNFO+EQ formula ϕ, and the finite relational
signature σ = σbase ∪ σdist consisting of all symbols appearing in ϕ. Enumerate the
equivalences as σdist = {E1, . . . , Ek}. Fix a regular tree-like σ-structure A |= ϕ with
at most doubly exponentially many non-isomorphic subtrees, which exists due to
Lemma 3.1 and Lemma 3.8. We show how to build a finite model of ϕ.

Generally, we will work in an expected way, starting from copies of some elements
of A, adding for them fresh witnesses (using some patterns of connections extracted
from A), then providing fresh witnesses for the previous witnesses, and so on. At
some point, instead of producing new witnesses, we need a strategy of using only a
finite number of them. It is perhaps worth explaining what are the main difficulties
in such a kind of construction. A naive approach would be to unravel A into a
tree-like structure, like in Lemma 3.1, then try to cut each branch of the tree at
some point a and look for witnesses for a among earlier elements. The problem is
when we try to reuse an element b as a witness for a, and b is already connected
to a by some equivalence relations. Then, if a needs a connection to b by some
other equivalences, adding them may eventually result in inconsistency with ¬ϕ0.
Another danger, similar in spirit, is that some b may be needed as a witness for
several elements, a1, . . . , as. Then some of the ai may become connected by some
equivalences which, again, may be forbidden.

It seems to be a non-trivial task to find a safe strategy of providing witnesses using
only finitely many elements and avoiding conflicts described above. This is why we
employ a rather intricate inductive approach. We will produce substructures of the
desired finite model in which some number of equivalences are total, using patterns
extracted from the corresponding substructures of the original model. Intuitively,
knowing that an equivalence is total, we can forget about it in our construction.

27

28 CHAPTER 4. SMALL MODEL THEOREM FOR UNFO+EQ

Roughly speaking, our induction goes on the number of equivalence relations that
are not total in the given substructures. The constructed substructures will later
become fragments of bigger and bigger substructures, which will eventually form
the whole model. To enable composing bigger substructures from smaller ones in
our inductive process we will additionally keep some information about the intended
generalized types of elements in form of a pattern function pointing them to elements
in the original model A. Here, the role of such a generalized type is played by the
isomorphism type of the subtree (of A) rooted in the pattern element. Since we
build substructures with some equivalences total on them, some more care is needed
when the ϕ-witness structures are copied. They are not replicated entirely at once.
Rather than that, we provide for each element only its partial ϕ-witness structure.
This partial ϕ-witness structure is an isomorphic copy of the restriction of the ϕ-
witness structure of the pattern element (a substructure of A) to the equivalence
class of the intersection of the current total equivalences. The remaining part is
completed in the further steps of construction.

An important property of the substructures created during our inductive process is
that they admit some partial homomorphisms to the pattern tree-like model A which
restricted to (partial) witness structures act as isomorphisms into the corresponding
parts of the ϕ-witness structures in A. Instead of introducing some technical notions
concerning preserving such correspondence, we impose that every homomorphism
respects the required condition using directly the structure of A. To this end we
introduce further fresh (non-equivalence) binary symbols W i whose purpose is to
relate elements to their witnesses. We number the elements of the ϕ-witness struc-
tures in A arbitrarily (recall that each element is a member of its own ϕ-witness
structure) and interpret W i in A so that for each a, b ∈ A, A |= W iab iff b is the i-th
element of the ϕ-witness structure for a (from now, for short, we refer to the element
b satisfying W iab as the i-th witness for a). We do this in such a way that if two
subtrees of A were isomorphic before interpreting the W i then they still are after
such expansion. Now, if we mark b as the i-th witness for a during the construction
(that is set A′ |= W iab), then for any homomorphism h we have A |= W ih(a)h(b).

Let us state the main inductive lemma.

Lemma 4.2. Let E0 ⊆ σdist, Etot = σdist\E0, E∗ =
⋂
Eu∈Etot Eu, a0 ∈ A, A0 be the

induced substructure of A on Aa0 ∩ [a0]E∗. Then there exists a finite structure A′0,
an element (called the origin of A′0) a′0 ∈ A′0 and a function p : A′0 → A0 such that:

(e1) E∗ is total on A′0.

(e2) p(a′0) = a0.

(e3) For each a′ ∈ A′0 and each i, if the i-th witness for p(a′) lies in A0 (that is A0 |=
∃y W ip(a′)y) then there exists a unique element b′ ∈ A′0 such that A′0 |= W ia′b′.
Otherwise there exists no such element. Denote Wa′ = {b′ : ∃i A′0 |= W ia′b′}
and for a tuple ā let Wā =

⋃
a∈āWa.

(e4) For each ā ⊆ A′0 satisfying |ā| ≤ t there exists a homomorphism h : Wā → A0

4.1. PATTERN COMPONENTS 29

such that for each a ∈ ā we have Ap(a)
∼= Ah(a) and h ⇁Wa is an isomorphism

(onto its image). Moreover, if a′0 ∈ ā then we can choose h so that h(a′0) = a0.

(e5) For each a ∈ A′0 we have Wa
∼= W ⇁A0 where W is the ϕ-witness structure for

p(a). (Note that, by the definition of the W i, each such isomorphism sends a
to p(a).)

A′0 may be seen as a small counterpart of A0 in which each element has an appropriate
fragment of the ϕ-witness structure. A reason for considering in (e4) a tuple ā
together with Wā is that a connection in a ϕ-witness structure may not include the
element for which this witness structure is created.

The proof of Lemma 4.2 goes by induction on l = |E0|. Consider the base of
induction, l = 0. In this case all equivalences in A0 are total. Assume without loss of
generality that |A0| = 1 (if this is not the case, simply add an artificial equivalence
relation Ek+1 and interpret it as the identity on A). Take A′0 := A0 and p(a) = a for
the only a ∈ A0. Conditions (e1)–(e5) are obviously satisfied.

For the inductive step, suppose that lemma holds for l−1. We show that it holds
for l. Without loss of generality let E0 = {E1, . . . , El}. The rest of the proof is
presented in Sections 4.1–4.3.

4.1. Pattern components

We create one pattern building block, called a pattern component, for each isomor-
phism type of a subtree rooted at a node of A0. We denote by γ[A0] the set of such
isomorphism types. Let γa0 be the type of Aa0 . In the next section we take some
number of copies of pattern components and join them forming the structure A′0.

Take γ ∈ γ[A0] and the root a ∈ A0 of a subtree of type γ. If γ = γa0 , take a = a0.
We explain how to construct a pattern component Cγ . The component is divided
into l(2t+ 1) + 1 layers L1, . . . , Ll(2t+1)+1. The first l(2t+ 1) of them are called the
inner layers while the last one is called the interface layer. We start the construction
of an inner layer Li by defining its initial part, Liniti , and then expand it to a full
layer. The interface layer Ll(2t+1)+1 has no internal division but, for convenience, is
sometimes referred to as Linitl(2t+1)+1. The elements of Ll(2t+1) are called leaves and
the elements of Ll(2t+1)+1 are called interface elements.

Cγ will have a shape resembling a tree, with structures obtained by the inductive
assumption as nodes. All elements of the inner layers of Cγ will have appropriate
partial ϕ-witness structures provided. See Fig. 4.1.

We remark that during the process of building a pattern component we do not
yet apply the transitive closure to the equivalence relations. Taking the transitive
closures would not affect the correctness of the construction, but not doing this at
this point will allow us for a simpler presentation of the correctness proof. Given a

30 CHAPTER 4. SMALL MODEL THEOREM FOR UNFO+EQ

L4

L3

L2

L1

E3

E2

E1

Figure 4.1: Top of a component for l = 3. Triangles correspond to subcomponents.
Dashed lines represent E1, dotted are used for E2 and solid for E3. Li and Li+1 are
not joined by Ei.

pattern component C we will sometimes denote by C+ the structure obtained from
C by applying the appropriate transitive closures. The crucial property we want
to enforce is that the root of Cγ will be far from its leaves in the following sense.
Denote by Gl(S), for a σ-structure S, the Gaifman graph of the structure obtained
by removing from S the equivalences El+1, . . . , Ek. Then there will be no connected
induced subgraph of Gl(C

γ
+) of size t containing an element of one of the first l layers

and, simultaneously, an element of one of the last l inner layers of Cγ .

We set Linit1 = {a′} to consist of a copy of element a, i.e., we set atpC
γ
(a′) :=

atpA0(a). Put p(a′) = a. We call a′ the root of Cγ .

Construction of a layer. Suppose we have defined levels L1, . . . , Li−1 and Liniti ,
1 ≤ i ≤ l(2t + 1), and the structure and the values of p on L1 ∪ . . . ∪ Li−1 ∪ Liniti .
We now explain how to define Li and Liniti+1. Let v = 1 + (i− 1 mod l).

Step 1: Subcomponents.Take any element c ∈ Liniti . From the inductive assumption
we have a structure B0 with E∗ ∩ Ev total on it, its origin b0 ∈ B0 and a function
pc : B0 → Ap(c) ∩ [p(c)]E∗∩Ev ⊆ A0 with pc(b0) = p(c). The substructures obtained
owing to the inductive assumption are called subcomponents. We identify b0 with c,
add isomorphically B0 to Li, and extend function p so that p ⇁B0 = pc. We do this
independently for all c ∈ Liniti .

Step 2: Providing witnesses. For i < l(2t+ 1) + 1 we now define Liniti+1. Take c ∈ Li.
Let W be the ϕ-witness structure for p(c) in A. Let F be the restriction of W to
[p(c)]E∗∩Ev . Let F′ be the isomorphic copy of F created for c in the subcomponent B0

built in Step 1 that contains c (F′ exists due to (e5)). Let E = W ⇁[p(c)]E∗ . We add
F ′′—a copy of E \F to Liniti+1, and isomorphically copy the structure of E to F ′ ∪F ′′

identifying F ′ with F . See Fig. 4.2. Note that this operation is consistent with the

4.2. JOINING THE COMPONENTS 31

Liniti+1

in Li

E\FF ′′ FF ′
B0

W

c p(c)

Ap(c)

Figure 4.2: Providing witnesses.

previously defined structure on F′. The structure on F ′ ∪ F ′′ will be the structure
Wc in Cγ and then in A′0. We define p ⇁F ′′ in a natural way, for each element b ∈ F ′′

choosing as the value of p(b) the isomorphic counterpart of b in E \ F . We repeat
this step independently for all for all c ∈ Li.

When the interface layer, Linitl(2t+1)+1 (= Ll(2t+1)+1), is created the construction of
Cγ is completed.

