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Chapter 1

Introduction

The reaction-diffusion equations can be widely used to describe the behaviour of many bi-
ological phenomena like forming patterns in an organism. Japanese biologist Shigeru Kondo
presented in his works, [1], [2], [3] a process of forming pattern on a certain species of guppy fish.
He observed that two dyes that are present in a fish organism influence each other. That results
in forming a diversified patterns on a fish surface. Shigeru Kondo proposed an explanation of
this phenomena using an improved reaction-diffusion system. He claimed that the change rate of
a dye depends on a dye density and location. It follows in some areas dye change rate depends
positively on dye volume and in some areas the dependence is negative. The positive dependence
is called activation, and the negative dependence is called inhibition.

1.1 Primary model

Mathematical model proposed by Shigeru Kondo was a differential equation which describes
the concentration of a specific substance on a fish skin. Consider bounded and connected subset
of plane Ω ⊂ R2. Let u denote the concentration of a substance. The following model was used

∂u

∂t
= (S − a)u (1.1)

where a > 0 is a constant cell destruction rate and S corresponds to the cell synthesis. Cell syn-
thesis is a process of sophisticated cell interactions, dependent on stimulation operator. Shigeru
Kondo in his work claimed that stimulation operator is a convolution with a radial kernel

Stim(x, y) = ∫ ∫ u(x − ξ, y − η)Kernel(
√
ξ2 + η2)dξdη. (1.2)

The kernel used in simulations is designed to have positive and negative parts as well. It was
observed that without inhibition or activation part no diversified patterns can be achieved and
the solution is trivial. In same cases unwanted, high level of cells density can be obtained. To
eliminate this problem the saturation function was introduced, to ensure that the density of a
substance is tempered. The saturation function was given with the following formula

S =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0, Stim < 0,
Stim, 0 < Stim ⩽M,

M, S >M.

(1.3)
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LetK be a convolution kernel and f be a saturation function. Then Kondo model can be rewritten
as

ut = −au + f(K ∗ u). (1.4)

Shigeru Kondo observed that the model coefficients, destruction rate a, kernel shape, inhibition,
activation rate and saturation rate plays the important role in the shape of the obtained pattern.
First of all, specific requirements for coefficients needs to be claimed to ensure that the solution
will be non-trivial. Secondly, the mutual relations between coefficients determine the properties of
the obtained pattern. In some cases the pattern can be symmetric, antisymmetric or connected.
Generally, the patterns are regular in some sense. We will explain this phenomena in this work
later.

1.2 Equivalent model

The Kondo model presented in (1.4) is difficult to analyse, since it is a convolution differ-
ential equation. In this work we will propose an alternative semi reaction - diffusion model, to
approximate the convolution model. We will show even the simplified model, is sufficient to prove
the existence and stability of non trivial stationary solutions. We introduce the second substance
v which will be used to substitute convolution kernel with Laplace equation. Let Ω ⊂ R2 be
bounded compact and connected. Let u, v(x, t) ∶ Ω ×R+ → R be a functions describing the sub-
stances density. Consider the system

ut = − au + f(v),

0 =cu + (d +∆)v, x ∈ Ω,

∂

∂n
v =0, x ∈ ∂Ω,

u(x,0) =u0(x),

(1.5)

where a > 0, c, d ∈ R, f ∈ C2(R). We applied Neumann boundary condition because in Kondo
model substance does not diffuse outside of fish organism. We claimed that the substance v does
not follow the law of reaction. Observe that our system corresponds to the specific convolution
differential equation with kernel K equal to shifted Green kernel. The following formula holds

v(x) = c∫
Ω
K(x, y)u(y)dy. (1.6)

The value of d determines the core system properties since if d is equal to the eigenvalue of
Laplace operator then the second equation can not have solution for every u.

This paper is organized as follows. In chapter 2 we will consider linearised model, with linear
function f . We will prove the existence and stability of stationary solutions under specific con-
ditions for model coefficients. We will extend our argument for Laplasian substituted with any
operator B such that B−1 is compact. In chapter 3 we will prove the existence of non constant
stationary solutions for non linear model using Rabinowitz Bifurcation theorem. The stability of
solutions will be proven only in dimension 1, since restriction for supremum norm are required.
In chapter 4 we will present some numerical simulation to explain the process of forming patterns
from random initial conditions. In chapter 5 we will draw a conclusion.
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Chapter 2

Linearized model

2.1 Statement of the problem

Let Ω ⊆ R2 be an open, bounded, connected domain with C∞ boundary. Consider the lin-
earised system with the Neumann boundary condition

∂u

∂t
= −au + bv x ∈ Ω,

0 = cu + dv +∆v

∂v

∂n
= 0 x ∈ ∂Ω,

u0(x) = u(x,0).

(2.1)

where a > 0 and b, c, d ∈ R. It is convenient to represent the system (2.1) in matrix form

(
ut
0
) = (

−a b
c d +∆

)(
u
v
) x ∈ Ω,

∂v

∂n
= 0 x ∈ ∂Ω,

u(x,0) = u0(x).

(2.2)

Let us define a weak solution of problem (2.1).

Definition 2.1.1. A pair of functions u ∈ C1([0,∞),W 1,2(Ω)), v ∈ C1([0,∞),W 1,2(Ω)) is a
weak solution of problem (2.1) if for every φ ∈W 1,2(Ω) the following equality hold true

∫
Ω

∂u

∂t
φ = −∫

Ω
auφ + ∫

Ω
bvφ,

0 = ∫
Ω
cuφ + ∫

Ω
dvφ + ∫

Ω
∇v∇φ.

(2.3)

We will prove that if coefficients a, b, c, d fulfils some specific assumptions then there exists a
weak solution of (2.1). Moreover, we will prove its stability.

2.2 Laplace operator properties

To prove the existence and stability of solutions we need to recall some basic facts about
eigenvalues of Laplacian.

6



Theorem 2.2.1 (Spectral theorem for Laplace operator with Neumann boundary conditions).
Let Ω ⊂ R2 be an bounded connected domain with C∞ boundary. The problem

∆u = λu x ∈ Ω,

∂u

∂n
= 0 x ∈ ∂Ω.

(2.4)

has countably many eigenvalues which satisfy

0 > λ1 ⩾ λ2 ⩾ ⋯ ⩾ λn ⩾ ⋯→ −∞

and orthonormal basis of eigenfunctions {ej}
∞
j=1 of W 1,2(Ω) such that

∆ej = λjej

Proof. The proof can be found in [8, page 234].

2.3 Existence of stationary solutions

Theorem 2.3.1. Assume that a > 0, b ≠ 0, c ≠ 0, d ≠ 0. There exists a non zero weak stationary
solution of problem (2.1) if and only if

−ad − bc

a
= λk for some k ∈ N

Moreover each such stationary solution is of the form

ṽ =
nk

∑
l=1
Clejl and ũ =

b

a
ṽ,

where ejl are eigenfunctions corresponding to the eigenvalue λk, nk denotes the multiplicity of
λk eigenvalue and Cl are arbitrary constants.

Proof. A stationary solution of (2.2) fulfils

(
0
0
) = (

−a b
c d +∆

)(
ũ
ṽ
) x ∈ Ω,

∂ṽ

n
= 0 x ∈ ∂Ω.

(2.5)

Evaluating ũ from the first equation and applying it to the second one yields to the problem

−
ad + bc

a
ṽ = ∆ṽ x ∈ Ω,

∂ṽ

∂n
= 0 x ∈ ∂Ω.

(2.6)

It follows from Theorem 2.2.1 that system (2.6) has a solution if and only if

−
ad + bc

a
= λk

for some k. There exists nk eigenfunctions corresponding to λk and nk indices fulfilling

−
ad + bc

a
= λjl = λk for each l ∈ {1,2,⋯, nk}
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It follows that the solution is of the form ṽ = ∑
nk
l=1C

1
l ejl for arbitrary constant C1

l . Finally,

ũ =
b

a
ṽ,

which completes the proof.

2.4 Stability of stationary solutions

We are now ready to formulate and prove a stability theorem for linear model (2.1). We will
prove stability for wider assumptions for coefficient a, b, c, d that arises from the Kondo model.

Theorem 2.4.1. Assume that a > 0, b ≠ 0, c ≠ 0, d ≠ 0. Let (ũ, ṽ) be a non zero stationary
solution of problem (2.1), corresponding to eigenvalue λk. The solution (ũ, ṽ) is stable if and
only if

ad + bc + aλj

d + λj
⩾ 0 for each j ∈ N,

where {λj}
∞
j=1 are eigenvalues recalled in Theorem 2.2.1.

Proof. From Theorem 2.3.1 the stationary solution is given by

(ũ, ṽ) = (
b

a

k

∑
l=1
C1
l ejl ,

k

∑
l=1
C1
l ejl) . (2.7)

Consider the problem with disturbed initial condition (u0, v0) = (ũ + u′0, ũ + v
′
0). A solution of

problem (2.1) can be expressed using orthonormal properties of eigenfunctions

u(t, x) = ũ +∑
j≠k

aj(t)ej(x),

v(t, x) = ṽ +∑
j≠k

bj(t)ej(x).
(2.8)

with suitably chosen, aj and bj . Substituting those functions into equation (2.1) yields to the
fact that it is enough to analyse the stability of the trivial solution (0,0). Hence,

(
∑j a

′
j(t)ej(x)

0
) = (

−a b
c d +∆

)(
ũ +∑j aj(t)ej(x)
ṽ +∑j bj(t)ej(x)

) = (
−a b
c d +∆

)(
∑j aj(t)ej(x)

∑j bj(t)ej(x)
) . (2.9)

Since {ej}
∞
j=1 is an orthonormal basis, the solution of system (2.9) has the following property for

each j

(
a′j(t)

0
) = (

−a b
c d + λj

)(
aj(t)
bj(t)

) . (2.10)

Thus, the stability of solutions to problem (2.1) is equivalent to the stability of solution of system
(2.10) for each j ∈ N. Substituting bj from second equation into the first equation lead us to

a′j(t) = −aaj(t) −
cd

d + λj
aj = −aj

ad + bc + aλj

d + λj
= −µjaj . (2.11)

The solution of equation (2.11) is stable if and only if µj is non negative for each j ∈ N. By
assumption, the numbers µj are well defined and non negative for each j. Moreover infj µj < 0,
because for each j, µj ≠ 0 and limj→∞ µj = −a. It follows that aj are dominated decreasing
functions and the stationary solution is stable.
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It can be observed that conditions stated in Theorem 2.4.1 determine the range of variability
for coefficient d.

Collary 2.4.2. Denote by λk−, λk+ eigenvalues adjacent to λk and different from λk. If the
solution (ũ, ṽ) of problem (2.1) corresponding to eigenvalue λk, k > 1 is stable then

d ∈ (−λk−,−λk+) ∖ {−λk}.

If the stationary solutions corresponds to the first eigenvalue λ1 then

d ∈ (−∞,−λ1+) ∖ {−λ1}.

Proof. If d = −λj for some j, then from equation (2.11) we immediately obtain that the coefficients
(aj(t), bj(t)) = (0,0) for any t, which contradicts

(aj(0), bj(0)) = (< u′0, ej >,< v
′
0, ej >)

Moreover, nominators of µj forms a increasing divergent sequence and from theorem 2.3.1, the
number µk = 0. Thus stability is ensured if denominator of µj is positive for j ⩽ k− and negative
for j ⩾ k+. Since, λj is monotonic and decreasing, the thesis holds if λk− < d < λk+.

We will now prove the following lemma which will be useful in the subsequent part of this
work.

Lemma 2.4.3. If the assumptions of Theorem 2.4.1 hold, then every stable solution of problem
(2.1) with initial condition u0 fulfils

∣∣u(t)∣∣2 ⩽ C
−µt

∣∣u0∣∣2 for all t > 0 (2.12)

and for some constants C,µ > 0.