4.2. Joining the components

In this step we are going to arrange a number of copies of our pattern components
to obtain the desired structure A′0. We explicitly connect leaves of components with
the roots of other components. This is done by identifying the interface elements of
all components with some roots. We do it carefully, avoiding modifications to the
internal structure of components, which could potentially result from transitivity of
relations from σdist. In particular, a pair of elements that are not connected by an
equivalence Eu ∈ E0 in C+ will not become connected by a chain of Eu-connections
external to C+. To deal with the additional ‘moreover’ part of Condition (e4) we
will simply define a′0 in such a way that it will not be used as a witness for any leaf.

As promised above we create pattern components for all types from γ[A0]. Let
max be the maximal number of interface elements over all pattern components.
For each Cγ we number its interface elements. We create components Cγ,gi,γ′ for all
γ, γ′ ∈ γ[A0], g ∈ {0, 1} (g is often called a color), 1 ≤ i ≤ max, as isomorphic
copies of Cγ . We also create an additional component Cγa0 ,0⊥,⊥ as a copy of Cγa0 , and
define a′0 to be its root.

For each γ, g consider components of the form Cγ,g·,· . Perform the following pro-
cedure for each i—the number of an interface element. Let b be the i-th interface
element of any such component, let γ′ be the type of Ap(b). Identify the i-th interface
elements of all Cγ,g·,· with the root c0 of Cγ

′,1−g
i,γ . Note that the values of p(c0) and

p(b) (the latter equals to the value of p on the i-th interface element in all the Cγ,g·,·)

32 CHAPTER 4. SMALL MODEL THEOREM FOR UNFO+EQ

may differ. However, by construction, Ap(b) ∼= Ap(c0) (in particular, the 1-types of
b and c0 match). For the element c∗ obtained in this identification step we define
p(c∗) = p(c0).

Finally, we take as A0
0 the structure restricted to the components accessible in

the graph of components from Cγa0 ,0⊥,⊥ . The graph of components Gcomp is formed
by joining a pair of components iff we identified the root of one of them with an
interface element of the other.

We now define A′0 as A0
0 with transitively closed equivalences and set the root

of Cγa0 ,0⊥,⊥ to be its origin. Recall that in the structure A0
0 we, exceptionally, do not

transitively close σdist-connections, and thus allow the interpretations of the symbols
from σdist not to be transitive (we will keep using superscript 0 for auxiliary structures
of this kind).

4.3. Correctness of the construction

Now we proceed to the proof that A′0 satisfies Conditions (e1)–(e5).

(e1) After taking the transitive closures, E∗ is total on each pattern component.
Thus, by the definition of the graph of components Gcomp, E∗ is total on A′0.

(e2) Follows directly from the definition of Linit1 in Cγa0⊥,⊥ and the fact that Cγa0⊥,⊥ ⊆ A′0.

(e3) The interpretations of the W i are defined in the step of providing witnesses
where, implicitly, we take care of this condition for every element a′ of the inner
layers by extending the fragment of the partial ϕ-witness structure for a′ created on
the previous level of induction by a copy of a further fragment of the same pattern
ϕ-witness structure. The identifications of elements during the step of joining the
components do not spoil the required property and cause that it holds for all elements
of A′0.

(e4) This is the key part of our argumentation. For simplicity, let us ignore the
‘moreover’ part of this condition for some time. We will explain how to take care
of it near the end of this proof. Now we find a homomorphism h such that Ap(a)

∼=
Ah(a) for all a ∈ ā (we say that such a homomorphism has the subtree isomorphism
property). Later we will show that its restrictions to the substructuresWa are indeed
isomorphisms. The proof consists of several homomorphic reductions performed in
order to show that we can restrict attention to a structure built as a component but
twice as high.

Reduction 0. Take ā ⊆ A′0, |ā| ≤ t. Observe that for each a ∈ ā the structure Wa

is connected in Gl(A
′
0 ⇁Wā) (recall the definition of Gaifman graph Gl(S) and the

interpretation of the symbols W i). Let Wā1 , . . . ,WāK be the connected components
of Wā in Gl(A

′
0 ⇁Wā). If we have homomorphisms hi : Wāi → A0, it is sufficient to

4.3. CORRECTNESS OF THE CONSTRUCTION 33

∼=

F′0

g

1−g

Cγ

π

b1 b2 b3

c0

⊇ Wā

∼=

F′0

g

1−g

Cγ

π

b1 b2 b3

c0

⊇ Wā

Figure 4.3: Joining the components and Reductions 1 and 2. Elements connected
by dashed lines are identified.

put h =
⋃
hi as the desired homomorphism, since E∗ is total on A0 and for a ∈ āi

we also have Ah(a) = Ahi(a)
∼= Ap(a). So we can restrict attention to tuples ā with Wā

connected in the above sense.

Reduction 1. The key fact is that, informally, Wā is contained ‘on a boundary of
two colors’. That is, there exists g ∈ {0, 1} such that removing all the connections
between leaves of color 1 − g and roots of color g (in other words: any connections
between elements of Ll(2t+1) and elements of Ll(2t+1)+1 in components of color 1−g)
does not remove any connection among the elements of Wā. This property follows
from the fact that each subcomponent ‘kills’ one of the Eu, therefore, by the ar-
rangement of subcomponents in a component, a connected Wā may be spread over
a limited number of layers and the number of layers in a component is chosen high
enough so the above property holds.

Reformulating, let D0
0 be a structure obtained from A0

0 by removing all direct
connections between roots of color g and leaves of color 1 − g and D′0 its minimal
extension in which equivalences are transitively closed. We have just proved that
the inclusion map ι : Wā → D′0 is a homomorphism, and since for all a ∈ ā, Ap(a) =

Ap(ι(a)), we can restrict attention to a tuple ā for which Wā is connected and search
for a homomorphism Wā → A0 treating Wā as a substructure of D′0.

Reduction 2. Consider the shape of a connected fragment of the graph of components
Gcomp with connections between leaves of color g and roots of color 1− g removed.
Observe that there is at most one type γ of components of color g, chosen in the
previous reduction, containing some element of Wā and all elements of Wā of color
1 − g are contained in components of the form C·,1−g·,γ . See Fig. 4.3. Now we can
naturally ‘project’ all the elements of Wā of color g on one chosen component Cγ of

34 CHAPTER 4. SMALL MODEL THEOREM FOR UNFO+EQ

type γ and color g. Call this projection π. Then we remove from D0
0 all components

of color g other than Cγ and all components of color 1− g of form other than C·,1−g·,γ ,
obtaining a structureF0

0 . LetF′0 be created by closing transitively all the equivalences
in F0

0 . We claim that π is a homomorphism from Wā to F′0. Indeed such projection
can be applied to paths in D0

0 to get corresponding paths in F0
0 . Since for all a ∈ ā

we have Ap(a) = Ap(π(a)), we may restrict attention to a tuple ā for which Wā is
connected and search for a homomorphism Wā → A0 treating Wā as a substructure
of F′0.

Essential homomorphism construction. By the construction of A′0 we can see that
F0

0 can be considered as a component of height 2l(2t + 1) and such component can
be viewed, as a tree τ whose nodes are subcomponents: we make subcomponent
B a parent of B′ iff B′ contains a witness for an element of B. We will build a
homomorphism h : Wā → Aa0 inductively using a bottom-up approach on tree τ . For
a subcomponent B denote by B∧ the union of the domains of all the subcomponents
belonging to the subtree of τ rooted at B.

Since we might have cut some connections between an element and some of its
witnesses during Reduction 1, we define for each a ∈ F ′0 the surviving part Va of Wa

by Va = F′0 ⇁Va where Va = {b : ∃i F′0 |= W iab}. For a tuple b̄ denote Vb̄ =
⋃
b∈b̄ Vb

and Vb̄ = F′0 ⇁Vb̄. Note that Va ⊆Wa, and generally, this inclusion may be strict, but
for all a ∈ ā we have Va = Wa, and thus, in particular, the claim below finishes the
proof of the currently considered part of (e4), that is the proof of the existence of a
homomorphism satisfying the subtree isomorphism property.

Returning to the shape of F0
0 , it consists of some subcomponents arranged into

tree τ glued together by the structure on the surviving parts. Note that all such
building blocks (that is both the subcomponents and the surviving parts of the
partial witness structures) are transitively closed. Moreover, by the tree structure of
τ , if some elements of such a building block are connected by some atom in F′0, then
they already have been connected by the same atom in F0

0 , therefore the identity
map from F0

0 to F′0 acts as an isomorphism when restricted to such a building block).

Recall that due to the expansion of the structure defined before the statement of
Lemma 4.2, all homomorphisms A′0 → A0 respect the numbering of witnesses. This
property will be particularly important in the proof of the following claim.

Claim 4.3. For every subcomponent B0 ∈ τ with origin b0, and for every ā ⊆ B∧0 ,
|ā| ≤ t, there exists a homomorphism h : Vā → Ap(b0) ⇁[p(b0)]E∗ such that for all a ∈ ā
we have Ah(a)

∼= Ap(a), and if b0 ∈ ā then h(b0) = p(b0).

Proof. Bottom-up induction on subtrees of τ .

Base of induction. In this case Wā ⊆ B0 and the claim follows from the inductive
assumption of Lemma 4.2.

Inductive step. Let B1, . . . ,BK be the list of those children of B0 in τ for which

4.3. CORRECTNESS OF THE CONSTRUCTION 35

a1

c1 c2
B0

h0(c1) h0(c2)

b1
a2 a3B∧1

b2
a4B∧2

h1(b1)
h2(b2)

h0(a1)

∼=Ah1(b1)

b′1

∼=Ah2(b2)

b′2

h0

h1
h2

Figure 4.4: Joining homomorphisms

B∧i contains some elements of ā; denote by bi the root of Bi and let ci ∈ B0 be
such that bi is a witness chosen by ci in the step of providing witnesses/joining the
components. If K = 1 and ā ⊆ B∧1 the thesis follows from the inductive assumption
of this claim.

Otherwise, by the inductive assumption of this claim applied to V(ā∩B∧i)bi we
have homomorphisms hi : V(ā∩B∧i)bi → Ap(bi) satisfying p(bi) = hi(bi) and from the
inductive assumption of Lemma 4.2 a homomorphism h0 : V(ā∩B0)c1...cK ⇁B0 → Ap(b0).
We extend the latter in the only possible way to h∗0 defined on the wholeV(ā∩B0)c1...cK :
for each a ∈ ā and c ∈ Va \ B0 (by construction Va |= W iac for some i) we set
h(c) to be the only element satisfying A0 |= W ih(a)h(c) (such an element exists since
Ah(a)

∼= Ap(a)—in particular the ϕ-witness structures of h(a) and p(a) are isomorphic).
Note that the sizes of the tuples used to build the homomorphisms hi are bounded
by t, as required.