Proof. Let us express u0, v0 in the orthonormal basis {ej}. We obtain

u0 =∑
j

ajej v0 =∑
j

bjej ,

∣∣u0∣∣
2
=∑

j

a2
j ∣∣v0∣∣

2
=∑

j

b2j .
(2.13)

The explicit solution of the linear problem for each aj follows from ordinary differential equation
theory and it is given by formula

aj(t) = aje
−µjt (2.14)

Since ej is orthonormal basis following inequality holds for each t

∣∣u(t)∣∣2 =∑a2
j(t) =∑a2

je
−2µjt ⩽∑a2

je
−2 infj µj = ∣∣u0∣∣2e

−2µt (2.15)

where µ = infj∈N µj . The number infj∈N µj exists because {µj}j∈N is bounden from below. More-
over
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2.5 Compact operators

The reasoning presented in this chapter can be extended for wilder scope of operators gen-
eralizing the Laplace operator. Let Ω ⊂ R2 be an open, bounded, connected, domain with C∞

boundary. Let K ∶W 1,2(Ω)→W 1,2(Ω) be an linear operator, such that K−1 is compact, bounded
and self-adjoint. Consider the generalized linearised system

∂u

∂t
= −au + bv x ∈ Ω,

0 = cu + dv +K(v)

u0(x) = u(x,0).

(2.16)

We will prove the existence and stability of stationary solutions using the same techniques as in
the previous section. We need to recall the Hilbert - Schmidt Theorem.

Theorem 2.5.1 (Hilbert - Schmidt spectral theorem). Let X be Hilbert space. Let H ∶ X → X
be a compact, bounded, self-adjoint operator. Then there exist a finite or infinite sequence of non
zero eigenvalues {ηj}j. Moreover if the sequence is infinite then limj→∞ ηj = 0. Furthermore there
exist an orthonormal basis {ϕi}

∞
i=1 of X, such that

Hϕj = ηjϕj .

Proof. Proof can be found in [9, page 728].

Remark 2.5.2. Operator K−1 is compact. From Theorem 2.5.1 there exists a sequence of eigen-
values λj = 1

ηj
of K satisfying limj→∞ ∣λj ∣ = ∞. The sequence {λj} can be divergent to ±∞ or

can have no limit. It is convenient to index the eigenvalues with integers and order them in an
increasing sequence. Observe that, because there is no limit point in set of eigenvalues we have

−∞→ λk−1 ⩽ λk ⩽ ⋯ ⩽ λ−1 < 0 < λ1 ⩽ ⋯ ⩽ λk ⩽ λk+1 →∞.

Theorem 2.5.3. Assume that a > 0, b ≠ 0, c ≠ 0, d ≠ 0. There exists a non zero weak stationary
solution of problem (2.16) if and only if

−ad − bc

a
= λk

for some k. Moreover each such stationary solution is of the form

ṽ =
nk

∑
l=1
Clekl and ũ =

b

a
ṽ,

where ekl are eigenfunctions corresponding to the eigenvalue λk, nk denotes the λk multiplicity
and Cl are arbitrary constants.

Theorem 2.5.4. Assume that a > 0, b ≠ 0, c ≠ 0, d ≠ 0. Let (ũ, ṽ) be a stationary solution of
problem 2.16, corresponding to eigenvalue λk, k ∈ Z. The solution (ũ, ṽ) is stable if and only if

ad + bc + aλj

d + λj
⩾ 0 for each j ∈ A ⊂ Z

where {λj}j∈A⊂Z are eigenvalues recalled in Collary 2.5.2.
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Collary 2.5.5. If the solution (ũ, ṽ) of problem (2.16) corresponding to eigenvalue λk, is stable
and λk is neither maximum nor minimum eigenvalue then

d ∈ (−λk−,−λk+) ∖ {−λk}.

If the stationary solutions corresponds to the maximum or minimum eigenvalue then we obtain

• d ∈ (−∞,−λk+) ∖ {−λk}, if λk is minimal eigenvalue

• d ∈ (−λk−,∞) ∖ {−λk−}, if −λk is maximal eigenvalue

where λk−, λk+ denotes eigenvalues adjacent to λk

Lemma 2.5.6. If the assumptions of Theorem 2.5.4 hold, then every stable solution of problem
(2.16) with initial condition u0 fulfils

∣∣u(t)∣∣2 ⩽ C
−µt

∣∣u0∣∣2 for all t > 0 (2.17)

and for some constants C,µ > 0.

The proofs of Theorem 2.5.3, Theorem 2.5.4, Lemma 2.5.6 and Collary 2.5.5 are completely
analogous to the proofs of Theorem 2.3.1, Theorem 2.4.1, Lemma 2.4.3 and Collary 2.4.2, hence
we skip it.
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Chapter 3

Nonlinear model

Let Ω ⊆ R2 be an open, bounded, connected set with C∞ boundary. Consider the nonlinear
model

ut = −au + f(v) x ∈ Ω,

0 = cu + dv +∆v,

∂v

∂n
= 0 x ∈ ∂Ω,

u0 = u(0, x).

(3.1)

For our purpose we will claim that f(0) = 0, f ∈ C2(R), namely f, f ′, f” are continuous and
bounded. We will also claim that a > 0, c ≠ 0, d ≠ 0.

3.1 Existence of stationary solution

In this section we will prove the existence of non constant stationary solutions of problem
(3.1), which satisfies

0 = −au + f(v) x ∈ Ω,

0 = cu + dv +∆v,

∂v

∂n
= 0 x ∈ ∂Ω.

(3.2)

Problem (3.1) can be reduced into one equation by assigning the function u = 1
a
f(v) from first

equation and applying it into the second one. This lead us to the following problem

0 =
c

a
f(v) + dv +∆v x ∈ Ω,

∂v

∂n
= 0 x ∈ ∂Ω.

(3.3)

Denote g(v) = c
a
f(v). We obtain the following system

0 = g(v) + dv +∆v x ∈ Ω,

∂v

∂n
= 0 x ∈ ∂Ω.

(3.4)

Notice that if c
a

is positive then g has the same properties as f . Moreover if d = −λk for some λk
then the operator (d +∆)−1 is irreversible, same like in linear model. We will use this fact later.
We will now construct a nonlinear functional corresponding to problem (3.4).
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3.1.1 Nonlinear functional

Let G′(u) = g(u). Let define us a functional J ∶W 1,2(Ω)→ R.

J(u) =
1
2 ∫

∣∇u∣2 + ∫ G(u) (3.5)

We will now prove the following properties of the functional J .

Lemma 3.1.1. Functional J ∶W 1,2(Ω)→ R is continuous.

Proof. Let
u1, u2 ∈W

1,2
(Ω) and ∣∣u1 − u2∣∣W 1,2 → 0.

We will show that ∣J(u1) − J(u2)∣→ 0.

∣J(u1) − J(u2)∣ =
1
2 ∫

∣∇u1∣
2
− ∣∇u1∣

2
+ ∫ G(u1) −G(u2) (3.6)

The convergence of the first integral is determined by the continuity of the norm.

∣∫ ∣∇u1∣
2
− ∣∇u2∣

2
∣ ⩽ ∣∣∣u1∣∣W1,2 − ∣∣u2∣∣W1,2∣ ⩽ ∣∣u1 − u2∣∣W 1,2 → 0 (3.7)

Function G fulfils global Lipschitz condition ∣∣G(u1 − u2)∣∣ < C ∣∣u1 − u2∣∣. It follows that

∫ G(u1) −G(u2) ⩽ C
′
(∫ (G(u1) −G(u2))

2
)

1
2

⩽ C”∫ ∣∣u1 − u2∣∣W 1,2 → 0 (3.8)

We obtained that ∣J(u1) − J(u2)∣→ 0.

Lemma 3.1.2. There exists the Gateaux derivative of functional J ∶ W 1,2(Ω) → R. Moreover
DJ ∶W 1,2(Ω)→ L(W 1,2(Ω),R) is continuous and J ∈ C1(W 1,2(Ω),R).

Proof. Let v ∈W 1,2(Ω). The Gateaux derivative of J on the vector v is given by the formula

d

dt
J(u + tv)∣

t=0
= ∫ (∇u + t∇v)∇v∣

t=0
+ ∫ g(u + tv)v∣

t=0
= ∫ ∇u∇v + ∫ g(u)v. (3.9)

We need to show, that if ∣∣u1 −u2∣∣W 1,2 → 0, then DJ(u1)−DJ(u2) tends to 0 in L(W 1,2(Ω),R).
Recall that the norm of a functional l ∈ L(W 1,2(Ω),R) is given by

∣∣l∣∣L(W 1,2(Ω),R) = sup
x∈W 1,2(Ω)
∣∣x∣∣=1

∣l(x)∣
(3.10)

It follows that

∣∣(DJ(u1) −DJ(u2))∣∣L(W 1,2(Ω),R) = sup
v∈W 1,2(Ω)
∣∣v∣∣=1

∫ ∇(u1 − u2)∇v + sup
v∈W 1,2(Ω)
∣∣v∣∣=1

∫ (g(u1) − g(u2))v

⩽ (∫ (∇(u1 − u2))
2
)

1
2

sup
v∈W 1,2(Ω)
∣∣v∣∣=1

(∫ (∇v)2
)

1
2

+ (∫ (g(u1) − g(u2))
2
)

1
2

sup
v∈W 1,2(Ω)
∣∣v∣∣=1

(∫ (∇v)2
)

1
2

⩽ ∣∣u1 − u2∣∣W 1,2 + (∫ (g(u1) − g(u2))
2
)

1
2

.

(3.11)
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Since g fulfils global Lipschitz condition ∣∣g(u1) − g(u2)∣∣ ⩽ C ∣∣u1 − u2∣∣. Thus we obtain

(∫ (g(u1) − g(u2))
2
)

1
2

⩽ C ′
∣∣u1 − u2∣∣W 1,2 (3.12)

and the assumption holds.

Collary 3.1.3. There exists the Fréchet derivative of J and its equal to Gateaux derivative

Proof. This is a well-known result and the proof can be found in [10, page 14]

Lemma 3.1.4. There exists the second Gateaux derivative of functional J ∶W 1,2(Ω)→ R. More-
over D2J ∶W 1,2(Ω)→ L(W 1,2(Ω), L(L(W 1,2(Ω),R)) is continuous and J ∈ C2(W 1,2(Ω),R).

Proof. Second derivative is an operator D2J ∶ W 1,2(Ω) → L(W 1,2(Ω), L(W 1,2(Ω),R)). Recall
that the norm of a functional l ∈ L(Ω, L(Ω,R)) is given by

∣∣l∣∣L(Ω,L(Ω,R)) = sup
x∈Ω

∣∣l(x)∣∣L(Ω,R) = sup
x∈Ω

sup
y∈Ω

∣l(x)(y)∣, (3.13)

where l(x)(y) denotes functional l(x) applied on y. Let w ∈W 1,2. Second derivative is a functional
that can be evaluated as follows

∫ (D2J(u)w) v =∫ (
d

dt
DJ(u + tw)∣

t=0
) v

=∫
d

dt
∇(u + tw)∣

t=0
∇v + ∫

d

dt
g(u + tw)∣

t=0

=∫ ∇w∇v + ∫ g′(u)vw.

(3.14)

To show continuity of the second derivative we need to show that if ∣∣u1 − u2∣∣W 1,2 → 0 then
∣∣D2J(u1) −D

2J(u2)∣∣L(W 1,2(Ω),L(W 1,2(Ω),R)) → 0.

∣∣D2J(u1) −D
2J(u2)∣∣ = sup

w∈W 1,2(Ω)
∣∣w∣∣=1∣

sup
v∈W 1,2(Ω)
∣∣v∣∣=1

RRRRRRRRRRR
∫ ∇w∇v + ∫ g′(u1)vw

− ∫ ∇w∇v − ∫ g′(u2)vw
RRRRRRRRRRR

⩽ sup
w∈W 1,2(Ω)
∣∣w∣∣=1∣

sup
v∈W 1,2(Ω)
∣∣v∣∣=1

∫ (g′(u1) − g
′
(u2)) vw.