Using regularity of A, homomorphisms h∗0, h1, . . . , hK can be joined together into
h : Vāb1...bKc1...cK → Ap(b0) (see Fig. 4.4). In order to attach hi to h∗0 we define h∗i . Let
j be such that bi is the j-th witness for ci and let b′i be the j-th witness for h0(ci) (it
exists by Ah0(ci)

∼= Ap(ci)). Then we have Ab′i
∼= Ap(bi) since both b′i and p(bi) are the

j-th witnesses of some elements of A being the roots of isomorphic subtrees. Thus,
composing hi with such an isomorphism gives a homomorphism h∗i : V(ā∩B∧i)bi → Ab′i
with h∗i (bi) = b′i. Finally we set h =

⋃
h∗i . Note that h is well defined (the value of h

on each of the bi has been defined twice).

For each a ∈ Domhi (= Domh∗i , when i > 0) we have Ah(a) = Ah∗i (a)
∼= Ahi(a)(∼=

Ap(a), by the inductive assumptions of this claim and Lemma 4.2). Since ā ⊆ Domh0∪⋃
i>0 Domh∗i , we get that for each a ∈ ā we have Ap(a)

∼= Ah(a).

Recalling the tree structure on τ we can conclude that h is a homomorphism. We
give an idea of the proof of this property. Consider an Eu-path in F0

0 connecting

36 CHAPTER 4. SMALL MODEL THEOREM FOR UNFO+EQ

two elements of Vāb1...bKc1...cK . We show that the images of these two elements
are connected by an Eu-path in A. Using the tree shape of F0

0 , we can split it into
parts contained in B0 or some of the B∧i , and parts contained in some of the Vd for
d ∈ (ā∩B0)c1 . . . cK (with the splitting points belonging to V(ā∩B0)c1...cK). For the
former type of connections, use the fact that h0, h∗1, . . . , h∗K are homomorphisms. For
the latter, observe that h∗0 sends Vd into the corresponding part of an isomorphic
copy of the pattern ϕ-witness structure from A used to define the structure on F0

0 ⇁Vd.
Similarly a non-transitive relation in F0

0 may connect elements contained in B0 or
one of the B∧i , or one of the Vd for d ∈ (ā∩B0)c1 . . . cK , and the argument as above
shows that it is preserved by h.

It follows from the construction that h has the following property: if b0 ∈ ā then
h(b0) = h0(b0) = p(b0). To finish the proof of the inductive step, we restrict h to
Vā.

Now we prove the additional property required for h by (e4), namely that h ⇁Wa

is an isomorphism. Observe that h injectively moves Wa into the corresponding part
of the ϕ-witness structure for h(a) which is isomorphic to the corresponding part
of the ϕ-witness structure for p(a) by the subtree isomorphism property. Therefore,
since the structure onWa (prior to taking the transitive closure) was copied from the
latter, the inverse of h ⇁Wa is a homomorphism and therefore h ⇁Wa is an isomorphism.

To prove the ‘moreover’ part of (e4), it suffices to observe that if a′0 ∈ ā then
in Reduction 1 we have that g = 0 and in Reduction 2 we have that γ = γa0 . We
choose Cγ = Cγ,0⊥,⊥. This way the application of the Reductions does not move a′0.
The claim follows from the fact that h(a′0) = p(a′0) = a0.

(e5) Apply (e4) to a tuple consisting of just a to obtain an isomorphism h : Wa →
A0 ⇁h(Wa) and then apply an isomorphism between Ah(a) and Ap(a).

This finishes the proof of Lemma 4.2. Let us show how this lemma implies the finite
model property for UNFO+EQ. Take E0 = σdist, let a0 be the root of A. We apply
Lemma 4.2 and get a finite structure A′0 and a function p : A′0 → A0. Note, that
A0 = A. Let us see that A′0 satisfies the conditions of Lemma 2.2. Indeed, (h1)
follows from (e5). Condition (h2) follows from (e4). So A′0 |= ϕ.

4.4. Size of models and complexity

Now we show, that the size of A′0 is bounded doubly exponentially in |ϕ|. We calculate
a recurrence relation on Cl—an upper bound on the size of the structure created in
the l-th step of induction. We are interested in an estimate for Ck+1 (note that in
the base of induction we may have added an additional equivalence relation—this is
why we consider Ck+1, rather than Ck).

Let n = |ϕ|. Consider the l-th induction step. The size of each subcomponent

4.4. SIZE OF MODELS AND COMPLEXITY 37

is bounded by Cl−1. Consider one component. Layer L1 consists of at most Cl−1

elements, each of them creates at most n elements in layer Linit2 , which jointly create
at mostCl−1·n·Cl−1 elements in layer L2 and inductively at mostCi

l−1n
i−1 elements

in layer Li. So each component has at most Cl(2t+1)+2
l−1 nl(2t+1)+2 elements. Counting

the components, we get an estimate

Cl = C8n2

l−1·n8n2 · (|γ[A]|· 2·C8n2

l−1· |γ[A]|+ 1).

Solving this recurrence relation we get

Ck+1 ≤ (|γ[A]|2· 4·n8n2
)(16n2)n+1

,

which is doubly exponential in n.

We conclude this chapter with the following theorem.

Theorem 4.4. The finite satisfiability problem for UNFO+EQ is 2 -ExpTime-
complete.

Proof. By Thm. 4.1 finite satisfiability and general satisfiability for UNFO+EQ
coincide. The lower bound is inherited from pure UNFO [27]. As a side note, the
lower bound can be also obtained for the two-variable UNFO with two equivalence
relations. In this case the proof is an adaptation of the lower bound proof for GF2

with equivalence relations in guards [19]. For the upper bound, recall our remarks in
the definition of UNFO+TR where we explain that UNFO+EQ may be embedded
in UNFO+TR. The latter is in 2-ExpTime by either [1] or [17], as mentioned
in the Introduction. We note that a direct algorithm checking satisfiability of an
UNFO+EQ formula can be obtained using techniques presented in Chapter 3. For a
similar approach one may see the algorithm presented in the proof of Thm. 5.5.

Chapter 5

Small model theorem for UNFO+TR

In this chapter we show the following small model property.

Theorem 5.1. Every finitely satisfiable UNFO+TR formula ϕ has a finite model
of size bounded triply exponentially in |ϕ|.

Let us fix a finitely satisfiable normal form UNFO+TR formula ϕ over a signature
σbase ∪ σdist for σdist = {T1, . . . , Tk}. Recall that we consider structures that, addi-
tionally, appropriately interpret the auxiliary symbols T−1

u and Eu from σaux. Recall
also our assumptions on the T u. Denote E = {E1, . . . , Ek}. Fix a regular tree-like
model A |= ϕ, with linearly bounded degree, doubly exponentially bounded transi-
tive paths (in this chapter we denote this bound by Mϕ) and doubly exponentially
many non-isomorphic subtrees, as guaranteed by subsequent application of Lemmas
3.5 and 3.8.

We show how to build a ‘small’ finite model A′ |= ϕ. In our construction we in-
ductively produce fragments of A′ in which some of the Eu are total. The induction
is over the number of the non-total Eu. Intuitively, if a relation is total then it plays
no important role, so we may forget about it during the construction. On the l-th
level of induction we produce a substructure for every isomorphism type of a sub-
tree of A and any combination of l non-total equivalences, so that its each element
has provided its partial ϕ-witness structure. This partial ϕ-witness structure is an
isomorphic copy of the restriction of some ϕ-witness structure from A to the equiv-
alence class of the intersection of the current total equivalences. Every substructure
from the l-th level of induction is constructed by an appropriate arrangement of
some number of basic building blocks, called components. Each of the components is
obtained by some number of applications of the inductive assumption to situations
in that one of the non-total equivalences is replaced by a total one.

As in the previous chapter we introduce further fresh (non-transitive) binary sym-
bols W i whose purpose is to relate elements to their witnesses. We number the
elements of the ϕ-witness structures in A arbitrarily (recall that each element is
a member of its own ϕ-witness structure) and interpret W i in A so that for each

39

40 CHAPTER 5. SMALL MODEL THEOREM FOR UNFO+TR

a, b ∈ A, A |= W iab iff b is the i-th element of the ϕ-witness structure for a (from
now, for short, we refer to the element b satisfying W iab as the i-th witness for a).
Do this in such a way that if two subtrees of A were isomorphic before interpreting
theW i then they still are after such expansion. Now, if we mark b as the i-th witness
for a during the construction (that is set A′ |= W iab), then for any homomorphism
h we have A |= W ih(a)h(b).

Let us formally state our inductive lemma. In this statement we do not explicitly
include any bound on the size of promised finite models, but such a bound will be
implicit in the proof and will be presented later.

Lemma 5.2. Let a0 ∈ A and E0 ⊆ E. Define Etot = E \E0. Let E∗ be a new binary
relation symbol, interpreted as the intersection of all relations from Etot (empty Etot
yields total E∗), and let A0 = Aa0 ⇁[a0]E∗. Then there exist a finite structure A′0, a
function p : A′0 → A0 and an element a′0 ∈ A′0, called the origin of A′0, such that

(t1) E∗ is total on A′0.

(t2) p(a′0) = a0.

(t3) For each a′ ∈ A′0 and each i, if the i-th witness for p(a′) lies in A0 (that is A0 |=
∃y W ip(a′)y) then there exists a unique element b′ ∈ A′0 such that A′0 |= W ia′b′.
Otherwise there exists no such element. Denote Wa′ = {b′ : ∃i A′0 |= W ia′b′}
and for a tuple ā let Wā =

⋃
a∈āWa.

(t4) For each ā ⊆ A′0 satisfying |ā| ≤ t there exists a homomorphism h : Wā → A0

such that for each a ∈ ā we have Ap(a)
∼= Ah(a) and h ⇁Wa is an isomorphism

(onto its image). Moreover, if a′0 ∈ ā then we can choose h so that h(a′0) = a0.

(t5) For each a ∈ A′0 we have Wa
∼= W ⇁A0 where W is the ϕ-witness structure for

p(a). (Note that, by the definition of the W i, each such isomorphism sends a
to p(a).)