(3.15)

By the assumption the function g′ fulfils the Lipschitz condition, hence from the Schwartz in-
equality it follows that

∫ (f ′(u1) − f
′
(u2)) vw ⩽C”∣∣u1 − u2∣∣W 1,2 (∫ (vw)

2
)

1
2

⩽C”∣∣u1 − u2∣∣W 1,2 ∣∣v∣∣L4 ∣∣w∣∣L4 .

To prove the convergence we need to show that ∣∣v∣∣L4 ∣∣w∣∣L4 is bounded. Let us recall Sobolev
embedding Theorem 3.2.2. Since the dimension 2 is less then 4, we obtain that W 1,2(Ω) ⊂ L4(Ω)

with a continuous embedding and consequently ∣∣v∣∣L4 ∣∣w∣∣L4 ⩽ C ∣∣v∣∣W 1,2 ∣∣w∣∣W 1,2

Collary 3.1.5. There exists the second Fréchet derivative of J and its equal to Gateaux derivative

Proof. This is a well-known result and the proof can be found in [10, page 14].
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3.1.2 Existence by the bifurcation theorem

Let X be a real Hilbert space, Ω ⊆ X be a neighbourhood of 0. Let L ∶ Ω → X be a linear
continuous operator and let H ∈ C(Ω,X). Set H(u) = o(∣∣u∣∣) as u→ 0. Consider equation

Lu +H(u) = λu. (3.16)

Obviously, there exists a trivial solution (λ,0) ∈ R ×X for each λ.

Definition 3.1.1. A point (µ,0) ∈ R×X is called a bifurcation point for equation (3.16) if every
neighbourhood of (µ,0) contains nontrivial solution of (3.16).

Lemma 3.1.6. If (µ,0) is a bifurcation point then µ belongs to the spectrum of operator L.

Proof. Let (µ,0) be a bifurcation point for equation (3.16). Consider the family of balls
Bn ((µ,0), 1

n
) ⊂ R ×X. For each n there exists (µn, un) ∈ Bn satisfying

Lun +H(un) = µnun (3.17)

Obviously, we have µn → µ. Divide both sides of this equation by the norm of un and consider
the weak solution

∫
un

∣∣un∣∣
v + ∫

H(un)

∣∣un∣∣
v = ∫ µn

un
∣∣un∣∣

v

By assumption for H, if n → ∞ we obtain ∫
H(un)
∣∣un∣∣ v → 0. Put wn = un

∣∣un∣∣ . Sequence {wn}
∞
n=1 is

bounded, hence it is weakly compact. Let wnk ⇀ w. It follows

∫ L(w)v = ∫ µwv

The equality holds for each v ∈W 1,2, hence µ belongs to the spectrum of operator L.

Theorem 3.1.7 (Rabinowitz Bifurcaion Theorem). Let X be a real Hilbert space, Ω a neigh-
bourhood of 0 in X and h ∈ C2(Ω,R) with h′(u) = Lu +H(u), L being linear and H(u) = o(∣∣u∣∣)
at u = 0. If µ is an isolated eigenvalue of L of finite multiplicity, then (µ,0) is a bifurcation point
for (3.16). Moreover, at least one of the following alternatives occurs:

1. (µ,0) is and isolated solution of (3.16) in {µ} ×X

2. There is one-sided neighbourhood, Λ of µ such that for all λ ∈ Λ ∖ {µ}, equation (3.16)
posses at least two distinct nontrivial solutions.

3. There is a neighbourhood I of µ such that for all λ ∈ I ∖{µ}, equation (3.16) posses at least
one non trivial solution.

Proof. Proof can be found in [4, page 412].

We are now ready to prove the existence of stationary nontrivial solutions for problem (3.4).
First, we need to transform the equation 3.4 into the form of

Lu +H(u) = λku (3.18)

15



for some eigenvalue of Laplacian λk recalled in Theorem 2.2.1. Adding λk yields to

λkv =
c

a
f(v) + (d + λk)v +∆v x ∈ Ω,

∂v

∂n
= 0 x ∈ ∂Ω.

(3.19)

The operators L, H are given by

L(v) = ∆v and H(v) =
c

a
f(v) + (d + λk)v.

Let g = c
a
f and G′ = g. Let us define the nonlinear functional I ∶W 1,2(Ω)→ R

I(v) =
1
2 ∫

∣∇v∣2 + ∫ G(v) +
1
2 ∫

(d + λk)v
2. (3.20)

Theorem 3.1.8. Consider system (3.4). If f ∈ C2(R) fulfils the global Lipschitz condition f(0) =
0 and f ′(0) =

−a(d+λk)
c

, then there exist a sequence {dn}
∞
n=1 ⊂ R, which converges to d and a

sequence of nonconstant functions {un}
∞
n=1,{vn}

∞
n=1 ⊂W

1,2(Ω), such that (ũn, ṽn) is a stationary
solution of

(u)t = −au + f(v) x ∈ Ω,

0 = cu + dnv +∆v,

∂v

∂n
= 0 x ∈ ∂Ω.

(3.21)

for each n ∈ N.

Proof. Let I(v) be as in (3.20) then

DI(v) = Lv +H(v).

Observe that functional I is a modification of functional J defined in (3.5)

I(v) = J(v) +
1
2 ∫

(d + λk)v
2
= J(v) +R(v)

From Lemma 3.1.4 we obtain that J ∈ C2(W 1,2(Ω),R). Applying Lemma 3.1.4 for the function
f ∶ R → R, f(v) = v gives R ∈ C2(W 1,2(Ω),R). To prove that H(u) = o(∣∣v∣∣)W 1,2(Ω), we need to
check that if ∣∣v∣∣W 1,2(Ω) → 0, then

∣∣H(v)∣∣W 1,2

∣∣v∣∣W 1,2
→ 0. (3.22)

Since f(0) = 0 we obtain

∣∣ c
a
f(v) + (d + λk)v∣∣W 1,2

∣∣v∣∣W 1,2
=

∣∣ c
a
f(v) − c

a
f(0) + (d + λk)v∣∣W 1,2

∣∣v∣∣W 1,2
. (3.23)

The right hand side tends to the minus Fréchet derivative of f if ∣∣v∣∣W 1,2 → 0. It follows from the
assumption that the nominator tends to 0.
Now we can apply Theorem 3.1.7 to obtain that (λk,0) is a bifurcation point for system (3.19).
It follows that there exists a sequence of {λnk}

∞
n=1 convergent to λk and a sequence of nonconstant

functions {vn}
∞
n=1 ⊂W

1,2(Ω) such that

λnkvn =
c

a
f(vn) + (d + λk)vn +∆vn x ∈ Ω,

∂vn
∂n

= 0 x ∈ ∂Ω.
(3.24)
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for each n ∈ N. Applying

dn = d + λk − λ
n
k and un = −

1
c
(dnvn +∆bn)

yields to the result.

Collary 3.1.9. If function f is a linear function equal to f(v) = bv then the condition in 3.1.8
is equal to the condition in theorem 2.3.1.

3.2 Stability

Let (ũ, ṽ) be a stationary nonconstant solution of problem (3.1). Consider the disturbance of
stationary solution

u = ũ + ϕ,

v = ṽ + ψ.
(3.25)

Applying this into the problem (3.1) yields to

ϕt = −a(ϕ + ũ) + f(ṽ + ψ)

0 = cϕ + dψ +∆ψ x ∈ Ω,

∂ψ

∂n
= 0 x ∈ ∂Ω.

(3.26)

Since, −aũ = f(ṽ), then by Taylor expansion we obtain

ϕt = −aϕ + f
′
(ṽ)ψ +R(ũ)ϕ2

0 = cϕ + dψ +∆ψ x ∈ Ω,

∂ψ

∂n
= 0 x ∈ ∂Ω.

(3.27)

Proposition 3.2.1 (Linearised Stablity). The stystem (3.27) is linearly stable if the system

ϕt = −aϕ + f
′
(ṽ)ψ

0 = cϕ + dψ +∆ψ x ∈ Ω,

∂ψ

∂n
= 0 x ∈ ∂Ω.

(3.28)

is stable.

We will prove the stability of solutions in case Ω ⊂ R. This assumptions is required to ensure, that
if the solution is in W 1,2(Ω) then the L∞ norm is finite. This follows from Sobolev embedding
theorem for p = 2 and n = 1.

Theorem 3.2.2 (Sobolev embedding theorem). Let Ω ⊂ Rn be an open set with boundary of
class C1(Ω). Let 1 ⩽ p < n. Then the following embeddings hold
W 1,p(Ω) ⊂ Lp∗, where 1

p∗ = 1
p
− 1
N

, if p < n
W 1,p(Ω) ⊂ Lq, where q ∈ [p,∞), if p = n
W 1,p(Ω) ⊂ L∞, if p > n

Proof. Proof of the theorem can be found in [7], p 285.
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Unfortunately similar relation does not hold in case of Ω ⊂ R2, so we are not able to prove stability
in two dimensional case. To achieve required estimate, we need to involve some regularity theory.
We are now ready to formulate and prove that solutions achieved by bifurcation theorem are
stable under specific conditions.

Theorem 3.2.3. Let Ω = R. Let the system (ũ, ṽ) be the stationary nonconstant solutions of
(3.1) obtained through Rabinowitz Bifurcation Theorem. The solution is linearly stable if

ad + f ′(0)c + aλj
d + λj

⩾ 0 for each j ∈ N,

where {λj}
∞
j=1 are eigenvalues recalled in Theorem 2.2.1.

Proof. Let (ϕ,ψ) be the solution of system

ϕt = −aϕ + f
′
(ṽ)ψ

0 = cϕ + dψ +∆ψ x ∈ Ω,

∂ψ

∂n
= 0 x ∈ ∂Ω.

(3.29)

and (ϕ,ψ) be the solution of system

ϕt = −aϕ + f
′
(0)ψ

0 = cϕ + dψ +∆ψ x ∈ Ω,

∂ψ

∂n
= 0 x ∈ ∂Ω.

(3.30)

The solution of (ϕ,ψ) is given by the explicit formula in theorem 2.3.1. Define

θ = ϕ − ϕ,

ω = ψ − ψ.

We subtract the first equation in 3.30 from the first equation in 3.29 and the second equation in
3.30 from the second equation in 3.29

θt = −aθ + f
′
(0)ω + (f ′(ṽ) − f ′(0))ψ,

0 = cθ + dω +∆ω.
(3.31)

Evaluating ω from the second equation and applying to the first gives

θt = −aθ − f
′
(0)c(d +∆)

−1θ + (f ′(ṽ) − f ′(0)) (ω + ψ), (3.32)

Multiplying by θ and integrating both sides over Ω gives

∫
Ω
θtθ = −a∫

Ω
θ2
− f ′(0)c∫

Ω
((d +∆)

−1θ) θ + ∫
Ω
(f ′(ṽ) − f ′(0)) (ω + ψ)θ (3.33)

The first integral is equal to the time derivative of L2 norm

∫
Ω
θtθ =

1
2
d

dt
∣∣θ∣∣L2 .
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To show the stability of solutions we need to prove that the integrals on the right hand side are
bounded. From lemma 2.4.3, we have

∣−a∫
Ω
θ2
− f ′(0)c∫

Ω
((d +∆)

−1θ) θ∣ ⩽∫
Ω
∣(−a − f ′(0)c(d +∆)

−1) θ ⋅ θ∣ ⩽ −µ∣∣θ∣∣L2 (3.34)

for all µ ⩽ 0. Since f ′(0) ≠ −a(dn+λk)
c

, coefficient µ < 0. Next, form (3.31) and Cauch - Schwartz
inequality we have

∫
Ω
(f ′(ṽ) − f ′(0))ωθ ⩽∫

Ω
(f ′(ṽ) − f ′(0)) (−c(d +∆)

−1) θ ⋅ θ

⩽∣∣f ′(ṽ − f ′(0))∣∣L∞ ∣∣ (−c(d +∆)
−1) θ∣∣L2 ∣∣θ∣∣L2

Since, ∣∣ṽ∣∣L∞ is small and f is Lipschitz function then ∣∣f ′(ṽ−f ′(0))∣∣L∞ < ε. Operator −c(d+∆)−1

is bounded in L2, thus we obtain

∫
Ω
(f ′(ṽ) − f ′(0))ωθ ⩽ εC ∣∣θ∣∣2L2 .