Before we prove Lemma 5.2 let us observe that it indeed allows us to build a particular
finite model of ϕ. Apply Lemma 5.2 to E0 = E (which means that Etot = ∅ and E∗

is total) and a0 being the root of A (which means that A0 = A). We use Lemma
2.2 to see that the obtained structure A′0 is a model of ϕ. Indeed, Condition (h1) of
Lemma 2.2 follows directly from Condition (t5), as the structures Wa from (t5) are
full ϕ-witness structures in this case, Condition (h2) is implied by Condition (t4)
(since ā ⊆ Wā and h ⇁Wa is an isomorphism, h ⇁ā preserves 1-types).

The proof of Lemma 5.2 goes by induction on l = |E0|. In the base of induction,
l = 0, we have Etot = E. Without loss of generality we may assume that E∗-classes
in A have cardinality 1. If this is not the case, we simply add an artificial transitive
relation Tk+1 and interpret it as the identity in A, which means that also Ek+1 is
the identity. We simply take A′0 := A0 = A ⇁{a0} and set p(a0) = a0. It is readily
verified that the conditions (t1)–(t5) are then satisfied.

For the inductive step assume that Lemma 5.2 holds for arbitrary E0 of size l−1.

5.1. PATTERN COMPONENTS 41

L1

L2

L3

L4

L2l(2t+1) leaves
interface layer

root

L1
3

L2
3

L3
3

L
Mϕ+1
3

L1,init
3

noT 2

noT 3

Figure 5.1: A schematic view of a component

We show that then it holds for E0 of size l. Without loss of generality we assume that
E0 = {E1, . . . , El}. Recall that these are the equivalences induced by T1, . . . , Tl and
that T 1, . . . , T 2l is then a list containing T1, . . . , Tl and their inverses T−1

u . In the
next two sections we present a construction of A′0 and then, in the following section,
we argue that it is correct. Finally we estimate the size of the produced models and
establish the complexity of the finite satisfiability problem.

5.1. Pattern components

We plan to construct A′0 out of basic building blocks called components. Each com-
ponent will be an isomorphic copy of some pattern component. Let γ[A0] be the
set of isomorphism types of subtrees of A rooted at A0. We construct a pattern
component Cγ for every γ ∈ γ[A0]. If γ = γa0 is the type of Aa0 then take a = a0;
otherwise take any element a ∈ A0 that is the root of a subtree of type γ.

Cγ is a finite structure whose universe is divided into 2l(2t + 1) inner layers,
denoted L1, . . . , L2l(2t+1) and a single interface layer, denoted L2l(2t+1)+1. Each
inner layer Li is further divided into sublayers L1

i , L
2
i , . . . , L

Mϕ+1
i . Additionally, in

each sublayer Lji its initial part L
j,init
i is distinguished. In particular, L1,init

1 consists
of a single element called the root. The interface layer L2l(2t+1)+1 has no internal
division but, for convenience, is sometimes referred to as L1,init

2l(2t+1)+1. The elements
of L2l(2t+1) are called leaves and the elements of L2l(2t+1)+1 are called interface
elements. See Fig. 5.1.

Cγ will have a shape resembling a tree, with structures obtained by the inductive
assumption as nodes, though it will not be tree-like in the sense of Chapter 3 (in
particular, the internal structure of nodes may be very complicated). All elements
of Cγ , except for the interface elements, will have appropriate partial ϕ-witness
structures provided.

We remark that during the process of building a pattern component we do not yet
apply the transitive closure to the distinguished and auxiliary relations. Postponing

42 CHAPTER 5. SMALL MODEL THEOREM FOR UNFO+TR

this step is not important from the point of view of the correctness of the construction,
but will allow us for a simpler presentation of the proof of its correctness. Given a
pattern component C we will sometimes denote by C+ the structure obtained from
C by applying all the appropriate transitive closures.

The crucial property we want to enforce is that the root of Cγ will be far from
its leaves in the following sense. Denote by Gl(S), for a σ-structure S, the Gaifman
graph of the structure obtained by removing from S the equivalences El+1, . . . , Ek,
the corresponding transitive relations and their inverses. Then there is no connected
induced subgraph of Gl(C

γ
+) of size t containing an element of one of the first 2l

layers and, simultaneously, an element of one of the last 2l inner layers of Cγ .

The role of every inner layer Li is, speaking informally, to kill one of the T u, that
is to cause that there will be no T u-connections from Li to Li+1. See the right part
of Fig. 5.1. The role of sublayers, on the other hand, is to decrease the T u-rank of
elements. The purpose of the interface layer, L2l(2t+1)+1, will be revealed later.

We begin the construction of Cγ by defining L1,init
1 = {a′} for a fresh a′, setting

atpC
γ
(a′) = atpA(a) and p(a′) = a.

Construction of an inner layer : Let 1 ≤ i ≤ 2l(2t + 1). Assume we have defined
layers L1, . . . , Li−1, the initial part of sublayer L1

i , L
1,init
i , and both the structure

of Cγ and the values of p on L1 ∪ . . . ∪ Li−1 ∪ L1,init
i . Let v = 1 + (i − 1 mod 2l),

and let w = b(v + 1)/2c. We are going to kill T v. Note that Ew is the equivalence
corresponding to T v. We now expand L1,init

i to full layer Li.

Step 1: Subcomponents. Assume that we have defined sublayers L1
i , . . . , L

j,init
i , and

both the structure of Cγ and the values of p on L1∪ . . .∪Li−1∪L1
i ∪ . . .∪L

j,init
i . For

each b ∈ Lj,initi perform independently the following procedure. Apply the inductive
assumption to p(b) and the set E0 \Ew obtaining a structure B0, its origin b0 and a
function pb : B0 → Ap(b) ∩ [p(b)]E∗∩Ew ⊆ A0 with pb(b0) = p(b). Identify b0 with b
and add the remaining elements of B0 to Lji , retaining the structure. Substructures
B0 of this kind will be called subcomponents (note that all appropriate relations are
transitively closed in subcomponents). Extend p so that p ⇁B0 = pb. This finishes the
definition of Lji .

Step 2: Providing witnesses. For each b ∈ Lji independently perform the following
procedure. Let B0 be the subcomponent created inductively in Step 1, such that
b ∈ B0. Let W be the ϕ-witness structure for p(b) in A. Let E = W ⇁[p(b)]E∗ and
F = W ⇁[p(b)]E∗∩Ew . Note that F is a substructure of E. By (t5) b has the partial
ϕ-witness structure F′, isomorphic to F, provided in B0. Extend F′ in Cγ to an
isomorphic copy E′ of E. The structure E′ will be the structure Wb in Cγ and then
in A′0. The elements of E′ \ F ′ are fresh, and are assigned their sublayers as follows.
For c ∈ E′ \ F ′ if E′ |= T vbc (observe that in this case E′ |= ¬T vcb) then add c to
Lj+1,init
i , otherwise add c to L1,init

i+1 . See Fig. 5.2. Take as the values of p ⇁(E′ \ F ′)
the corresponding elements of E \ F .

5.1. PATTERN COMPONENTS 43

L1,init
i+1

Lj+1,init
i

in Lji

E\FE′\F ′ FF ′
B0

W

b p(b)

Ap(b)

Figure 5.2: Providing witnesses. Thick arrows denote T u-connections.

An attentive reader may be afraid that when adding witnesses for elements of the
last sublayer LMϕ+1

i of Li we may want to add one of them to the non-existing layer
L
Mϕ+2
i . There is however no such danger, which follows from the following claim.

Claim 5.3. (i) Let b ∈ Lj,initi and let B0 be the subcomponent created for b in Step
1. Then for all b′ ∈ B0 we have rv(p(b)) ≥ rv(p(b′)). (ii) Let b ∈ Lji and let E′,F′ be
the partial ϕ-witness structures for b considered in Step 2. Then for any c ∈ E′ \ F ′

such that E′ |= T vbc (so c ∈ Lj+1
i) the inequality rv(p(b)) > rv(p(c)) holds.

Proof. (i) By the inductive assumption (t1) for B0, we have B0 |= Ewbb
′. By (t4)

there exists a homomorphism h : {b, b′} → Ap(b) and thus Ap(b) |= Ewh(b)h(b
′). Since

b is the origin of B0, we may assume that h(b) = p(b). This means that rv(p(b)) ≥
rv(h(b

′)) = rv(p(b
′)) (the last equality follows from the fact that Ah(b′) ∼= Ap(b′) and

that T v-rank is clearly preserved by an isomorphism).

(ii) By the choice of E′ and F′ we have E′ |= T vbc ∧ ¬T vcb, thus by the choice of p
A |= T vp(b)p(c) ∧ ¬T vp(c)p(b) and finally rv(p(b)) > rv(p(c)).

Hence, when moving from Lji to Lj+1
i the T v-ranks of pattern elements for the

elements of these sublayers strictly decrease. Since these ranks are bounded by Mϕ,
then, even if the T v-ranks of the patterns of some elements of L1

i are equal to Mϕ,
then, if LMϕ+1

i is non-empty, the T v-ranks of the patterns of its elements must be 0,
which means that they cannot have witnesses connected to them one-directionally
by T v.

The construction of Cγ is finished when the interface layer, L2l(2t+1)+1 is defined
(recall that it has only its ‘initial part’).

44 CHAPTER 5. SMALL MODEL THEOREM FOR UNFO+TR

5.2. Joining the components

In this chapter we take some number of copies of pattern components and arrange
them into the desired structure A′0, identifying interface elements of some components
with the roots of some other. Some care is needed in this process in order to avoid
any modifications of the internal structure of closures C+ of components C, which
could potentially result from transitivity of relations. In particular we need to ensure
that if for some u a pair of elements of a component C is not connected by T u inside
C, then it will not become connected by a chain of T u-edges external to C.

We create a pattern component Cγ for every γ ∈ γ[A0]. Let max be the maximal
number of interface elements across all the Cγ . For each Cγ we number its interface
elements.

For each γ ∈ γ[A0] we take copies Cγ,gi,γ′ of C
γ for g ∈ {0, 1} (g is often called a

color), 1 ≤ i ≤ max and γ′ ∈ γ[A0]. We also take an additional copy Cγa0 ,0⊥,⊥ of Cγa0 .
Its root will become the origin of the whole A′0.

For each γ, g consider components of the form Cγ,g·,· . Perform the following pro-
cedure for each i—the number of an interface element. Let b be the i-th interface
element of any such component, let γ′ be the type of Ap(b). Identify the i-th interface
elements of all Cγ,g·,· with the root c0 of Cγ

′,1−g
i,γ . See Fig. 5.3

Note that the values of p(c0) and p(b) (the latter equals to the value of p on the i-th
interface element in all the Cγ,g·,·) may differ. However, by construction, Ap(b) ∼= Ap(c0)

(in particular, the 1-types of b and c0 match). For the element c∗ obtained in this
identification step we define p(c∗) = p(c0).

Define the graph of components used in the above construction, Gcomp, by joining
two components by an edge iff we identified an interface element of one with the
root of the other. Take A0

0 as the structure restricted to the components accessible
from Cγa0 ,0⊥,⊥ in Gcomp. Note that in A0

0 we still do not take the transitive closures of
relations. We define A′0 by transitively closing all appropriate relations in A0

0. Later
we will keep using the convention of marking some auxiliary structures in which the
transitive closures are not yet applied with the superscript 0. Finally, we choose as
the origin a′0 of A′0 the root of the pattern component Cγ0,0⊥,⊥.

5.3. Correctness of the construction

(t1) By the construction, after taking the transitive closures, E∗ is total on each
pattern component. Next, by the definition of the graph of components Gcomp, E∗

is total on A′0.

(t2) As a′0 we take the root of Cγa0 ,0⊥,⊥ . Recall that we explicitly map the root of the
pattern component Cγa0 by p to a0.

5.3. CORRECTNESS OF THE CONSTRUCTION 45

(t3) The interpretations of the W i are defined in the step of providing witnesses
where, implicitly, we take care of this condition for every element a′ of the inner
layers by extending the fragment of the partial ϕ-witness structure for a′ created on
the previous level of induction by a copy of a further fragment of the same pattern
ϕ-witness structure. Note also that during the step of joining the components all the
interface elements become identified with some roots, which are elements of inner
layers, and that the identifications do not spoil the required property.

(t4) For simplicity, let us ignore the ‘moreover’ part of this condition for some time.
We will explain how to take care of it near the end of this proof. Now we find a
homomorphism h such that Ap(a)

∼= Ah(a) for all a ∈ ā (we say that such a homomor-
phism has the subtree isomorphism property. Later we will show that its restrictions
to the substructures Wa are indeed isomorphisms. The proof starts with several
homomorphic reductions which show that instead of A′0 we can consider a structure
looking like a pattern component but twice as high.

Reduction 0. Consider a tuple ā ⊆ A′0 such that |ā| ≤ t. Observe that for each a ∈ ā
the structure Wa is connected in Gl(A′0 ⇁Wā) (recall the definition of Gaifman graph
Gl(S) and the interpretation of the symbolsW i). LetWā1 , . . . ,WāK be the connected
components ofWā inGl(A′0 ⇁Wā). If we have homomorphisms hi : Wāi → A0 satisfying
the subtree isomorphism property then we can take h =

⋃
hi : Wā → A0 which is

a homomorphism, since E∗ is total on A0, that still has the subtree isomorphism
property. Owing to this reduction we can restrict attention to tuples ā with Wā

connected (in the above sense) .

Reduction 1. By the construction, for all 1 ≤ i ≤ 2l(2t+1) and v = 1+(i−1 mod 2l),
there is no T v-path in any component from an element of Li to an element of Li+1.
Thus, if we divide (inner) layers of components into groups of size 2l, a transitive
path may join at most elements of two neighboring groups. Obviously, non-transitive
relations join only tuples consisting of elements of at most two consecutive layers,
and, in particular, each of the Wa lies in at most two consecutive layers. It follows,
that given a connected Wā, |ā| ≤ t, by our choice of the number of layers in a
component, there exists g ∈ {0, 1} such that removing all the connections between
leaves of color 1 − g and roots of color g (in other words: any connections between
elements of L2l(2t+1) and elements of L2l(2t+1)+1 in components of color 1− g) does
not remove any connections among the elements of Wā.

More formally, let D0
0 be the structure obtained from A0

0 by removing all the
connections as described above, and let D′0 be the transitive closure of D0

0 . Then
the inclusion map ι : Wā → D′0 is a homomorphism. Clearly Ap(ι(a)) = Ap(a) since
a = ι(a). Thus we can restrict attention to a tuple ā for which Wā is connected and
search for a homomorphism Wā → A0 treating Wā as a substructure of D′0.

Reduction 2. Observe that by our scheme of arranging the copies of pattern compo-
nents there is at most one type γ of components of color g (where g is the color from

46 CHAPTER 5. SMALL MODEL THEOREM FOR UNFO+TR

∼=

F′0

g

1−g

Cγ

π

b1 b2 b3

c0

⊇ WāE′0

∼=

F′0

g

1−g

Cγ

π

b1 b2 b3

c0

⊇ WāE′0

Figure 5.3: Joining the components and Reductions 1 and 2. Elements connected
by dashed lines are identified.

the previous reduction) that contains some element of a connected Wā (consider the
shape of a connected fragment of the graph of components Gcomp with connections
between leaves of color g and roots of color 1−g removed). Furthermore, all elements
of Wā of color 1 − g are contained in components of the form C·,1−g·,γ . Choose one
component of type γ of color g and call it Cγ . Consider the structure E0

0 (resp. F0
0)

obtained as the restriction of the structure D0
0 from the previous reduction to the

union of the domains of the components of the form Cγ,g·,· (resp. the domain of Cγ)
and the domains of all the components of the form C·,1−g·,γ . Let E′0 (resp. F′0) be their
transitive closures. Consider a projection π that projects all elements of E0

0 of color g
onto Cγ and is the identity on the others. We claim that π ⇁Wā : Wā → F′0 is a homo-
morphism. To see this, observe that the paths connecting elements of Wā in D0

0 are
contained in E0

0 and π : E0
0 → F0

0 is a homomorphism. See Fig. 5.3. Clearly for each
a ∈ ā we have Ap(a) = Ap(π(a)) since p(a) = p(π(a)). Thus, finally, we can restrict
attention to a tuple ā for which Wā is connected and search for a homomorphism
Wā → A0 treating Wā as a substructure of F′0.

Essential homomorphism construction. Note that F0
0 looks like a single component

but is twice as high. Consider the tree of subcomponents of F0
0 , τ , defined as follows:

make a subcomponent B the parent of B′ if B′ contains a witness for an element of
B. Observe that so obtained τ is indeed a tree. For a subcomponent B ∈ τ denote
by B∧ the union of the domains of all the subcomponents belonging to the subtree
of τ rooted at B.

Since we might have cut some connections between an element and some of its
witnesses during Reduction 1, we define for each a ∈ F ′0 the surviving part Va of Wa

by Va = F′0 ⇁Va where Va = {b : ∃i F′0 |= W iab}. For a tuple b̄ denote Vb̄ =
⋃
b∈b̄ Vb

and Vb̄ = F′0 ⇁Vb̄. Note that Va ⊆Wa, and generally, this inclusion may be strict, but

5.3. CORRECTNESS OF THE CONSTRUCTION 47

for all a ∈ ā we have Va = Wa, and thus, in particular, the claim below finishes the
proof of the currently considered part of (t4), that is the proof of the existence of a
homomorphism satisfying the subtree isomorphism property.

Returning to the shape of F0
0 , it consists of some subcomponents arranged into

tree τ glued together by the structure on the surviving parts. Note that all such
building blocks (that is both the subcomponents and the surviving parts of the
partial witness structures) are transitively closed. Moreover, by the tree structure of
τ , if some elements of such a building block are connected by some atom in F′0, then
they already have been connected by the same atom in F0

0 , therefore the identity
map from F0

0 to F′0 acts as an isomorphism when restricted to such a building block.

Claim 5.4. For every subcomponent B0 ∈ τ with origin b0, and ā ⊆ B∧0 , |ā| ≤ t,
there exists a homomorphism h : Vā → Ap(b0) ⇁[p(b0)]E∗ such that for all a ∈ ā we
have Ah(a)

∼= Ap(a), and if b0 ∈ ā then h(b0) = p(b0).

Proof. Bottom-up induction over tree.

Induction base: If B0 is a leaf of τ then Vā ⊆ B0 and the claim follows by the
inductive assumption of Lemma 5.2 (note that here we implicitly use the fact that
the identity map is an isomorphism between F0

0 ⇁B0 and F′0 ⇁B0).

Induction step: Let B1, . . . ,BK be the list of all the children of B0 in τ such that
B∧i contains some element of ā. If K = 1 and ā ⊆ B∧1 the thesis follows from the
inductive assumption of this claim.

Otherwise, for 1 ≤ i ≤ K (note that it is possible that K = 0), denote by
bi the origin of Bi and let ci ∈ B0 be such that bi is a witness chosen by ci in
the step of providing witnesses or during the step of joining the components. By the
inductive assumption of this claim there exist homomorphisms hi : V(ā∩B∧i)bi → Ap(bi)
such that hi(bi) = p(bi). From the inductive assumption of Lemma 5.2 we have a
homomorphism h0 : V(ā∩B0)c1...cK ⇁B0 → Ap(b0) ⇁[p(b0)]E∗ . We extend it in the only
possible way to h∗0 defined on the whole V(ā∩B0)c1...cK : for each a ∈ ā and c ∈ Va \B0

(by construction Va |= W iac for some i) we set h(c) to be the only element satisfying
A0 |= W ih(a)h(c) (such an element exists since Ah(a)

∼= Ap(a)—in particular the ϕ-
witness structures of h(a) and p(a) are isomorphic). Note that the sizes of the tuples
used to build the homomorphisms hi are bounded by t, as required.

We construct from the above maps a homomorphism h : Vāb1...bKc1...cK → Ap(b0).
See Fig. 4.4. Here, the crucial property is that A has a regular shape. Indeed, for
each i, 1 ≤ i ≤ K, for the witness b′i for h0(ci) (that is an element b′i satisfying
A0 |= W jh0(ci)b

′
i for the appropriate j), corresponding to the witness bi for ci (such

that F′0 |= W jcibi), we have Ab′i
∼= Ap(bi). This is the case since, by the inductive

assumption of Lemma 5.2 we have Ap(ci) ∼= Ah0(ci), by construction we have Abpi
∼=

Ap(bi) (here bpi is the j-th witness of p(ci); note that during the step of providing
witnesses we set p(bi) = bpi ; we need to consider ∼= since the value of p(bi) may

48 CHAPTER 5. SMALL MODEL THEOREM FOR UNFO+TR

change due to a possible identification applied in the step of joining the components)
and the numbering of witnesses is preserved by subtree isomorphisms. Thus there is
a homomorphism h∗i : V(ā∩B∧i)bi → Ab′i with h

∗
i (bi) = b′i.