Last integral can be estimated as follows

∫
Ω
(f ′(ṽ) − f ′(0))ψθ ⩽ ∣∣f ′(ṽ − f ′(0))∣∣L∞ ∣∣ψ∣∣L2 ∣∣θ∣∣L2 ⩽ Ce

−µt
∣∣θ∣∣L2

Finally, we obtain
1
2
d

dt
∣∣θ∣∣L2 ⩽ −µ∣∣θ∣∣

2
L2 + εC ∣∣θ∣∣2L2 +Ce

−µt
∣∣θ∣∣2L2

= ∣∣θ∣∣2L2 (−µ + εC +Ce−µt) .
(3.35)

For sufficiently small ε, the expression (−µ+Cε) is negative. It follows that for large t, (−µ + εC +Ce−µt)
is negative and less then δ < 0 . Therefore ∣∣θ∣∣L2 is bounded by C ′e−δt for sufficiently large t.

Since ∣∣θ∣∣L2 > 0, then ∣∣θ∣∣L2
t→∞
ÐÐ→ 0.
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Chapter 4

Numerical Simulations

4.1 Numerical scheme

It this chapter we will present numerical simulations obtained for the analysed model. Simu-
lations were obtained using following numerical scheme. Consider system of equations

ut = −au + f(v) x ∈ Ω,

0 = cu + dv +∆v,

∂v

∂n
= 0 x ∈ ∂Ω,

u0 = u(0, x).

(4.1)

Let Ω ⊂ R2 be compact, and connected domain. For our purpose we will claim that Ω is a square
domain Ω = [0,2π] × [0,2π]. We will claim that constants a, c, d ∈ R ∖ {0}, and a > 0, b > 0.
The first equation can be approximated using difference quotient with appropriate h. The first
component in the difference quotient u0 is obtained from the system definition. Thus we obtain

un+1 − un
h

= −aun + f(vn),

un+1 = (−aun + f(vn))h + un.
(4.2)

The function vn can be evaluated from second equation

−cun = dvn +∆vn, (4.3)

supplemented with the Neumann boundary conditions. To evaluate the value of vn we will express
the function un in the basis of eigenfunctions {ϕj}

∞
j=1 of Laplacian with Neumann boundary

conditions. Let

un(t, x) =
∞
∑
j=1

anj (t)ϕj(x)

aj =< un, ϕj >= ∫
Ω
unϕj(x)

(4.4)

It follows that

vn =
∞
∑
j=1

anj (t)
−c

d + λj
ϕj(x). (4.5)
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To ensure numerical efficiency we will approximate vn with finite sum of order N

vn =
N

∑
j=1

anj (t)
−c

d + λj
ϕj(x). (4.6)

The eigenfunctions {ϕj}
∞
j=1 for quadratic domain are given by explicit formula

{ϕj}
∞
j=1 = {cos(

nx

2
) cos(

my

2
) , m,n ∈ N}

∞
m=1,n=1. (4.7)

To facilitate further analysis we will change the indexing of eigenfunctions such that

ϕn,m(x, y) = cos(
nx

2
) cos(

my

2
)

It follows immediately that the eigenvalue λn,m corresponding to ϕn,m is equal to

λn,m = −
n2 +m2

4
.

Notice that λm,n = λn,m. The dot product over quadratic domain is equal to the double integral

< un, ϕn,m >= ∫

2π

0
∫

2π

0
un(x, y)cos(

nx

2
) cos(

my

2
)dxdy

In our numerical simulations integrating over domain is approximated by finite sums over homo-
geneous domain partition.

4.2 Simulation results

Parameters that were used in numerical simulations are the compromise between required
computation accuracy and accepted calculation time. Parameters used in simulation are following
Grid size = 50 x 50, Step size h = 0.1, Number of eigenfunctions N = 11.

4.2.1 Linear model

Results presented in this section were obtained for linear model, with function f(v) = bv.
Simulation results are shown of Fig 4.1, Fig 4.2, Fig 4.3 and Fig 4.4. The pattern of solution
u is presented in the first row. The coefficients of eigenfunctions ϕm,n are shown in the second
row. Each column shows the solution in time t = 0, 3, 6, 9. Function u0 is chosen randomly with
two dimensional uniform distribution. System coefficients are fixed and a = 1, b = 0.2, c = −1.
Coefficient d is chosen to fulfil

aλm,n + ad + bc = 0

for some λm,n. It can be seen that all eigenfunctions which do not corresponds to eigenvalue λm,n
converges to zero. Notice that for d = 2.2 and d = 4.7 the stationary solution is symmetric. Those
values corresponds to the single eigenvalues λ1,1 and λ1.5,1.5 respectively. It implies that there
exists only one eigenfunction for each eigenvalue which is symmetric, so the solution is symmetric
as well. If d = 4.45 or d = 8.7 then there exists two eigenfunctions for each eigenvalue which do
not converge to 0. Those eigenfunctions are ϕ2,0.5, ϕ0.5,2 and ϕ2.5,1.5, ϕ1.5,2.5 for d = 4.45 and
d = 8.7 respectively. The coefficients for each eigenvalue are determined by the initial condition
which is random. It follows that the stationary solution is not symmetric.
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Figure 4.1: Patterns and eigenfunctions coefficients for t = 0,3,6,9. Parameter value: d = 2.2
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Figure 4.2: Patterns and eigenfunctions coefficients for t = 0,3,6,9. Parameter value: d = 4.7
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Figure 4.3: Patterns and eigenfunctions coefficients for t = 0,3,6,9. Parameter value: d = 4.45
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Figure 4.4: Patterns and eigenfunctions coefficients for t = 0,3,6,9. Parameter value: d = 8.7
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4.2.2 Nonlinear model

Results presented in this section were obtained for nonlinear model (4.1), with saturation
function f ∶ R→ R equal to

f(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0, x < 0,
x, 0 ⩽ x ⩽ xm,
xm, x > xm.