We naturally join h∗0, h∗1, . . . , h∗K into h: h =
⋃
h∗i . Note that such h is well defined,

even though the value h on each of the bi is defined twice, since bi belongs to both
Domh∗0 and Domh∗i (h has been defined on the other elements exactly once). For each
a ∈ Domhi (= Domh∗i , when i > 0) we have Ah(a) = Ah∗i (a)

∼= Ahi(a)(∼= Ap(a), by the
inductive assumptions of this claim and Lemma 5.2). Since ā ⊆ Domh0∪

⋃
i>0 Domh∗i ,

we can conclude that for each a ∈ ā we have Ap(a)
∼= Ah(a).

The fact that h is a homomorphism follows from the tree structure of τ . In
particular, there cannot be any connections (before taking the transitive closures)
between (non-origin) elements of two different B∧i (for 1 ≤ i ≤ K). The full proof
that h is a homomorphism is tedious, therefore we show two representative cases
that use all the major ideas required. First, consider a, a′ ∈ Vāb1...bKc1...cK such that
a ∈ B∧i , a′ ∈ B∧j for some i, j such that ci 6= cj . Assume that F′0 |= Tuaa

′ for some
u. We will prove that A0 |= Tuh(a)h(a′). By a standard argument, owing to the tree
structure of τ (some more care is needed since there may be some connections in the
structures Vb), there exist di ∈ Vci ∩ B0 and dj ∈ Vcj ∩ B0 such that F′0 |= Tuabi,
F0

0 ⇁Vci |= Tubidi, B0 |= Tudidj , F0
0 ⇁Vcj |= Tudjbj and F′0 |= Tubja

′ (we assumed that
a, bi, di, dj , bj , a

′ are pairwise different; otherwise some parts of such path become
trivial). Since h∗i , h0 and h∗j are homomorphisms, A0 |= Tuh(a)h(bi) ∧ Tuh(di)h(dj) ∧
Tuh(bj)h(a

′). Now we show that A0 |= Tuh(bi)h(di). By construction of Va, there
exist indices ib and id such that F′0 |= W ibcibi ∧W idcidi and therefore by the choice
of h0, A0 |= W idh(ci)h(di) and by the choice of the extension of h0 to h∗0, A0 |=
W ibh(ci)h(bi). Let bpi be the ib-th witness of p(ci) and dpi be the id-th witness of
p(ci). By construction, A0 |= Tub

p
id
p
i . But Ap(ci) ∼= Ah(ci) and by the uniqueness of the

numbers of the witnesses, any isomorphism between these subtrees sends bpi to h(bi)
and dpi to h(di), therefore A0 |= Tuh(bi)h(di). Similarly A0 |= Tuh(dj)h(bj). Joining
the pieces together, by transitivity of Tu, A0 |= Tuh(a)h(a′). Secondly, we consider
the case when F′0 |= R(ā′) for some non-transitive symbol R and ā′ ⊆ Vāb1...bKc1...cK .
By construction, R(ā′) was set either in the process of building some subcomponent
or during the step of providing witnesses. Thus ā′ is either contained in B0 or some
of the B∧i or some of the Va for some a ∈ (ā∩B0)c1 . . . cK . Now we can prove, using
arguments similar to ones used for appropriate parts of the path in the previous case,
that A0 |= R(h(ā′))

Since by construction h0 ⊆ h, if b0 ∈ ā then h(b0) = h0(b0)(= p(b0) by the inductive
assumption of Lemma 5.2). To finish the inductive step, we restrict h to Vā.

Now we prove the additional property required for h by (t4), that is, that for each
a ∈ ā, h ⇁Wa is an isomorphism. By the numbering of witnesses, as explained before
the statement of this lemma, h movesWa into the part of the witness structure of h(a)

5.4. SIZE OF MODELS AND COMPLEXITY 49

contained in A0 and is one-to-one by the uniqueness of the numbers of witnesses in
a witness structure. The other way around, we can use a similar argument as in the
first case presented in the proof that the map built in Claim 5.4 is a homomorphism.
That is, if for some ā′ ⊆ Wa and some (arbitrary) relation R, A0 |= R(h(ā′)),
then, since Ah(a)

∼= Ap(a) and any isomorphism preserves the numbering of witnesses
and the structure on Wa was copied from a part of the witness structure for p(a)

(together with such numbering), A′0 |= R(ā′) and therefore the inverse of h ⇁Wa is also
a homomorphism, so h ⇁Wa is an isomorphism.

Now we return to the ‘moreover’ part of (t4). Let us assume that a′0 ∈ ā. We
will slightly modify the above proof. Reductions 0 and 1 do not move a′0 and we
keep them unchanged. Notice that in Reduction 1 we have that g = 0. Now, in
Reduction 2 we have that γ = γa0 and we choose Cγ = Cγ,0⊥,⊥. This way application
of π does not move a′0. To finish the proof, it is sufficient to see that by Claim 5.4
h(a′0) = p(a′0) = a0.

(t5) Apply (t4) to a tuple consisting of just a to obtain an isomorphism h : Wa →
A0 ⇁h(Wa) and then apply an isomorphism between Ah(a) and Ap(a).

5.4. Size of models and complexity

To complete the proof of Thm. 5.1 we need to show an appropriate upper bound
on the size of finite models produced by our construction. The following routine
estimation shows that |A′0| is triply exponential in n = |ϕ|, regardless of the choice
of the initial tree-like model A. We calculate a bound Cl on the size of the struc-
ture obtained in the proof of Lemma 5.2 for |E0| = l. We are interested in Ck+1,
which is the desired bound on the size of A′0 (we use Ck+1 here, rather than Ck,
because we may potentially introduce the auxiliary identity relation in the base step
of induction). By the construction any pattern component is a tree of subcompo-
nents consisting of at most 2l(2t + 1)(Mϕ + 1) sublayers. In the first sublayer we
have at most Cl−1 elements, in the second one—at most Cl−1n subcomponents;
this jointly gives C2

l−1n elements. Iterating, we have at most Ci
l−1n

i−1 elements in
i-th sublayer, which jointly gives an estimate (Cl−1n)2l(2t+1)(Mϕ+1)+1 on both the
number of inner elements and the number of interface elements in a pattern com-
ponent. Multiplying it by the number of components used in the joining phase,
and then estimating t and l in the exponent by n and n + 1 respectively, we get a
bound Cl = 2|γ[A]|2(Cl−1n)4(n+1)(2n+1)(Mϕ+1)+2. Solving this recurrence relation,
and recalling that Mϕ and |γ[A]| are doubly exponential in |ϕ| we obtain a triply
exponential bound on Ck+1.

This finishes the proof of Thm. 5.1. We do not know if our construction is optimal
with respect to the size of models. The best we can do for the lower bound is to
enforce models of at most doubly exponential size (actually, it can be done in UNFO

50 CHAPTER 5. SMALL MODEL THEOREM FOR UNFO+TR

even without transitive relations).

Thm. 5.1 immediately gives the decidability of the finite satisfiability problem for
UNFO+TR and suggests a simple 3-NExpTime-procedure: convert a given formula
ϕ into normal form ϕ′, guess a finite structure of size bounded triply exponentially
and verify that it is a model of ϕ′. We can however do better and show a doubly
exponential upper bound matching the known complexity of the general satisfiability
problem.

Theorem 5.5. The finite satisfiability problem for UNFO+TR is 2 -ExpTime-
complete.

Proof. The lower bound is inherited from pure UNFO [27]. As a side note, the lower
bound can be also obtained for the two-variable UNFO with one transitive relation.
The proof is an adaptation of the lower bound proof for GF2 with transitive relations
in guards [20].

For the upper bound, we describe an algorithm in AExpSpace. Fix ϕ in normal
form. We have proved that ϕ has a finite model iff it has a tree-like model with
bounded transitive paths (as in Lemma 3.5). We will look for the latter. We advise
the reader to recall the proof of Lemma 3.8, as we presently use a similar apparatus.
In our procedure we produce, in an alternating fashion, a finite tree A∗, corresponding
to some number of the upper levels of a model. Simultaneously, we define a function
g∗ returning for an element of A∗ its 1-type together with some ϕ-declaration and
one stopwatch for each of the T u (cf. the proof of Lemma 3.8).

More precisely, let Mϕ be the bound on transitive paths obtained in Lemma 3.5
and C be a bound on |Rngg∗| (we use (T u,Mϕ)-stopwatches in g∗). The alternating
algorithm works as follows. Calculate Mϕ and C. Note that both are doubly ex-
ponential in |ϕ|. Construct the root of A and guess its 1-type α, a ϕ-declaration d
containing all the formulas of the form ϕj0(x̄) ∧

∧
i∈Q xi = y ∧

∧
i∈Q\Q xi 6= y for any

Q ⊆ Q and 1 ≤ j ≤ z (recall that ϕ0 is equivalent to ϕ1
0 ∨ . . .∨ϕz0 with the ϕj0 being

conjunctions of some R and T formulas). Set g∗(a) = (α, d, (0)2k
u=1). Now construct

the downward family of a, F = {a, a1, . . . , as}, for some s < |ϕ|, guess its (transi-
tively closed) structure, and guess the values g∗(a1), . . . , g∗(as). Check whether F
is a ϕ-witness structure for a, the 1-types assigned by g∗ agree with the structure,
the declarations assigned by g∗ satisfy the LCCs and the stopwatches assigned by g∗

satisfy the local condition described in the definition of (T u,Mϕ)-stopwatch labeling.
If not, reject. Next universally choose one of the ai. Then proceed as for a—guess
the downward family of ai and values of g∗, and check their consistency as above,
universally choose one of the children of ai and so on. We additionally keep a counter
containing the number of the current level in A∗. If it reaches C + 1, we accept.

It is clear that the described algorithm can be implemented in AExpSpace: we
only need to store the structure and the values of g∗ on a single family, plus a counter.
All of these can be written using exponentially many bits.