(4.8)

Coefficients a is the same as in linear model. Modification of a coefficient is not required to achieve
all possible patterns. Variation of a determines the convergence rate of eigenvalue coefficients,
however required patterns can be achieved by appropriate modifications of remaining parameters.
Parameters c was set to 30. Larger values of c ensures that more eigenfunctions becomes unstable,
which results in more complicated and diversified patterns. The value of parameter xm is set to
1. It was observed that the values of lower and upper saturation limits does not change solution
pattern, but results only in rescaling and shifting of the obtained solution. Various patterns can
be achieved by modifying d coefficients, since it determines the range of unstable eigenfunctions.

Simulation results are presented in Fig. 4.7, Fig 4.6, Fig 4.5. Notice that the stabilization
time of the solution is noticeably shorter than in linear case. This phenomena occurs, since in
linear case all but one eigenfunctions were decreasing, and the remaining one stayed constant.
In nonlinear case some eigenfunctions are unstable, and this empowers the relative difference
between stable and unstable eigenfunctions. Observe that patterns on Fig. 4.5 and Fig. 4.7 are
regular in some sense. Patterns obtained at level 1, are similar to patterns obtained at level 0.
Pattern in the Fig. 4.6 is not regular. Pattern at level 0 is significantly different then pattern at
level 1. The crucial difference between those patterns is that in case 1 and 3, there exist a few
eigenvalues which are significantly larger then the rest of eigenfunctions.
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Figure 4.5: Patterns and eigenfunctions coefficients for t = 0,3,6,9. Parameter value: d = 14.45
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Figure 4.6: Patterns and eigenfunctions coefficients for t = 0,3,6,9. Parameter value: d = 5.22

-4

60

-2

0

60
40

2

U pattern

t = 0

40

4

20
20

0 0

-0.5

60

0

0.5

60
40

1

U pattern

t = 3

40

1.5

20
20

0 0

-0.5

60

0

0.5

60
40

1

U pattern

t = 6

40

1.5

20
20

0 0

-0.5

60

0

0.5

60
40

1

U pattern

t = 9

40

1.5

20
20

0 0

2 4 6 8 10

m

1

2

3

4

5

6

7

8

9

10

11

n

Eigenfunction coefficients

t = 0

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

2 4 6 8 10

m

1

2

3

4

5

6

7

8

9

10

11

n

Eigenfunction coefficients

t = 3

-20

-15

-10

-5

0

2 4 6 8 10

m

1

2

3

4

5

6

7

8

9

10

11

n

Eigenfunction coefficients

t = 6

-20

-15

-10

-5

0

2 4 6 8 10

m

1

2

3

4

5

6

7

8

9

10

11

n

Eigenfunction coefficients

t = 9

-20

-15

-10

-5

0

Figure 4.7: Patterns and eigenfunctions coefficients for t = 0,3,6,9. Parameter value: d = 4.98
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Chapter 5

Conclusion

In this work we have attempted to explain the process of forming pattern obtained by Shigeru
Kondo in numerical simulations. We proposed an alternative model semi reaction-diffusion model
which is significantly simpler to analyse than convolution differential system proposed by Shigeru
Kondo. Our model corresponds to the specific kernel in the Kondo model, with kernel K equal to
the Green kernel. Moreover, by substituting the Laplace operator with other compact operator
we can extend our result for wider class of convolution kernels. Using base Laplace operator
properties we have proven that on certain conditions, non constant stable stationary solutions
may exist. The shape of the obtained pattern strongly depends on the coefficients value and
initial conditions.

In the linear case we have proven that the stable stationary solution is a linear combination
of eigenfunctions. The eigenvalue corresponding to those eigenfunctions fulfils specified condition
for model coefficients. The value of eigenfunctions are determined by the initial condition. Notice
that we did not use the fact that the dimension is equal to 2. All of those theorems holds for any
Rn. Results from this section are perfectly confirmed by numerical simulations. Eigenfunctions
that do not correspond to the distinguished eigenvalue are vanishing exponentially.

In the non linear case we have proven the existence using Rabinowitz Bifurcation Theorem.
We have obtained, that under specific assumptions for derivative of f there may exist a set of
coefficients dn such that bifurcation occurs and non constant stationary solution exists. However,
proposed theorem is insufficient to decide whether there exists stationary solution for a given
d. It follows from the properties of involved theorem. We obtain only the discontinuous branch
of bifurcation points. To obtain the complete theorem for any d we would need to involve the
bifurcation theorem with continuous branch of bifurcation points. Notice that, in Kondo model
saturation function does not follow the C2 assumption. To tackle with this problem, one can
approximate polyline with appropriate smooth function.

Numerical simulations for non linear model demonstrates significantly different mechanism
of forming stationary solutions. Obtained stationary solutions are not small. It can be observed
that for specific valued of f ′, c, d there exists a set of eigenfunctions, that are unstable. As time
passes, those eigenfunctions are growing exponentially, until first eigenfunction reaches saturation
level. Then the solution concentrates near the values of umax and umin and subsequently it
stabilizes. Those patterns match the patterns obtained by Shigeru Kondo. It shows, that there
exists different mechanism of pattern formation that need to be investigated.

To prove the stability of non constant solutions, we required the L∞ estimates for function
u. Unfortunately, we are not able to ensure appropriate estimates in dimension larger then 1. To
submit proper proof for n = 2 we would need to involve relevant theorems from regularity theory.
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