5.4. SIZE OF MODELS AND COMPLEXITY 51

Correctness proof. To see that if ϕ has a model A with bounded transitive paths
then the algorithm accepts, it is sufficient to make the guesses in accordance with
A∗—the structure induced on the first C + 1 levels of A with g∗ defined as follows
A∗ 3 a 7→ (atpA(a), decAϕ(a), (Su)2k

u=1) where Su is the (T u,Mϕ)-stopwatch labeling
of A. The fact that such a strategy leads to an accepting run of the algorithm is
almost straightforward. In particular, the local consistency of declarations follows
from Lemma 3.3(ii). The opposite implication uses ideas similar to the ones from
the proof of Lemma 3.8. Assume that the algorithm has an accepting run. From
this run we can naturally infer a tree-like structure A∗ consisting of C+1 levels, and
a function g∗. Note that on each path from the root to a leaf in A∗ some value of
g∗ appears at least twice. Cut each branch at the first position on which the value
of g∗ reappears and make a link from this point to the first occurrence of this value
on the considered branch. Naturally unravel so obtained structure into an infinite
tree-like structure A. Define on A function g just copying the values of g∗. We show
that A |= ϕ and has transitive paths bounded by Mϕ. Note that the downward
families in A and the values of g on them are copies of some downward families in
A∗ and their values of g∗, so each a ∈ A has a ϕ-witness structure (A satisfies all
the ∀∃-conjuncts of ϕ) and also g gives a locally consistent set of declarations and
(T u,Mϕ)-stopwatch labelings. The latter guarantee that A has bounded transitive
paths; the former, together with the choice of the declaration d for the root of A∗,
allows us to conclude that A satisfies the ∀-conjunct of ϕ.

As remarked in the Introduction, we can state our results in a slightly stronger
way, for a setting in which we may not only require some binary symbols to be
interpreted as arbitrary transitive relations, but we can, more specifically, require
some of them to be equivalences and some other—partial orders. Indeed, assuming
that T is transitive we can enforce it in UNFO to be a (strict) partial order, writing
¬∃xy(Txy ∧ Tyx). Non-strict partial orders can be then simulated by disjunctions
Txy∨x = y. To have equivalences we can just use the symbols from σaux (cf. Chapter
2).

Corollary 5.6. The finite satisfiability problem for UNFO with transitive rela-
tions, equivalences and partial orders is 2 -ExpTime-complete.

We note that our approach does not allow us to deal with linear orders. Actually,
the presence of a strict linear order < makes the satisfiability problem for UNFO
undecidable, as it allows for a reduction from UNFO with inequalities, which is
known to be undecidable [27]: x 6= y can be then expressed as x < y ∨ y < x. See
also [1].

Chapter 6

Extensions

In this chapter we present two extensions of UNFO+EQ and UNFO+TR which can
be shown decidable by slight adaptations of our constructions. We then show that
combining these two extensions gives undecidability.

6.1. 1-dimensional guarded negation fragment

We observe now that our small model constructions can be adapted for a slightly
bigger logic.

The guarded negation fragment of first-order logic, GNFO, is defined in [4] by the
following grammar:

ϕ = R(x̄) | x = y | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xϕ | γ(x̄, ȳ) ∧ ¬ϕ(ȳ),

where γ is an atomic formula. Since equality statements of the form x = x can
be used as guards, GNFO may be viewed as an extension of UNFO. However,
the satisfiability problem for GNFO with equivalences or with transitive relations is
undecidable. It follows from the fact that even the two-variable guarded fragment,
which is contained in GNFO, becomes undecidable when extended by equivalences
or transitive relations [19, 18, 22].

To regain decidability we consider the base-guarded negation fragment with equiv-
alences (transitive relations), BGNFO+EQ (BGNFO+TR). BGNFO+TR is inves-
tigated in [1]. In these variants all guards must belong to σbase, and all symbols
from σdist must be interpreted as equivalences/transitive relations. Recall that the
general satisfiability problem for BGNFO+TR was shown decidable in [1], and as
explained in Chapter 2 this implies decidability of the general satisfiability problem
for BGNFO+EQ. In this thesis we do not solve the finite satisfiability problem for
neither full BGNFO+EQ nor full BGNFO+TR. We, however, do solve this problem
for their one-dimensional restrictions.

We say that a first-order formula is one-dimensional if its every maximal block of

53

54 CHAPTER 6. EXTENSIONS

quantifiers leaves at most one variable free. E.g., ¬∃yzR(x, y, z)) is one-dimensional,
and ¬∃zR(x, y, z)) is not. By one-dimensional guarded negation fragment, GNFO1

we mean the subset of GNFO containing its all one-dimensional formulas. Not all
UNFO formulas are one-dimensional, but they can be easily converted to the al-
ready mentioned UN-normal form [27], which contains only one-dimensional for-
mulas. The cost of this conversion is linear. This allows us to view UNFO as a
fragment of GNFO1. We can define the one-dimensional restrictions BGNFO1+EQ
(BGNFO1+TR) of BGNFO+EQ (BGNFO+TR) in a natural way.

Our proofs can be adapted to cover the case of BGNFO1+EQ and BGNFO1+TR.
The adaptations are not difficult. What is crucial is that in the current constructions,
during the step of providing witnesses, we build isomorphic copies of whole witness
structures, which means that we preserve not only positive atoms but also their
negations. Thus, we preserve witness structures.

Theorem 6.1. (i) BGNFO1+EQ has a doubly exponential finite model property,
and its satisfiability (= finite satisfiability) problem is 2 -ExpTime-complete.
(ii) The finite satisfiability problem for BGNFO1+TR is 2 -ExpTime-complete.

Since the adaptations of the proofs covering (i) and (ii) are almost the same, we will
show only (ii).

Using a natural adaptation of the standard Scott translation [25] we can transform
any BGNFO1+TR sentence into a normal form sentence ϕ of the shape as in (2.1),
where the ϕi are quantifier-free GNFO formulas. Assume that some finite structure
A is a model of ϕ. First, we need a slightly stronger version of condition (h1)
in Lemma 2.2—each of the considered homomorphisms should additionally be an
isomorphism when restricted to a guarded substructure. We need to extend the
notion of a declaration so that it treats subformulas of the form γ(x̄, ȳ) ∧ ¬ϕ′(ȳ)

like non-transitive atomic formulas. This allows us to perform surgery making the
transitive paths bounded and then to construct a regular tree-like model A′ |= ϕ as
it is done in the proofs of Lemma 3.5 and Lemma 3.8, respectively. The key facts
are that Lemma 3.3 holds (with the new declarations) and that ϕ0 is equivalent to
a disjunction of some formulas generated by declarations. Finally we apply, without
any changes, the construction from the proof of Lemma 5.2 to A′ and ϕ obtaining
eventually a finite structure A′′. Note that during the step of providing witnesses we
build isomorphic copies of partial witness structures, which means that we preserve
not only positive atoms but also their negations. Thus the elements of A′′ have all
witness structures required by ϕ. Consider now the conjunct ∀x1, . . . , xt¬ϕ0(x̄), and
take arbitrary elements a1, . . . , at ∈ A′′. From Lemma 5.2 we know that there is a
homomorphism h : A′′ ⇁{a1, . . . , at} → A′ preserving 1-types. If γ(z̄, ȳ) ∧ ¬ϕ′(ȳ) is a
subformula of ϕ0 with γ a σbase-guard and A′′ |= γ(b̄, c̄)∧¬ϕ′(c̄) for some b̄, c̄ ⊆ ā then,
by our construction, all elements of b̄∪ c̄ are members of the ϕ-witness structure for
some element. As mentioned above such witness structures are isomorphic copies of
substructures from A and h works on them as an isomorphism, and thus h preserves

6.2. INCLUSIONS OF BINARY RELATIONS 55

on c̄ not only 1-types and positive atoms but also negations of atoms in witnesses
structures. Since A′ |= ¬ϕ0(h(a1), . . . , h(at)) this means that A′′ |= ¬ϕ0(a1, . . . , at).

The algorithm for checking finite satisfiability presented in the proof of Thm. 5.5
also works without any changes and, moreover, its correctness proof does not need
any modifications. It is the case since a key role is played here by Lemma 3.3 that
still holds with the new version of declarations.

6.2. Inclusions of binary relations

For a given signature σ denote σ−1 = {B−1 : B binary and B ∈ σbase ∪ σdist},
σ−1

base = {B−1 : B binary and B ∈ σbase} and σ−1
dist = {T−1 : T binary and T ∈ σdist}).

The (finite) satisfiability problem for UNFO+EQ (resp. UNFO+TR) with binary in-
clusions is defined as follows. Given an UNFO+EQ (resp. UNFO+TR) formula
ϕ over σ and a set H of inclusions of the form B ⊆ B′, for binary symbols
B,B′ ∈ σbase∪σdist∪σ−1, check if there exists a (finite) model of ϕ in which for every
B ⊆ B′ ∈ H the interpretation of B is contained in the interpretation of B′, where
the interpretations of the symbols from σ−1 are the inverses of the interpretations of
the corresponding symbols from σ.

We first remark that all our constructions from Chapters 3, 4 and 5, without
literally any changes, respect inclusions of the form T ⊆ T ′, B ⊆ B′ and B ⊆ T for
any T, T ′ ∈ σdist ∪ σ−1

dist and B,B′ ∈ σbase ∪ σ−1
base. The only problematic inclusions are

those of the form T ⊆ B for B ∈ σbase ∪ σ−1
base and T ∈ σdist ∪ σ−1

dist. However, treating
the relations that appear on the right side of such inclusions in a special way, we
can apply our constructions so that they respect also this kind of constraints. The
corresponding (general) satisfiability problems are also decidable (by much simpler
arguments).

Theorem 6.2. (i) UNFO+EQ with binary inclusions has the finite model property.
Its (finite) satisfiability problem is 2 -ExpTime-complete. (ii) The (finite) satisfia-
bility problem for UNFO+TR with inclusions of binary relations is 2 -ExpTime-
complete.

We show how to modify our constructions to prove this theorem.

(ii) For a binary B ∈ σ we assume that (B−1)−1 = B. For a given set of inclusions
H let H+ denote the smallest set such that (a) H ⊆ H+, (b) if B1 ⊆ B2 ∈ H+ then
B−1

1 ⊆ B−1
2 ∈ H+, (c) if B1 ⊆ B2 ∈ H+ and B2 ⊆ B3 ∈ H+ then B1 ⊆ B3 ∈ H+.

For any structure A we have that A |= H iff A |= H+. If T ⊆ B ∈ H , for
T ∈ σdist ∪ σ−1

dist and B ∈ σbase ∪ σ−1
base then B is called pseudo-transitive. Pseudo-

transitive relations must be treated in a special way. Let us see some details.

In our constructions we often proceed as follows. We first build a structure A0 by
joining together some number of copies of fragments of a pattern model Ap (there are

56 CHAPTER 6. EXTENSIONS

no further connections among such copies; they just share some elements). Relations
from σdist are not transitively closed in A0. In particular if Ap |= H+ then A0 |= H+.

Then, we take the transitive closure of the appropriate relations in A0 obtaining
Aτ . However, the structure Aτ does not necessarily respect the constraints of the
form T ⊆ B ∈ H+ for T ∈ σdist ∪ σ−1

dist and B ∈ σbase ∪ σ−1
base. To solve this problem,

we apply the pseudo-transitive closure to Aτ , that is, for any T ⊆ B ∈ H+, such
that T ∈ σdist ∪ σ−1

dist and B ∈ σbase ∪ σ−1
base, and any a, b ∈ Aτ if Aτ |= Tab then we

join a and b by B. Denote the resulting structure as A.

It is easy to verify that A |= H+. Now, observe that for each B ∈ σbase ∪ σ−1
base

and a, b ∈ Aτ (= A) we have A |= Bab iff Aτ |= Bab ∨
∨

T :T⊆B∈H+

Tab. Let us denote

by ϕτ the formula obtained from ϕ by replacing each σbase-atom with an appropriate
disjunction as above. Clearly Aτ |= ϕτ iff A |= ϕ and, similarly, since Ap |= H+,
Ap |= ϕ iff Ap |= ϕτ . Thus, in all stages of our finite model constructions we may
proceed as it was described for UNFO+TR without inclusions, but for the formula
ϕτ , and then apply the pseudo-transitive closure to obtain the desired structure.

A similar approach may be applied in the algorithm searching for models respect-
ing inclusions: we search for a model of ϕτ , requiring additionally that the downward
families respect inclusions from H+.

As a side note, we remark that if the transformation of ϕ into ϕτ is applied to a
formula ϕ from BGNFO1+TR then ϕτ does not necessarily belong to BGNFO1+TR
(as a base guard may be replaced by a disjunction containing transitive atoms).
Thus, the above arguments do not apply to the guarded case.

(i) Observe that the inclusion E ⊆ E−1 is equivalent to E being symmetric. Thus we
can embed UNFO+EQ with binary inclusions in UNFO+TR with binary inclusions
by adding for each equivalence symbol E a conjunct ∀xExx, an inclusion constraint
E ⊆ E−1 and treating E as a symbol of the distinguished signature. Note that
a formula has the same models before and after such transformation. Thus, the
(finite) satisfiability problem for UNFO+EQ with binary inclusions is 2-ExpTime-
complete. For the finite model property, observe for a satisfiable formula ϕ (call ϕ′

its image by the above reduction), that the structure obtained by unraveling a model
for ϕ′ has no one-directional transitive connections. Therefore, by an application of
the further steps of the construction, ϕ′ (and therefore also ϕ) has a finite model (in
fact, since the structures obtained in the constructions have transitive paths bounded
by 0, one may use the estimation presented in Chapter 5 to observe that it is doubly
exponential).

6.3. Combining the two decidable extensions

Note that BGNFO1+EQ and BGNFO1+TR can express inclusions B ⊆ T and
B ⊆ B′, and our constructions respect the inclusions of the form T ⊆ T ′ for B,B′ ∈

6.3. COMBINING THE TWO DECIDABLE EXTENSIONS 57

σbase ∪ σ−1
base and T, T ′ ∈ σdist ∪ σ−1

dist. However, it turns out that if we extend them
with inclusions of the form T ⊆ B then the (finite) satisfiability problems become
undecidable. Since, similarly to the previous section, one can embed BGNFO1+EQ
with binary inclusions in BGNFO1+TR with binary inclusions, it suffices to consider
the former. The undecidability can be easily shown by a reduction from the already
mentioned (finite) satisfiability problem for GF2+EQ. We build the proof on a
conversion of GF formulas to equivalent GNFO formulas presented in [4]. All the
negations in a GF2+EQ formula ϕ can be guarded by the guards of quantifiers. If
ϕ uses an equivalence guard E then we can add an inclusion E ⊆ BE , for a fresh
BE ∈ σbase and then use BE to guard negations. More precisely, subformulas of ϕ of
the form ∃y(Exy∧ψ(x, y)) are replaced by ∃y(Exy∧ψ∗(x, y)), where ψ∗ is obtained
by replacing negated subformulas ¬ς(x, y) (not in the scope of a deeper quantifier)
of ψ by, properly base-guarded, BExy ∧ ¬ς(x, y). (In subformulas of the original
formula of the form ∃y(Bxy∧ψ(x, y)), for non-equivalence B, we just add the guard
Bxy to all binary negations in ψ, not in the scope of a deeper quantifier.) Note that
since GF2+EQ uses only two variables all its formulas are one-dimensional, which is
not changed by the described reduction.

Theorem 6.3. The (finite) satisfiability problems for BGNFO1+EQ with binary
inclusions and BGNFO1+TR with binary inclusions are undecidable.

In fact, the above proof, together with [22, 19], may be used to show that (finite)
satisfiability for BGNFO1+EQ (resp. BGNFO1+TR) with three (resp. two) T ⊆ B

inclusions, where T ∈ σdist and B ∈ σbase, is undecidable.

Bibliography

[1] A. Amarilli, M. Benedikt, P. Bourhis, and M. Vanden Boom, Query
answering with transitive and linear-ordered data, in Proceedings of the Twenty-
Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, 2016,
pp. 893–899.

[2] H. Andréka, J. van Benthem, and I. Németi, Modal languages and
bounded fragments of predicate logic, Journal of Philosophical Logic, 27 (1998),
pp. 217–274.

[3] J. Baget, M. Leclère, M. Mugnier, and E. Salvat, Extending decidable
cases for rules with existential variables, in IJCAI 2009, Proceedings of the 21st
International Joint Conference on Artificial Intelligence, 2009, pp. 677–682.

[4] V. Bárány, B. ten Cate, and L. Segoufin, Guarded negation, J. ACM, 62
(2015), p. 22.

[5] M. Bojańczyk, C. David, A. Muscholl, T. Schwentick, and
L. Segoufin, Two-variable logic on data words, ACM Trans. Comput. Log., 12
(2011), p. 27.

[6] M. Bojańczyk, A. Muscholl, T. Schwentick, and L. Segoufin, Two-
variable logic on data trees and xml reasoning, J. ACM, 56 (2009).

[7] D. Danielski and E. Kieroński, Unary negation fragment with equivalence
relations has the finite model property, in Thirty-Third Annual ACM/IEEE
Symposium on Logic in Computer Science , LICS 2018, 2018.

[8] M. Dzięciołowski, Satisfability issues for unary negation logic, bachelor’s the-
sis, University of Wrocław, 2017.

[9] B. Glimm and Y. Kazakov, Role conjunctions in expressive description logics,
in Logic for Programming, Artificial Intelligence, and Reasoning, 15th Interna-
tional Conference, LPAR 2008, 2008, pp. 391–405.

[10] B. Glimm, C. Lutz, I. Horrocks, and U. Sattler, Conjunctive query an-
swering for the description logic SHIQ, J. Artif. Intell. Res., 31 (2008), pp. 157–
204.

[11] T. Gogacz, Y. Ibañéz-García, and F. Murlak, Finite query answering in
expressive description logics with transitive roles, (2018). Accepted for KR’18.

59

60 BIBLIOGRAPHY

[12] E. Grädel, On the restraining power of guards, J. Symb. Log., 64 (1999),
pp. 1719–1742.

[13] E. Grädel, P. Kolaitis, and M. Y. Vardi, On the decision problem for
two-variable first-order logic, Bulletin of Symbolic Logic, 3 (1997), pp. 53–69.

[14] L. Hella and A. Kuusisto, One-dimensional fragment of first-order logic, in
Proceedings of Advances in Modal Logic, 2014, 2014, pp. 274–293.

[15] I. Horrocks and U. Sattler, A description logic with transitive and inverse
roles and role hierarchies, J. Log. Comput., 9 (1999), pp. 385–410.

[16] I. Horrocks and U. Sattler, A tableaux decision procedure for SHOIQ,
Journal of Automated Reasoning, 39 (2007), pp. 249–276.

[17] J. C. Jung, C. Lutz, M. Martel, and T. Schneider, Querying the unary
negation fragment with regular path expressions, in International Conference on
Database Theory, ICDT 2018, 2018, pp. 15:1–15:18.

[18] Y. Kazakov, Saturation-based decision procedures for extensions of the guarded
fragment, PhD thesis, Universität des Saarlandes, Saarbrücken, Germany, 2006.

[19] E. Kieroński, Results on the guarded fragment with equivalence or transitive re-
lations, in Computer Science Logic, vol. 3634 of LNCS, Springer, 2005, pp. 309–
324.

[20] E. Kieroński, On the complexity of the two-variable guarded fragment with
transitive guards, Inf. Comput., 204 (2006), pp. 1663–1703.

[21] E. Kieroński, J. Michaliszyn, I. Pratt-Hartmann, and L. Tendera,
Two-variable first-order logic with equivalence closure, SIAM Journal of Com-
puting, 43 (2014), pp. 1012–1063.

[22] E. Kieroński and M. Otto, Small substructures and decidability issues
for first-order logic with two variables., Journal of Symbolic Logic, 77 (2012),
pp. 729–765.

[23] E. Kieroński and L. Tendera, Finite satisfiability of the two-variable
guarded fragment with transitive guards and related variants, ACM Trans. Com-
put. Logic, 19 (2018), pp. 8:1–8:34.

[24] I. Pratt-Hartmann, The finite satisfiability problem for two-variable, first-
order logic with one transitive relation is decidable, Mathematical Logic Quar-
terly, (2018).

[25] D. Scott, A decision method for validity of sentences in two variables, Journal
Symbolic Logic, 27 (1962), p. 477.

[26] W. Szwast and L. Tendera, The guarded fragment with transitive guards,
Annals of Pure and Applied Logic, 128 (2004), pp. 227–276.

[27] B. ten Cate and L. Segoufin, Unary negation, Logical Methods in Comp.
Sc., 9 (2013).

BIBLIOGRAPHY 61

[28] S. Tobies, Complexity results and practical algorithms for logics in knowledge
representation, PhD thesis, RWTH Aachen University, Germany, 2001.

	Introduction
	Preliminaries
	Logics, structures, types and functions
	Normal form, witnesses and basic facts
	Plan of small model constructions

	Tree-like models
	Declarations
	Shortening transitive paths
	Regular tree-like models

	Small model theorem for UNFO+EQ
	Pattern components
	Joining the components
	Correctness of the construction
	Size of models and complexity

	Small model theorem for UNFO+TR
	Pattern components
	Joining the components
	Correctness of the construction
	Size of models and complexity

	Extensions
	1-dimensional guarded negation fragment
	Inclusions of binary relations
	Combining the two decidable extensions

	Bibliography

